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A GIS-based study has been carried out to map areas landslide susceptibility using both frequency ratio (FR) and Shannon entropy
(SE) bivariate statistical models. A total of 270 landslides were identifed and classifed randomly into training landslides datasets
(70%) and the remaining (30%) of landslides datasets were used for validation purpose.Te 11 landslides conditioning factors like
slope, elevation, aspect, curvature, topographic wetness index, normalized diference vegetation index, distance from road,
distance from river, distance from faults, land use, and rainfall were integrated with training landslides to determine the weights of
each landslide conditioning factor and factor classes using both frequency ratio and Shannon entropy models. Te landslide
susceptibility maps were produced by overlay the weights of all the landslide conditioning factors using raster calculator of the
spatial analyst tool in ArcGIS 10.4. Te fnal landslide susceptibility maps were reclassifed as very low, low, moderate, high, and
very high susceptibility classes both FR and SE models. Tis susceptibility maps were validated using landslide area under the
curve (AUC). Te results of AUC accuracy models showed that the success rates of the FR and SE models were 0.761 and 0.822,
while the prediction rates were 0.753 and 0.826, respectively.

1. Introduction

Landslides are one of the nature hazards causing a lot of
casualties and property losses of all over the world [1, 2].
Natural hazards such as landslides, food, earthquake, and
drought risk cannot be avoided completely but the processes
and consequences can be mitigated [3, 4]. Landslides are
more widespread than any other geological event and can
occur anywhere in the world. Tey occur when large masses
of soil, rocks, or debris move down a slope due to the efect of
a natural phenomenon or human activity [5, 6].

In Ethiopia, landslides, mostly manifested as rock fall,
earth slide, debris, and mudfow are among the major geo-
hazards, especially in the steep and hilly areas of the
highlands with greater than 1500m altitude [7, 8].
According to M. Meten et al. [9], from 1960 to 2010, about
388 people are reported dead, 24 injured and a great deal of
agricultural lands, houses, and infrastructures were afected.

Te occurrence of landslides is an extremely complex
phenomenon which depends upon various factors such as
geologic structure, lithological association, topography,
rainfall, earthquake, and human activity [10]. One of the
most widely used approaches to reduce the landslide
damages is preparing a landslide susceptibility mapping
using suitable models and selecting the efective condi-
tioning factors [11, 12]. Over the last decades, many studies
have made contributions in landslide susceptibility maps
using qualitative and quantitative methods. Some of the
methods include the frequency ratio model [2, 4, 13–18]. A
combination of both FR and SE have been applied for
landslide susceptibility mapping [19–24], weights of evi-
dence model [12, 25–29], and Shannon entropy model
[11, 30–33]. Landslide susceptibility models are based on the
bivariate FR and WOE models [34] and frequency ratio and
information value models [1, 10, 35]. Landslide susceptibility
models based on the bivariate frequency ratio and
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multivariate logistic regression models [36–40] etc., are used
with the development of the GIS techniques. GIS platforms
help in the calculation and visualization of the cumulative
efects of conditioning factors on landslides.

In this study, we have used Shannon entropy (SE) and
frequency ratio (FR) models for the development of land-
slide susceptibility maps of Dejen district, Ethiopia. Dejen
district, one of the most landslide occurrence districts in
northwestern part of Ethiopia with the area of Abay Gorge
along the highway main road from Addis Ababa to Bahir
Dar. Abay Gorge (Dejen to Goha Tsion) road is reputedly
damaged and interrupted by the case of landslide occur-
rence, especially in the summer season. So, to address all
these issues, the results of this study can help for decision
makers to delineate the landslide occurrence areas in the
study area.

2. Materials and Methods

2.1. StudyArea. Dejen district is located in the northwestern
part of Ethiopia with an area of 557.48 km2. According to
UTM coordinate system, the location of Wereda is ap-
proximately between longitude 395000m E425000m E and
latitude 1110000m N–1140000m N direction as shown in
Figure 1. Topographically, the altitude ranges from 991m to
2559m and the slope angle varies from 0 to 66 degrees. In
terms of land use, most of the Wereda is covered by scrub/
shrub and agricultural area. Te study area receives high
amount of rainfall during the summer season. Te average
recorded annual precipitation of the area was 1070mm. Te
geological units of the study area encompass eight distinct
features with the stepwise. Te geological age of these for-
mations are Palaeozoic and Mesozoic era that composed of
sandstones, limestone, gypsum, and shale [22].

2.2. Data Source and Methodology. In this research, to
achieve the main objective was after using primary and
secondary data. Te primary data were collected from feld
survey and observation and the secondary data for the study
were acquired from governmental institutions, journals,
internet, and other documents. Te main data used for this
study were land sentinel 2 images and ASTER GDEM of the
area with spatial resolution of 30m, Google Earth imagery
and topographical map of the area.Te data layer of land use
and NDVI was derived from sentinel 2 images and ASTER
GDEM data used to create the slope, elevation, aspect,
curvature, TWI, and river networks data layers and their
extents through spatial analysis tools. Another data were
used in this study, the average annual rainfall of metrological
data and geological map of the study area. Te geological
map was used to create faults layer of the study area. In the
present study, various thematic maps were prepared by
digitized from Google Earth imagery, topographical and
geological maps of the area. Te main road networks were
digitized from the topographical map and the fault layer was
digitized from geological map. Te other data sets of
landslides were digitized from the study area of Google Earth
imagery, shows in Table 1. All the data layers have been

constructed and combined in ArcGIS 10.4 tool. ArcGIS tool
was applied throughout the whole process in this study.
Accordingly, the FR and SE models were used to generate
elaborative landslide susceptibility maps. For the purpose of
assessment and validation of landslide susceptibility maps,
the AUC methods were used, as shown in Figure 2.

2.3. Landslide Inventory Map. Landslide inventory mapping
is the systematic mapping of existing landslides in a region
using various techniques such as feld survey, aerial photo-
graphs or Google Earth imagery interpretation, satellite image
interpretation, literature search for historical landslide rec-
ords, technical and scientifc reports, governmental reports,
and the interview of experts [41, 42]. In this research, the
landslide inventory map which has a total of 280 single
landslide locations was created based on Google Earth im-
agery digitized into points using GIS 10.4 and feld visits.
Tough there is no specifc rule for defning how landslide
occurrence will be allocated into training and validation data
sets [43], usually research work has been done by using 70% of
landslides events as training data sets for preparing landslide
susceptibility model and the rest 30% have been used for
validation of the output model [11, 14, 44]. In this study, 196
(70%) of the landslides were used to training landslide sus-
ceptibility models and the remaining 84 (30%) of the land-
slides were used to model validation, as shown in Figure 3.

2.4. Landslide Conditioning Factors. To identify a landslide
occurrence conditioning factors is a very complex task.
Because there is no standard rule to select which factor to be
used or not, rather than deciding on the nature of area and
data availability [45]. In this study, eleven conditioning
factors were selected based on the literature, efectiveness,
availability of data, and the relevance with respect to land
slide occurrence [23]. Tese conditioning factors are slope,
elevation, aspect, and curvature, topographic wetness index,
normalized diference vegetation index, distance from road,
distance from river, and distance from faults, land use, and
rainfall. All the selected conditioning factors were used to
perform the landslide susceptibility mapping. Each factor
was converted to a raster format with a spatial resolution
30× 30m and was classifed based on the Jenks natural
breaks method in ArcGIS application, shown in Figure 4.

In landslide susceptibility studies, slope is considered one
of the major contributions of landslide conditioning factor of
slope failure [21, 46]. According to the importance of the slope
conditioning factor in the landslide occurrence, the study area
was classifed into seven classes in degree. With increase in
slope angle, the possibility of landslide occurrence increases
[19, 47, 48]. Elevation is an important conditioning factor in
landslide susceptibility mapping and it also impacts the en-
vironmental conditions on slopes such as human activity,
vegetation, soil moisture, and climate [49, 50]. Curvature
plays an important role in the surface run of and ground
infltration, thus afecting the erosion of the surface and
ground water condition of the region [17].Te curvature map
of the study area was classifed into concave (negative),
convex (positive), and fat (zero) surfaces. In the case of
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curvature, the more negative the value, the higher the
probability of landslide occurrence [29]. Aspect represents the
direction that a slope faces [49]. Slope aspect afects erosion,
surface evaporation, desertifcation, solar heating, and surface

weathering, thus afecting the occurrence of landslides
[46, 51]. Topographic wetness index (TWI) is among one of
the important factors responsible for the landslide, which can
quantitatively display the control of terrain on the spatial

Table 1: Type of conditioning factors, format, and source.

Type conditioning factors Format Sources
Slope

Raster Derived from of ASTER GDEM image (2021)

Elevation
Aspect
Curvature
Topographic witness index
(TWI)
River

Faults Vector Digitized from the study area of geological map, Minister of Water and Energy, Addis Ababa,
Ethiopia

Road Vector Digitized from the study area of topographic map, Minister of Water and Energy, Addis Ababa,
Ethiopia

Land use Vector Analysed from Sentinel 2 images in the USGS (2021)NDVI Vector
Rainfall Vector Interpretation of Ethiopian National Metrological Agency, Addis Ababa (1990–2021)
Landslide inventory Vector Digitized from Google Earth imagery (2021) and feld survey
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Figure 1: Location map of the study area.
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distribution of soil moisture, is a widely used terrain attribute.
Te TWI conditioning factor was obtained from DEM with
30m spatial resolution by the following equation:

TWI � Ln
AS

tan β
􏼠 􏼡, (1)

where As is the specifc catchment area (m2/m) and β is slope
angle in degrees [52]. TWI is used to measure the topographic
control of hydrological procedures [53]. Rainfall is considered
to be one of the landslides occurrences a conditioning factor.
Rainfall map was prepared using station locations in the study
area through the IDW interpolation method of annual av-
erage precipitation (1990–2021). Distance to road is one of the
most efective factors on landslide occurrence in a hilly area
[1]. Road construction near the hillsidemay lead to changes in
the natural conditions of areas. Distance to river networks
plays an important role in landslide occurrence factor closely

to surface water. Te NDVI conditioning factor was obtained
from Sentinel-2 satellite imagery with 30m spatial resolution
by the following equation:

NDVI �
IR − R

IR + R
, (2)

where IR is the infrared and R is the red bands of the elec-
tromagnetic spectrum. NDVI values range between −1.0 and
1.0, where any negative values are mainly generated from
clouds, water, and snow and values near zero are mainly
generated from rock and bare soil and the positive value
indicates that the ground is covered by vegetation. Land use is
an important conditioning factor that afects the occurrence
of landslides.Temap of land use was derived from Sentinel-2
satellite imagery, by using a supervised classifcation tech-
nique in ArcGIS. Te land use map was classifed into six
classes. Te study area is predominantly covered with the
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Figure 2: Workfow of the methodology.

4 Journal of Engineering



cropland and scrubs. Distance to faults is considered a highly
landslides conditioning factor in many research studies
[31, 37, 54, 55]. Te strength of rocks decreases with the
amount of joints, which increase with the distance to faults
[12].

2.5. Landslide Susceptibility Modeling

2.5.1. Frequency Ratio (FR) Model. Frequency ratio is one of
the most widely adopted and popular methods for landslide
susceptibility assessment [14, 16]. FR is one of the most cited
bivariate statistical analysis methods in natural hazard
studies, like food, landslide, and drought hazard [56]. Te

frequency ratio is the ratio of the area where landslides
occurred in the total study area and also is the ratio of the
probabilities of a landslide occurrence to a non-landslide
occurrence for a given attribute [57, 58]. Generally, a greater
ratio indicates a stronger relationship between a condi-
tioning factor and landslide and vice versa. A value of 1 is an
average value for the area landslides occurring in the total
area. If the FR value is greater than 1, it indicates a high
probability of landslide occurrence, and a value less than 1
indicates a low relationship between probabilities of land-
slide occurrence. Te landslides susceptibility map (LSM)
can be calculated by summing the FR of all of the factors
considered in the following equation:

Land Slide Training (70%)
Land Slide Test (30%)
Study area
Rivers
Roads

DEM
Value

High : 2559

Low : 991

400000.000000 405000.000000 410000.000000 415000.000000 425000.000000420000.000000

11
10

00
0.0

00
00

0
11

16
00

0.0
00

00
0

11
22

00
0.0

00
00

0
11

28
00

0.0
00

00
0

11
40

00
0.0

00
00

0
11

34
00

0.0
00

00
0

400000.000000 405000.000000 410000.000000 415000.000000 425000.000000420000.000000

0 2.5 5 10 Km

N

Figure 3: Landslide inventory map.

Journal of Engineering 5



LSM � 􏽘
n

j�1
FR, (3)

where LSM is landslide susceptibility map and FR represents
for each factor type or class, n is the number of factors. FR
was applied and the weights were assigned to each class of

each conditioning factor. Te FR can be obtained by the
following equation as follows:

FR �
Npix SXi( 􏼁/􏽐

m
i�1 SXi

Npix Xj􏼐 􏼑/􏽐
n
j�1 Npix Xj􏼐 􏼑

⎡⎢⎢⎣ ⎤⎥⎥⎦, (4)
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Figure 4: Landslide conditioning factors. (a) Slope. (b) Elevation. (c) Curvature. (d) Aspect. (e) Topographic Witness Index (TWI).
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where the number of landslide pixels in class i of the factor X
is represented byNpix (SXi); the total number of pixels within
factor Xj is represented by Npix(Xj); m is the number of
classes in factor Xi; and n is the total number of factors in the
study area [58].

2.5.2. Shannon Entropy (SE) Model. Te second model used
for LSM in this study is the bivariate of the Shannon entropy

model. Te Shannon’s entropy model is an improvement on
the frequency ratio model [59]. Shannon’s entropy measures
the instability, disturbance, or uncertainties of a system [20].
In fact, Shannon’s entropy states a way to estimate main
factors among efective factors of an objective weight of the
index system.Te following equations were used to calculate
the information of the coefcient:

Eij �
FR

􏽐
sj
j�1FR

,

Hj � − 􏽘

sj

j�1
Eij􏼐 􏼑log2 Eij􏼐 􏼑, Hjmax � log2 Sj, Sj is number of class, Ij �

Hjmax − Hj

Hjmax
, I � (0, 1), j � 1 . . . n, Wj � Ij ∗ FR,

(5)

where FR is frequency ratio, Eij is the probability density for
each class I in factor j;Hj and Hjmax are entropy values; Ij is
the information coefcient of factor j; Sj is the number of
classes; and Wj is the fnal weight of each factor. Te fnal
landslide susceptibility map (LSM) was calculated using the
following equation:

Wj � Ij ∗ FR, (6)

where i is the number of particular parametric map; z is the
number of classes within parametric map with the greatest
number of classes; mi is the number of classes within par-
ticular parametric map;C is value of the class after secondary
classifcation; and wj is the weight of a parameter.

3. Results and Discussion

3.1. Frequency Ratio (FR) Model. FR was measured for each
class of every landslide conditioning factor by dividing the
landslide occurrence ratio by the area ratio.Te results of the
FR model for each of the classes of efective factors are
shown in Table 2. In general, the FR value of 1 indicates the
average correlation between landslide occurrence and ef-
fective factors. If the FR value would be greater than 1, there
is a high landslide occurrence and FR value less than 1
indicates that low landslide occurrence [43]. Te analysis of
FR for the relationship between landslide occurrence and
slope degree indicate that class 47.68°–57.21°, the highest FR
value of 11.316 among the other classes of slope degree and
followed by 57.21°–66.75°, 38.14°–47.68°, 28.61°–38.14°, and
19.07°–28.61°, the FR ratios 9.613, 5.869, 3.924, and 2.027,
respectively. Subsequently, at slopes class 0°–9.53° and
9.53°–19.07° (FR� 0.161 and FR� 0.694), respectively, in-
dicating a low probabilities of landslide occurrence. In the
study area, was observed that when landslide occurrence
probability increased as the slope gradient increased up to a
certain extent, and then, it decreased with results of other
literature studies [20]. Because the higher slope values
trigger the efect of gravity and also increase shear stress [42].

According to the relationship between landslide occurrence
and elevation factor indicate that the ranges between
991m–1215m and 1215m–1439m, (FR� 0.599 and
FR� 0.696, respectively), which implies a low probabilities of
landslide occurrence in the study area. Te elevation ranges
between 1439m–1663m, 1663m–1887m, 1887m−2111m,
and 2111m–2559m and has the highest FR values (1.211,
1.573, 1.872, and 2.746, respectively), indicating a high
probabilities of landslide occurrence. In the study area, as the
elevation increases, the probability of landslide occurrence
increases up to a certain extent, and then, it decreased. In the
case of aspect factor classes are the most abundance on east
facing (FR� 1.872), south east facing (FR� 2.147), south
facing (FR� 1.627), and south west facing (FR� 1.153),
indicating a high probabilities of landslide occurrence.
However, the remaining aspect classes have the lowest
abundance of FR value less than 1, it indicates that a low
probabilities of landslide occurrence. Considering the case of
land use, results show that the agricultural land, scrub/shrub,
and bare land use types have values of FR (1.105, 1.026, and
1.280, respectively), which implies that a high probabilities
of landslide occurrence. Te highest FR value of agricultural
land, scrub/shrub, and bare land is due to its exposure to
erosion and soil moisture [37]. In the case of curvature,
factor classes of concave (−14.19–(−4.07)) and convex
(6.04–16.16) have the highest value of FR (8.840 and 10.026),
respectively, indicating a high probabilities of landslide
occurrence. Subsequently, curvature class of a fat slope
(−4.07–6.04) has a low FR value (0.968), indicating low
probabilities of landslide occurrence in this area. Te dis-
tance from road classes 1808m–3616m and 3616m–5424m
with a value of FR (1.643 and 1.282), respectively, has the
greatest impact on landslide coherence. In the study area, the
landslide frequency increases as the distance from roads
decreases. Terefore, the existing road and the ongoing
constructions disturb the stability of slope there by in-
creasing the probability of landslide occurrence with results
of other literature studies [19, 20]. According to F. Guzzetti
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[60], the landslide probability decreases with the increasing
distance from river networks. In this study area, distance
from river networks, 0–500m class exerts the highest in-
fuence on landslide occurrence in this study. Te reason is
that permanent rivers are the main source of moisture for
landslide occurrence. According to the results for distance
from faults, the class of 0–500m with a value of FR (2.551)
has the greatest impact on landslide occurrence in the study
area. In the NDVI, the FR value is greater than one, where
the NDVI classes −0.1–0.07, 0.15–0.17, and 0.17–0.20, in-
dicating a high probabilities of landslides occurrence. Tis
class of NDVI means bare land, built up areas, and scrubs.
However, the remaining NDVI classes have low FR value less
than one; with relatively high vegetation coverage can easily
lead to landslide occurrence. Te relationship between TWI
landslide probabilities showed that 2.59–4.61, 10.68–12.70,
and 14.72–16.74 classes have the highest value of FR (3.043,
1.216, and 10.231), respectively, greater than one. With
regard to the conditioning factor rainfall, four classes with
1335–1350mm, 1350–1365mm, 1410–1425mm, and
1425–1440mm have a higher FR value than the other classes
and are the most landslide occurrence classes.

3.2. Shannon Entropy (SE) Model. Te results of SE for the
relationship of the efective factors with the occurrence of
landslides are presented in Table 2. Te weight of each
conditioning factors in the Shannon’s entropy model was
based on frequency ratio (FR) values. Te results showed
that curvature, slope and TWI are the most dominant
conditioning factors in the landslide susceptibility with SE
weights of (Wj � 1.481, Wj � 0.964 and Wj � 0.758), respec-
tively, followed by distance from faults, distance from river,
elevation, aspect, and distance from road with SE weights
(Wj � 0.145, Wj � 0.135, Wj � 0.129, Wj � 0.129, and
Wj � 0.103), respectively. In this study area, the reaming
conditioning factors are less signifcant in the landslide
occurrence. From the result Eij, it is seen that slope degree
interval of 47.68°–57.21° is highly probabilities to landslide
occurrence, followed by the slope class 57.21°–66.75°. Te
other classes have low values. In the case of elevation, the
altitude ranges between 2111m and 2335m and has a highly
probability of landslide occurrence among other classes of
elevation. According to aspect, south east facing followed by
east facing aspects are the most abundant of landslide

occurrence in the study area. In the case of land use, bare
land followed by agricultural area, indicating a highly
probabilities of landslide occurrence, with relatively a lower
vegetation coverage. Te Eij value for curvature clearly
showed that classes convex (6.04–16.16) and concave
(−14.19–(−4.07)), with high values of 0.505 and 0.446, re-
spectively. Te distance to roads, 1808m–3616m class has
the highest Eij value (0.344) followed by 5424m–7232m
(0.268). However, the remaining classes have a low land-
slides occurrence in the area. In the case of distance to rivers,
the range between 0 and 500m has a high Eij value among
other classes, with indicating that a high prone landslide
occurrence. Generally, the distance to rivers shows that the
Eij value decreases as the distance to river increases. From
this, it is clear that the bank erosion is one of the main
triggering factors [30]. According to the results for distance
from faults, the class of 0–500m with a value of Eij (0.474)
has the greatest impact on landslide occurrence. In the case
of the relationship between landslide occurrence and NDVI,
the highest Eij value (0.271) was located in the NDVI class of
(−0.1–0.07) has the most efect on the occurrence of land-
slides. In the case of TWI, 14.72–16.74 class has a very
highest Eij value (10.231) with other classes of TWI. In
rainfall, the highest Eij value (0.261) was located in the
rainfall class of 1335–1350mm. Te results based on the
Shannon entropy (SE) model approach show that slope,
curvature and TWI are the most important factors which
explain better the landslide occurrence and distribution in
the study area. It should be noted that the landslide con-
tributing factors may vary from place to place by the nature
of area and data availability [45].

3.3. Landslide Susceptibility Maps. Te map of each condi-
tioning factor is prepared with the help of ArcGIS 10.4, and
then, the frequency ratio values were calculated. Te cal-
culated FR values for each pixel in the LSM indicate the
relative susceptibility to landslide occurrence. Te higher
pixel values of LSM have the higher landslide susceptibility
while the lower pixel values will have lower susceptibility.
Te landslide susceptibility map was calculated based on the
frequency ratio values that have been determined in the
training process that can be added in a raster calculator of
ArcGIS 10.4, as follows:

LSM �
FR slope + FR elevation + FR aspect + FR land use + FR curvature + FR distance from road+

FR distance from river + FR distance from faults + FRNDVI_FRTWI + FR rainfull
􏼠 􏼡. (7)

Te LSM values for the frequency ratio model in the study
area range from 218.78 to 611.49. Tese values were classifed
into fve susceptibility classes of very low, low, moderate, high,
and very high susceptibility using the geometrical interval
method for visual interpretation (Figure 5(a)). From the output
of analysis carried out using the ArcGIS 10.4 (Table 3), the very

low and low susceptibility zones cover 13.68% and 27.19% of
the study area, respectively; whereas, the moderate, high, and
very high susceptibility zones cover 30.46%, 20.72%, and 7.94%
of the total area, respectively.

Te landslide susceptibility map was produced from the
Shannon entropy model (Figure 5(b)). Te simplest
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Table 2: Spatial relationship between each conditioning factor and landslide occurrence using FR and SE models.

Conditioning
factors Classes Class

pixels
%Class
pixels

Landslide
pixels

%Landslide
pixels FR

SE
Pij Hj Hjmax Ij Wj

Slope (degree)

0–9.53 292995 45.924 115 7.377 0.161 0.005 2.244 2.807 0.201 0.964
9.53–19.07 200398 31.411 340 21.809 0.694 0.021
19.07–28.61 88419 13.859 438 28.095 2.027 0.060
28.61–38.14 38689 6.064 371 23.797 3.924 0.117
38.14–47.68 14084 2.208 202 12.957 5.869 0.175
47.68–57.21 3110 0.487 86 5.516 11.316 0.337
57.21–66.75 298 0.047 7 0.449 9.613 0.286

Elevation (m)

991–1215 17080 2.677 25.000 1.604 0.599 0.067 2.525 2.807 0.101 0.129
1215–11439 104637 16.401 178.000 11.418 0.696 0.078
1439–1663 91542 14.348 271.000 17.383 1.211 0.135
1663–1887 72600 11.379 279.000 17.896 1.573 0.175
1887–2111 60986 9.559 279.000 17.896 1.872 0.209
2111–2335 55289 8.666 371.000 23.797 2.746 0.306
2335–2559 235859 36.969 156.000 10.006 0.271 0.030

Aspect (direction)

Flat (−1) 43329 6.791 14 0.898 0.132 0.015 2.845 3.322 0.144 0.129
North (0–22.5) 72892 11.425 39 2.502 0.219 0.024
North east
(22.5–67.5) 86215 13.513 154 9.878 0.731 0.082

East (67.5–112.5) 80684 12.647 369 23.669 1.872 0.209
South east

(112.5–157.5) 66712 10.457 350 22.450 2.147 0.239

South (157.5–202.5) 67903 10.643 270 17.319 1.627 0.181
South west

(202.5–247.5) 77019 12.072 217 13.919 1.153 0.129

West (247.5–292.5) 67670 10.607 97 6.222 0.587 0.065
Nort-west

(292.5–337.5) 42777 6.705 38 2.437 0.364 0.041

North (337.5–360) 32792 5.140 11 0.706 0.137 0.015

LULC

Water body 569 0.089 1 0.064 0.719 0.135 2.470 2.585 0.045 0.039
Forest area 10748 1.684 24 1.539 0.914 0.172

Agricultural area 290487 45.523 784 50.289 1.105 0.208
Scrub/shrub 282013 44.195 707 45.350 1.026 0.193
Built up area 51411 8.057 34 2.181 0.271 0.051
Bare land 2879 0.451 9 0.577 1.280 0.241

Curvature

Concave
(−14.19–(−4.07) 2037 0.319 44 2.822 8.840 0.446 1.230 1.585 0.224 1.481

Flat (−4.07) –(6.04) 635507 99.610 1504 96.472 0.968 0.049
Convex (6.04–16.16) 449 0.070 11 0.706 10.026 0.505

NDVI (ratio)

(−0.1)–0.07 8655 1.357 58 3.720 2.742 0.271 2.972 3.170 0.063 0.070
0.07–0.09 61467 9.634 112 7.184 0.746 0.074
0.09–0.11 100884 15.813 186 11.931 0.755 0.074
0.11–0.13 130483 20.452 243 15.587 0.762 0.075
0.13–0.15 125227 19.628 299 19.179 0.977 0.096
0.15–0.17 109386 17.145 349 22.386 1.306 0.129
0.17–0.20 67951 10.651 240 15.394 1.445 0.143
0.20–0.24 27246 4.271 65 4.169 0.976 0.096
0.24–0.45 6694 1.049 7 0.449 0.428 0.042

Distance from
road (m)

0–1808.02 217352 34.068 365 23.412 0.687 0.144 2.252 2.585 0.129 0.103
1808.02–3616.04 145198 22.759 583 37.396 1.643 0.344
3616.04–5424.06 132792 20.814 416 26.684 1.282 0.268
5424.06–7232.08 90241 14.145 161 10.327 0.730 0.153
7232.08–9040.10 39954 6.262 30 1.924 0.307 0.064
9040.10–10848.12 12456 1.952 4 0.257 0.131 0.027
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Figure 5: Landslide susceptibility map using (a) frequency ratio (FR) and (b) Shannon entropy (SE) models.

Table 2: Continued.

Conditioning
factors Classes Class

pixels
%Class
pixels

Landslide
pixels

%Landslide
pixels FR

SE
Pij Hj Hjmax Ij Wj

Distance from
river (m)

0–500 224027 35.114 707 45.350 1.291 0.203 2.256 2.585 0.127 0.135
500–1000 186094 29.169 405 25.978 0.891 0.140
1000–1500 135052 21.168 236 15.138 0.715 0.112
1500–2000 69937 10.962 98 6.286 0.573 0.090
2000–2500 17047 2.672 109 6.992 2.617 0.411
>2500 5836 0.915 4 0.257 0.280 0.044

Distance from
faults (m)

0–500 131605 20.590 819 52.534 2.551 0.474 2.010 2.322 0.134 0.145
500–1000 94857 14.841 195 12.508 0.843 0.157
1000–1500 90898 14.221 177 11.353 0.798 0.148
1500–2000 81261 12.713 168 10.776 0.848 0.158
>2000 240550 37.635 200 12.829 0.341 0.063

TWI

2.59–4.61 46390 7.271 345 22.130 3.043 0.172 1.966 2.807 0.300 0.758
4.61–6.63 367920 57.668 804 51.572 0.894 0.051
6.63–8.66 156410 24.516 242 15.523 0.633 0.036
8.66–10.68 52382 8.210 125 8.018 0.977 0.055
10.68–12.70 13129 2.058 39 2.502 1.216 0.069
12.70–14.72 1722 0.270 3 0.192 0.713 0.040
14.72–16.74 40 0.006 1 0.064 10.231 0.578

Rainfall (mm)

1335.13–1350.19 27659 4.335 135 8.659 1.997 0.261 2.682 2.807 0.045 0.049
1350.19–1365.25 69387 10.876 232 14.881 1.368 0.179
1365.25–1380.31 84450 13.237 156 10.006 0.756 0.099
1380.31–1395.37 78482 12.301 81 5.196 0.422 0.055
1395.37–1410.43 108772 17.049 264 16.934 0.993 0.130
1410.43–1425.48 155896 24.435 390 25.016 1.024 0.134
1425.48–1440.54 113347 17.766 301 19.307 1.087 0.142
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landslide susceptibility equation for this model is given as
follows:

LSM � (slope × 0.964) +(Elevation × 0.129) +(Aspect × 0.129) +(Land use × 0.039) +(Curvature × 1.481)

+(Distance from road × 0.103) +(Distance from river × 0.135)

+(Distance from faults × 0.145) +(NDVI × 0.070) +(TWI × 0.758) +(Rainfall × 0.049).

(12)

Te LSM value varies from 6.33 to 16.55 for the Shannon
entropy model. Tese values were classifed into fve sus-
ceptibility classes of very low, low, moderate, high, and very
high susceptibility using the geometrical interval method.
Ten, the very low susceptible zone covers 16.77% of the
total study area, whereas low, moderate, high, and very high
susceptible zones cover 31.20%, 28.84%, 17.18%, and 6.00%
of the total area, respectively (Table 3).

3.4. Validation of Landslide Susceptibility Maps. After
obtaining the landslide susceptibility maps using FR and
SE models, their validation is necessary in order to check
their reliability. Without model validation, landslide
susceptibility maps will not be meaningful. In the present

study, the performance of the LSM produced by FR and SE
models, were evaluated using area under the curve (AUC).
Te area under the curve (AUC) is the measure that in-
dicates the accuracy of the landslide susceptibility maps by
creating success and prediction rate curves. Te success
rate curve represented the model ftness to existing
landslide and the comparison of the training dataset with
the landslide susceptibility map provides the success rate
curve. Te prediction rate curve indicates the model ef-
fciency to predict future landslide and the comparison of
the validation dataset with the landslide susceptibility
map provides the prediction rate curve [43, 61]. For this
study, 196 (70%) of the landslides were used to training
landslide susceptibility models and the remaining 84
(30%) of the landslides were used to model validation. Te

Table 3: Landslide susceptibility classes and summery of the FR and SE models.

Landslide susceptible classes
FR model SE model

Range Area in (km2) Area in (%) Range Area in (km2) Area in (%)
Very low 218.78–330.76 77.39 13.68 6.33–8.04 94.86 16.77
Low 330.76–367.58 153.78 27.19 8.04–9.29 176.47 31.20
Moderate 367.58–404.39 172.25 30.46 9.29–11.00 163.11 28.84
High 404.39–445.81 117.20 20.72 11.00–13.34 97.18 17.18
Very high 445.81–611.49 44.94 7.94 13.34–16.55 33.95 6.00
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Figure 6: Te AUC of success rate curve (a) and predication rate curve (b) of both FR and SE models.
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success and predictive rate curves can be created for both
FR and SE models by using ROC module in ArcGIS 10.4
tool. Te AUC rate curves were drawn through the x-axis
both the training and validation landslides (true positive
rate) and y-axis (false positive rate). Te total AUC can be
used to determine prediction accuracy of the suscepti-
bility map qualitatively in which larger area means higher
accuracy achieved. Te AUC value ranges from 0.5 to 1.0
are used to evaluate the accuracy of the model [61]. Te
qualitative relationship between AUC and prediction
accuracy can be classifed as follows; excellent (0.9-1.0);
very good (0.8-0.9); good (0.7-0.8); average (0.6-0.7), and
fair (0.5-0.6), [61]. If AUC value is close to 1.0, then, the
model will have ideal performance, where as a value is
equal or less than 0.5, then, the model will have poor
performance [62]. Te result showed that, the AUC of the
success rate curves was 0.761 for the FR model and 0.822
for the SE model, which be equivalent to 76.1% and 82.2%
predication accuracy, respectively (Figure 6(a)). Te AUC
of the prediction rate curves were 0.753 for the FR model
and 0.826 for the SE model, which be equivalent to 75.3%
and 82.6% predication accuracy, respectively
(Figure 6(b)). Te AUC of the success rate and predictive
rate curves range between 0.7 and 0.8, indicating that a
good performance of FR model. Also, the success rate and
predictive rate curves range between 0.8 and 0.9, indi-
cating a very good performance of the SE model.
Terefore, based on the calculated AUC, it is clear that the
SE model exhibited better result for landslide suscepti-
bility mapping in the study area.

4. Conclusion

In this study, two bivariate models (i.e., frequency ratio and
Shannon entropy models) were used to identify the land-
slides susceptible areas in Degen Wereda, north western,
Ethiopia; using GIS environment has been presented. Eleven
landslide conditioning factors were selected based on the
availability and efective data. Tese factors were slope, el-
evation, aspect, land use, curvature, and distance from road,
distance from river networks, and distance from faults,
NDVI, TWI, and rainfall to prepare landslide susceptibility
maps. A land slide inventory map was prepared using
Google Earth imagery and fled survey assessment. For this
process, 280 landslide locations were identifed and mapped.
Also classifed into 70% (196) landslides were used to
training and 30% (84) of the landslides were used to vali-
dation purpose.Te susceptibility maps produced by FR and
SE models were divided into fve susceptibility classes such
as very low, low, moderate, high, and very high susceptibility
classes based on the geometric interval method. Te AUC
rate curve quantitatively indicates the performance of the
susceptibility maps. Te model of Shannon entropy results
showed that the accuracies of success rate (82.20%) and
predicative rate (82.60%) of the landslide susceptibility map.
Similarly, the model of frequency ratio results showed that
the accuracies of success rate (76.10%) and predicative rate
(75.30%) of the landslide susceptibility map. So, the Shannon
entropy (SE) model has a higher AUC than the frequency

ratio (FR) model. Finally, this study confrmed that the
models of FR and SE were found to be simple, reliable, and
efective models for landslide susceptibility mapping of the
study area. Te fnal output of landslide susceptibility maps
can help the decision makers as basic information for the
concerned authorities of government and non-government,
district and zonal level of land use planning to perform
proper actions in order to prevent and mitigate the existing
and future landslides occurrence.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Te authors convey their thanks to authors and staf of Civil
Engineering Department, University of Debre Markos,
Ethiopia. Tis research was funded by the authors.

References

[1] B. Li, N. Wang, and J. Chen, “GIS-based landslide suscepti-
bility mapping using information, frequency ratio, and arti-
fcial neural network methods in qinghai province,
northwestern China,” Advances in Civil Engineering,
vol. 2021, Article ID 4758062, 14 pages, 2021.

[2] S. C. Pal and I. Chowdhuri, “GIS-based spatial prediction of
landslide susceptibility using frequency ratio model of
Lachung River basin, North Sikkim, India,” SN Applied Sci-
ences, vol. 1, no. 5, pp. 416–425, 2019.

[3] P. Gyawali, Y. M. Aryal, A. Tiwari, K. C. Prajwol, and
K. Ansari, “Landslide susceptibility assessment using bivariate
statistical methods: a case study of gulmi district,” Western
Nepal, vol. 16, pp. 29–40, 2019.

[4] T. H. Mezughi, J. M. Akhir, A. G. Rafek, and I. Abdullah,
“Landslide susceptibility assessment using frequency ratio
model applied to an area along the E-W highway (Gerik-Jeli),”
American Journal of Environmental Sciences, vol. 7, no. 1,
pp. 43–50, 2011.

[5] D. M. Cruden, “A simple defnition of a landslide,” Bulletin of
the International Association of Engineering Geology, vol. 43,
no. 1, pp. 27–29, 1991.

[6] L. Shano, T. K. Raghuvanshi, and M. Meten, “Landslide
susceptibility mapping using frequency ratio model: the case
of Gamo highland, South Ethiopia,” Arabian Journal of
Geosciences, vol. 14, no. 7, 623 pages, 2021.

[7] G. Mewa and F. Mengistu, “Assessment of landslide risk in
Ethiopia: distributions, causes, and impacts,” Landslides,
vol. 10, 2022.

[8] C. Tesfa and K. Woldearegay, “Characteristics and suscepti-
bility zonation of landslides in Wabe Shebelle Gorge, south
eastern Ethiopia,” Journal of African Earth Sciences, vol. 182,
Article ID 104275, 2021.

[9] M. Meten, N. PrakashBhandary, and R. Yatabe, “Efect of
landslide factor combinations on the prediction accuracy of
landslide susceptibility maps in the blue nile gorge of Central

12 Journal of Engineering



Ethiopia,” Geoenvironmental Disasters, vol. 2, no. 1, 9 pages,
2015.

[10] S. P. Mandal, A. Chakrabarty, and P. Maity, “Comparative
evaluation of information value and frequency ratio in
landslide susceptibility analysis along national highways of
Sikkim Himalaya,” Spat. Inf. Res.vol. 26, no. 2, pp. 127–141,
2018.

[11] N. D. Dam, M. Amiri, N. Al-Ansari et al., “Evaluation of
shannon entropy and weights of evidence models in landslide
susceptibility mapping for the pithoragarh district of uttar-
akhand state, India,” Advances in Civil Engineering, vol. 2022,
pp. 1–16, Article ID 6645007, 2022.

[12] Z. Anis, G. Wissem, V. Vali, H. Smida, and G. Mohamed
Essghaier, “GIS-based landslide susceptibility mapping using
bivariate statistical methods in North-western Tunisia,” Open
Geosciences, vol. 11, no. 1, pp. 708–726, 2019.

[13] D. Tapa and B. P. Bhandari, “GIS-based frequency ratio
method for identifcation of potential landslide susceptible
area in the siwalik zone of chatara-barahakshetra section,
Nepal,” Open Journal of Geology, vol. 9, no. 12, pp. 873–896,
2019.

[14] Y. X. Zhang, H. X. Lan, L. P. Li, Y. M. Wu, J. H. Chen, and
N. M. Tian, “Optimizing the frequency ratio method for
landslide susceptibility assessment: a case study of the
Caiyuan Basin in the southeast mountainous area of China,”
Journal of Mountain Science, vol. 17, no. 2, pp. 340–357, 2020.

[15] T. D. Acharya, I. T. Yang, and D. H. Lee, “GIS-based landslide
susceptibility mapping of Bhotang, Nepal using frequency
ratio and statistical index methods,” J. Korean Soc. Surv. Geod.
Photogramm. Cartogr.vol. 35, no. 5, pp. 357–364, 2017.

[16] L. Li, H. Lan, C. Guo, Y. Zhang, Q. Li, and Y.Wu, “Amodifed
frequency ratio method for landslide susceptibility assess-
ment,” Landslides, vol. 14, no. 2, pp. 727–741, 2017.

[17] H. J. Oh, S. Lee, and S. M. Hong, “Landslide susceptibility
assessment using frequency ratio technique with iterative
random sampling,” Journal of Sensors, vol. 2017, pp. 1–21,
Article ID 3730913, 2017.

[18] F. E. S. Silalahi, Y. Arifanti, and F. Hidayat, “Landslide
susceptibility assessment using frequency ratio model in
Bogor, West Java, Indonesia,” Geosci. Lett.vol. 6, no. 1,
10 pages, 2019.

[19] S. Panchal and A. K. Shrivastava, “A comparative study of
frequency ratio, shannon’s entropy and analytic hierarchy
process (Ahp) models for landslide susceptibility assessment,”
ISPRS International Journal of Geo-Information, vol. 10, no. 9,
p. 603, 2021.

[20] A. Jaafari, A. Najaf, H. R. Pourghasemi, J. Rezaeian, and
A. Sattarian, “GIS-based frequency ratio and index of entropy
models for landslide susceptibility assessment in the Caspian
forest, northern Iran,” International journal of Environmental
Science and Technology, vol. 11, no. 4, pp. 909–926, 2014.

[21] L. J. Wang, M. Guo, K. Sawada, J. Lin, and J. Zhang, “A
comparative study of landslide susceptibility maps using lo-
gistic regression, frequency ratio, decision tree, weights of
evidence and artifcial neural network,” Geoscience Journal,
vol. 20, no. 1, pp. 117–136, 2016.

[22] T. Melese, T. Belay, and A. Andemo, “Application of ana-
lytical hierarchal process, frequency ratio, and Shannon en-
tropy approaches for landslide susceptibility mapping using
geospatial technology: the case of Dejen district, Ethiopia,”
Arabian Journal of Geosciences, vol. 15, no. 5, 424 pages, 2022.

[23] A. Es-smairi, “Spatial Prediction of Landslide Susceptibility
Using Frequency Ration (FR) and Shannon Entropy (SE)
Models,” A Case Study from Northern Rif, Morocco, 2022.

[24] L. P. Sharma, N. Patel, M. K. Ghose, and P. Debnath, “De-
velopment and application of Shannon’s entropy integrated
information value model for landslide susceptibility assess-
ment and zonation in Sikkim Himalayas in India,” Natural
Hazards, vol. 75, no. 2, pp. 1555–1576, 2015.

[25] N. Getachew and M. Meten, “Weights of evidence modeling
for landslide susceptibility mapping of Kabi-Gebro locality,
Gundomeskel area, Central Ethiopia,” Geoenvironmental
Disasters, vol. 8, no. 1, p. 6, 2021.

[26] B. Pradhan, H. J. Oh, and M. Buchroithner, “Weights-of-
evidence model applied to landslide susceptibility mapping in
a tropical hilly area,” Geomatics, Natural Hazards and Risk,
vol. 1, no. 3, pp. 199–223, 2010.

[27] M. Rezaei Mog, M. Khayyam, M. Ahmadi, andM. Farajzadeh,
“Mapping susceptibility landslide by using the weight-of-
evidence model: a case study inMerek Valley, Iran,” Journal of
Applied Sciences, vol. 7, no. 22, pp. 3342–3355, 2007.

[28] Y. Cao, X. Wei, W. Fan, Y. Nan, W. Xiong, and S. Zhang,
“Landslide susceptibility assessment using the Weight of
Evidence method: a case study in Xunyang area, China,” PLoS
One, vol. 16, no. 1, pp. 02456688–e245718, 2021.

[29] S. Lee and J. Choi, “Landslide susceptibility mapping using
GIS and the weight-of-evidence model,” International Journal
of Geographical Information Science, vol. 18, no. 8, pp. 789–
814, 2004.

[30] Q. Wang, W. Li, W. Chen, and H. Bai, “GIS-based assessment
of landslide susceptibility using certainty factor and index of
entropy models for the Qianyang county of Baoji city, China,”
Journal of Earth System Science, vol. 124, no. 7, pp. 1399–1415,
2015.

[31] A. Kerekes, S. L. Poszet, and A. Gál, “Landslide susceptibility
assessment using the maximum entropy model in a sector of
the Cluj–Napoca Municipality, Romania,” Revista de Geo-
morfologie, vol. 20, no. 1, pp. 130–146, 2018.

[32] M. Shadman Roodposhti, J. Aryal, H. Shahabi, and
T. Safarrad, “Fuzzy Shannon entropy: a hybrid GIS-based
landslide susceptibility mapping method,” Entropy, vol. 18,
pp. 343–410, 2016.

[33] A. Kornejady, M. Ownegh, and A. Bahremand, “Landslide
susceptibility assessment using maximum entropy model with
two diferent data sampling methods,” Catena, vol. 152,
pp. 144–162, 2017.

[34] T. Mersha and M. Meten, “GIS-based landslide susceptibility
mapping and assessment using bivariate statistical methods in
Simada area, northwestern Ethiopia,” Geoenvironmental Di-
sasters, vol. 7, no. 1, 20 pages, 2020.

[35] A. Genene, Landslide Susceptibility Mapping Using GIS-Based
Information Value and Frequency Ratio Methods in Ginde-
beret Area, Oromia Region, West Shewa Zone, 2021.

[36] T. C. Korma, “GIS-based landslide susceptibility zonation
mapping using frequency ratio and logistics regression
models in the Dessie area,” vol. 12, pp. 1–25, South Wello,
2022.

[37] K. Solaimani, S. Z. Mousavi, and A. Kavian, “Landslide
susceptibility mapping based on frequency ratio and logistic
regression models,” Arabian Journal of Geosciences, vol. 6,
no. 7, pp. 2557–2569, 2013.

[38] S. Hidayat, H. Pachri, and I. Alimuddin, “Analysis of landslide
susceptibility zone using frequency ratio and logistic re-
gression method in hambalang, citeureup district, bogor re-
gency, west java province,” IOP Conference Series: Earth and
Environmental Science, vol. 280, no. 1, Article ID 012005,
2019.

Journal of Engineering 13



[39] S. Lee and B. Pradhan, “Landslide hazard mapping at
Selangor, Malaysia using frequency ratio and logistic re-
gression models,” Landslides, vol. 4, no. 1, pp. 33–41, 2007.

[40] G. Das and K. Lepcha, “Application of logistic regression (LR)
and frequency ratio (FR) models for landslide susceptibility
mapping in Relli Khola river basin of Darjeeling Himalaya,
India,” SN Applied Sciences, vol. 1, no. 11, pp. 1453–1522, 2019.

[41] C. Sivakami and Dr. R. Rajkumar, “Landslide vulnerability
zone by weights of evidence model using remote sensing and
GIS, in kodaikanal taluk (Tamil nadu, India),” International
Journal of Engineering Research, vol. V9, no. 2, pp. 788–793,
2020.

[42] A. Wubalem, “Modeling of landslide susceptibility in a part of
Abay basin, northwestern Ethiopia,” Open Geosciences,
vol. 12, no. 1, pp. 1440–1467, 2020.

[43] B. Pradhan, S. Lee, and M. F. Buchroithner, “Remote sensing
and GIS-based landslide susceptibility analysis and its cross-
validation in three test areas using a frequency ratio model,”
Photogrammetrie, Fernerkundung, GeoInformation, vol. 2010,
no. 1, pp. 17–32, Article ID 0037, 2010.

[44] A. Wubalem, “Landslide susceptibility mapping using sta-
tistical methods in Uatzau catchment area, northwestern
Ethiopia,” Geoenvironmental Disasters, vol. 8, no. 1, pp. 1–21,
2021.

[45] L. Ayalew and H. Yamagishi, “Te application of GIS-based
logistic regression for landslide susceptibility mapping in the
Kakuda-Yahiko Mountains, Central Japan,” Geomorphology,
vol. 65, no. 1–2, pp. 15–31, 2005.

[46] G. l. Du, Y. s. Zhang, J. Iqbal, Z. h. Yang, and X. Yao,
“Landslide susceptibility mapping using an integrated model
of information value method and logistic regression in the
Bailongjiang watershed, Gansu Province, China,” Journal of
Mountain Science, vol. 14, no. 2, pp. 249–268, 2017.

[47] B. T. Pham, D. T. Bui, M. Dholakia et al., “A novel ensemble
classifer of rotation forest and Naı̈ve Bayer for landslide
susceptibility assessment at the Luc Yen district, Yen Bai
Province (Viet Nam) using GIS,” Geomatics, Natural Hazards
and Risk, vol. 8, no. 2, pp. 649–671, 2017.

[48] C. Xu, F. Dai, X. Xu, and Y. H. Lee, “GIS-based support vector
machine modeling of earthquake-triggered landslide sus-
ceptibility in the Jianjiang River watershed, China,” Geo-
morphology, vol. 145–146, pp. 70–80, 2012.

[49] H. Shu, Z. Guo, S. Qi, D. Song, H. R. Pourghasemi, and J. Ma,
“Integrating landslide typology with weighted frequency ratio
model for landslide susceptibility mapping: a case study from
lanzhou city of northwestern China,” Remote Sensing, vol. 13,
no. 18, p. 3623, 2021.

[50] S. He, P. Pan, L. Dai, H. Wang, and J. Liu, “Application of
kernel-based Fisher discriminant analysis to map landslide
susceptibility in the Qinggan River delta, Tree Gorges,
China,” Geomorphology, vol. 171–172, pp. 30–41, 2012.

[51] H. Khan, M. Shafque, M. A. Khan, M. A. Bacha, S. U. Shah,
and C. Calligaris, “Landslide susceptibility assessment using
Frequency Ratio, a case study of northern Pakistan,” Te
Egyptian Journal of Remote Sensing and Space Science, vol. 22,
no. 1, pp. 11–24, 2019.

[52] N. R. Regmi, J. R. Giardino, and J. D. Vitek, “Modeling
susceptibility to landslides using the weight of evidence ap-
proach: western Colorado, USA,” Geomorphology, vol. 115,
no. 1–2, pp. 172–187, 2010.

[53] C. Y. Chen and F. C. Yu, “Morphometric analysis of debris
fows and their source areas using GIS,” Geomorphology,
vol. 129, no. 3–4, pp. 387–397, 2011.

[54] S. Karim, S. Jalileddin, andM. T. Ali, “Zoning landslide by use
of frequency ratio method (case study: deylaman region),”
vol. 9, no. 5, pp. 578–583, 2011.

[55] B. Pradhan, S. Mohsen Mousavi, A. Golkarian, S. Amir
Naghibi, and B. Kalantar, “GIS-Based groundwater spring
potential mapping using data mining boosted regression tree
and probabilistic frequency ratio models in Iran,” AIMS
Geosciences, vol. 3, no. 1, pp. 91–115, 2017.

[56] D. Sarkar, S. Saha, and P. Mondal, “GIS-based frequency ratio
and Shannon’s entropy techniques for food vulnerability
assessment in Patna district, Central Bihar, India,” Interna-
tional journal of Environmental Science and Technology,
vol. 19, no. 9, pp. 8911–8932, 2021.

[57] S. Lee and J. A. Talib, “Probabilistic landslide susceptibility
and factor efect analysis,” Environmental Geology, vol. 47,
no. 7, pp. 982–990, 2005.

[58] A. D. Regmi, K. Yoshida, H. R. Pourghasemi, M. R. DhitaL,
and B. Pradhan, “Landslide susceptibility mapping along
Bhalubang — shiwapur area of mid-Western Nepal using
frequency ratio and conditional probability models,” Journal
of Mountain Science, vol. 11, no. 5, pp. 1266–1285, 2014.

[59] A. Haghizadeh, S. Siahkamari, A. H. Haghiabi, and
O. Rahmati, “Forecasting food-prone areas using Shannon’s
entropy model,” Journal of Earth System Science, vol. 126,
no. 3, 39 pages, 2017.

[60] F. Guzzetti, “Landslide hazard assessment and risk evaluation:
limits and prospectives,” in Proceedings of the 4th EGS Plinius
Conferences, Beijing China, October 2002.

[61] E. Yesilnacar and T. Topal, “Landslide susceptibility mapping:
a comparison of logistic regression and neural networks
methods in a medium scale study, Hendek region (Turkey),”
Engineering Geology, vol. 79, no. 3–4, pp. 251–266, 2005.

[62] T. Fawcett, “An introduction to ROC analysis,” Pattern
Recognition Letters, vol. 27, no. 8, pp. 861–874, 2006.

14 Journal of Engineering




