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Many features of nanofluids, such as the Prandtl number and viscosity, are researched as the number of studies conducted in the
field of nanofluids increases. Observations on the Prandtl number and viscosity of titanium oxide nanofluids are made in this
study. These observations are made at low concentrations of titanium oxide nanoparticles and temperatures ranging from 30.4°C
to 70.4°C. Novel correlations for viscosity and Prandtl number as functions of temperature have been developed and compared to
the previously published models for Prandtl number and viscosity. The results indicate that titanium oxide-ethylene glycol
nanofluid has a greater viscosity and Prandtl number than all other titanium oxide nanofluids observed in the study at 0.01
nanoparticle concentration. The results on viscosity and Prandtl number for the new correlations fall within the same range as
those found in the literature, indicating that the new correlations introduced as functions of temperature in this study can be used
in future research to establish viscosity and Prandtl number calculations for the different types of nanofluids at specific

temperatures.

1. Introduction

As nanoparticles are added to base fluids such as water,
glycols, oils, and refrigerants to generate nanofluids, the
thermophysical properties of the resulting fluids improve.
These nanofluids are utilized in several industrial applica-
tions. The research topic on nanofluids has advanced sig-
nificantly as scientists have been interested in the
manufacture of these specialized fluids that contain nano-
particles. As it was discovered that nanofluids possess in-
creased thermophysical characteristics, curiosity emerged.
Various nanoparticles have been studied to demonstrate the
validity of the tested hypotheses. In this article, the nanofluid
viscosity and Prandtl number of titanium oxide-ethylene
glycol (40%)/water (60%), titanium oxide-ethylene glycol
nanofluid viscosity and Prandtl number, and titanium
oxide-water nanofluid viscosity and Prandtl number are

analysed. Observations are also made about the viscosity and
Prandtl numbers on their respective base fluids, specifically
the enhancement of viscosity and Prandtl number at varied
nanoparticle concentrations of 0.004, 0.006, 0.008, and 0.01.
It is vital to evaluate how high or low the Prandtl number can
be, as a greater Prandtl number indicates a higher viscosity of
the nanofluid, while a lower Prandtl number indicates
a lower viscosity of the nanofluid. The titanium oxide
nanofluids, at the measured nanoparticle concentration,
have the potential for usage in numerous applications due to
a minor increase in viscosity for the selected nanoparticle
concentrations. The Prandtl number depends on the
nanofluid’s specific heat, viscosity, and thermal conductivity.
In addition to detecting the Prandtl number and viscosity of
nanofluids using the aforementioned published models, we
examine new correlations for Prandtl number and viscosity
and compare them to previously published models. It is
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important to evaluate the effects of temperature on the
thermophysical properties of nanofluids, as determined by
a thorough analysis of the relevant literature. The correct
analysis of the thermophysical and rheological properties
that nanofluids should possess when utilized in a variety of
industrial applications necessitates the development of novel
correlations that involve temperature. Temperature plays
a significant role in the thermophysical characteristics of
nanofluids. Nanofluids are analysed at a variety of tem-
peratures and nanoparticle concentrations to identify the
optimal outcomes. Numerous experiments have been con-
ducted in which researchers have been able to observe these
findings measured at specific temperatures using measuring
devices or theoretical models; however, there is a gap in the
literature where more correlations, particularly correlations
as functions of temperature, are required to analyse the
nanofluids at specific temperatures using correlations.
Hence, theoretical models and experimental investigations
may be predicted with more ease, and more precise results
can be acquired. This study provides more recent re-
lationships between the Prandtl number and viscosity.

2. Literature Review

Viscosity and the Prandtl number were examined by several
experts in their respective fields, and their work and findings
are discussed in Table 1.

3. Data Reduction

The Prandtl number depends on the nanofluid’s thermal
conductivity, specific heat, and viscosity. Equation (la)
depicts the formula used by Tiandho et al. [21] and other
researchers to analyse the nanofluid Prandtl number in
scientific literature.

Pt (1a)

For nanofluid computations, equation (la) can be re-
written as shown in the following equation:

C
nf ~ p,nf
P, i=—, 1b
r,nf knf ( )
where P, ¢, s> C, 5> and k, ; are the nanofluid Prandtl

number, nanofluid viscosity, and nanofluid specific heat,
respectively. In this study, the Prandtl number and viscosity
of three nanofluids are measured at temperatures ranging
from 30.4°C to 70.4°C. The titanium oxide nanoparticles are
combined with ethylene glycol (40%)/water (60%), ethylene
glycol, and water as the basis of fluids. Equation (2) of the
Einstein model is the most popular model for calculating
nanofluid viscosity. Manikandan and Baskar [16] were
among the researchers who utilised this model.

P = tpe (1 +2.50), (2)
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where p ¢, pps> and & indicate the viscosity of the nanofluid
and the base fluid, respectively, and & represents the nano-
particle concentration. The thermophysical properties are
observed using ASHRAE (2017) Handbook-Fundamental (SI).

3.1. Viscosity and Prandtl Number’s Base Fluid Properties and
Correlations. Prior to introducing the new nanofluid cor-
relations for Prandtl number and viscosity, it is crucial to
have examined the base fluid properties for the nanofluid
analysis, as base fluids form the basis of the new correlations
in this study. The base fluids are used to compare the
findings obtained using both the theoretical models and the
novel correlations to determine the difference between
utilizing nanoparticles to enhance thermophysical proper-
ties and not using them.

Table 2 provides an examination of the base fluids. The
correlations of base fluids are explored at temperatures
ranging from 30.4°C to 70.4°C.

4. New Correlations for Viscosity and
Prandtl Number for Nanofluids as
Functions of Temperature

This section’s study is based on the latest correlations be-
tween the viscosity and the Prandtl number. The correlations
are used for calculating the viscosity and Prandtl number of
nanofluids. The correlations are also reported for the range
of temperatures between 30.4, and 70.4 degrees Celsius. In
addition to its usage in titanium oxide nanofluid in-
vestigation, the novel correlations can be utilized to compute
the viscosity and Prandtl number of different nanofluids at
various temperatures.

4.1. New Viscosity Correlation as a Function of Temperature.
The equation in 4.1 represents the new link between viscosity
and temperature, where y, ¢, 4, ¢, &, and T represent the
viscosity, base fluid, nanoparticle concentration, and tem-
perature of the nanofluid.

Hus = l’lbf(l + 35@) - 0035|,lbfT® (3)

4.2. New Prandtl Number Correlation as a Function of
Temperature. The equation in 4.2. represents the new
Prandtl number correlation, where
Py sttt P KprCpbrkiprsD:Cp popys and T represent the
nanofluid Prandt]l number, base fluid viscosity, nanoparticle
density, nanoparticle thermal conductivity, base fluid spe-
cific heat, base fluid thermal conductivity, nanoparticle
concentration, nanoparticle specific heat, base fluid density,
and temperature, respectively. This new association between
the Prandtl number and viscosity is applicable to the re-
search of numerous nanofluids that require examination.
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TaBLE 2: Viscosity and Prandtl number base fluid correlations.

Ethylene glycol (40%)/water

Base fluid properties Water Ethylene glycol (60%)
. s = 1.0461 — 0.0095T by = 19.681 — 0.2293T pop = 3.0648 — 0.0311T
Viscosity (mPa.s) R2 = 0.9762 R? = 0.9529 R2 = 0.975
- P,y = 7.3418 — 0.0707T Ppp = 187.99 - 2.161T P, = 26.048 — 0.2669T
Prandtl number (-) R® = 0.9723 R? = 0.9529 R? =0.9719

P

 Beppk, [Copr (1+29) + (C,,D/pye ) (1 - 4p, D + 4p,DT) —(0.035p,3°T/pys )|

rnf —

5. Comparison of Theoretical Models with
New Correlations for Viscosity and the
Prandtl Number

In the analysis, the models described in Sections 3 and 4 are
utilized. Results for titanium oxide-ethylene glycol (40%)/
water (60%) nanofluid, titanium oxide-ethylene glycol
nanofluid, and titanium oxide-water nanofluid are presented
in Section 5.

5.1. Viscosity Comparison Results

5.1.1. Titanium Oxide-Ethylene Glycol (40%)/Water (60%)
Nanofluid Viscosity Shown in Figure 1

5.1.2. Titanium Oxide-Ethylene Glycol Nanofluid Viscosity
Shown in Figure 2

5.1.3. Titanium Oxide-Water Nanofluid Viscosity Shown in
Figure 3

5.2. Prandtl Number Comparison Results

5.2.1. Titanium Oxide-Ethylene Glycol (40%)/Water (60%)
Nanofluid Prandtl Number Shown in Figure 4

5.2.2. Titanium Oxide-Ethylene Glycol Nanofluid Prandtl
Number Shown in Figure 5

5.2.3. Titanium Oxide-Water Nanofluid Prandtl Number
Shown in Figure 6

6. Discussion of Results

6.1. Prandtl Number. In accordance with the observations
made in Sections 3-5, the Prandtl number for the titanium
oxide-ethylene glycol (40%)/water (60%) mixture at various
temperatures is 19 at 30.4°C, as shown in Figure 4. The Prandtl
value increases by a small proportion in both theoretical and
new correlation results. At 30.4°C, the Prandtl number for
titanium oxide-ethylene glycol is shown to range from 137 to
147 in Figure 5. In Figure 6, the Prandtl number for titanium
oxide-water nanofluid ranges from 5.50 to 5.79 at 30.40

ky [T(0.0002p, +0.0012p,& - 0.0002T -k, + k, &) +k

(4)

ppp(l + 5@)]

degrees Celsius. The Prandtl number of pure ethylene glycol is
greater than that of water and ethylene glycol/water mixtures.
Observing the various nanofluids, the Prandtl number in-
creases as 0.004, 0.006, 0.008, and 0.01 nanoparticle con-
centrations are added to the basic fluids. Yet, as the
temperature increases, the Prandtl number similarly falls. In
both the theoretical formula for the Prandtl number and the
new correlation model, it can be observed that as the viscosity
increases, the Prandtl number also increases. As the tem-
perature of the nanofluid increases, the viscosity of the
nanofluid lowers, causing the Prandtl number to fall as well.
The basic fluids have a lower measured Prandtl number than
the nanofluids. Compared to ethylene glycol (40%)/water
(60%) base fluid and water base fluid, ethylene glycol has
a high Prandtl number. The Prandtl number increases
ranging from 1.4% to above 3.45% for the titanium oxide-
ethylene glycol (40%)/water (60%) nanofluid, from 2.4% to
5.8% for the titanium oxide-ethylene glycol nanofluid, and
from 1.1% to 2.6% for the titanium oxide-water nanofluid,
with reference to the base fluids. Moreover, the Prandtl
number determines the thickness of the boundary layer. The
greater the Prandtl number, the greater the nanofluid’s high
viscosity, which causes nanofluid flow constraints when the
nanofluid thickens due to its high viscosity. Kho et al. [22]
came to the conclusion that when the Prandtl number in-
creased, the temperature profile continued to decrease.

6.2. Viscosity. When the concentration of nanoparticles
increases, the viscosity of titanium oxide nanofluids in-
creases. Considering the previous Sections 3-5, the viscosity
increases for all the titanium oxide nanofluids are minimal.
In the fluid analysis, it is essential that the viscosity is kept
low. Adding nanoparticle concentrations to nanofluids in-
creases their viscosity. Yet, as demonstrated in Figures 1-3,
the viscosity increases slightly when nanoparticle concen-
trations of 0.004, 0.006, 0.008, and 0.01 are added to a so-
lution. Viscosity increases slightly by fractions of percentage
points in all the detected nanofluids, indicating that the
necessary results in nanofluid analysis can be obtained.
Among the thermophysical parameters of nanofluids, such
as thermal conductivity, specific heat, and density, viscosity
increases less than thermal conductivity, specific heat, and
density do at the same nanoparticle concentrations. Main-
taining a low viscosity is a desirable outcome in the fluid
analysis and makes nanofluids even more suitable for
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FIGURE 1: Comparison of titanium oxide-ethylene glycol (40%)/water (60%) nanofluid viscosity theoretical model and new correlation.
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FIGURE 2: Comparison of titanium oxide-ethylene glycol nanofluid viscosity theoretical model and new correlation.

industrial applications. This is supported by the viscosity
graphs and results presented in the study. Viscosity plays
a significant role in fluid movement, and it is always pref-
erable for the fluid to have a low viscosity. All the base fluids
containing Titanium oxide nanoparticle concenrations of
0.004 have the lowest viscosity as seen in the study.

Considering the selected titanium oxide nanoparticle con-
centrations and how the viscosity increases slightly, titanium
oxide nanofluids at lower nanoparticle concentrations could
be considered for use in a variety of applications, and careful
consideration should also be given to titanium oxide water-
based nanofluid, as the addition of higher nanoparticle
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FIGURE 6: Comparison of titanium oxide-water nanofluid Prandtl number theoretical model and new correlation.

concentrations would affect the decrease percentage of
viscosity as shown in this paper. Despite the favourable
viscosity of water nanofluids, the addition of nanoparticle
concentrations increases the decreasing percentage of the
nanofluid relative to the base fluid, as shown in this study.

This gives ethylene glycol/water combinations so much
promise for usage in industrial applications that the drop in
viscosity with increasing temperature for ethylene glycol
(40%)/water (60%) nanofluid is identical to the fall in vis-
cosity percentage for ethylene glycol (40%)/water (60%) base
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fluid. With the introduction of the new correlation for
viscosity, it is confirmed that other studies have seen an
increase in viscosity when nanoparticles are added and that
the percentage increase in viscosity throughout the nano-
fluids tested is consistent. It has been demonstrated that
a novel correlation as a function of temperature contributes
to the research models found in the literature since it
produces the desired results. With the results of the new
correlation shown in Figures 1-3, we observe a decrease in
viscosity, making the usage of this new correlation a viable
alternative for analysing viscosity at various temperature
ranges. Einstein’s model does not include temperature, but
with this new correlation, temperature is included, and it has
been shown to produce lower viscosity rise findings when
nanoparticles are introduced, making the new correlation
preferable for viscosity analysis.

7. Conclusion

It is always desired that any type of fluid flows freely;
therefore, in the observation of the researched study, ti-
tanium oxide-ethylene glycol (40%)/water (60%) nanofluid
and titanium oxide water nanofluid had the lowest Prandtl
number and were preferable to the titanium oxide ethylene
glycol nanofluid. In all nanofluids observed, the highest
Prandtl number and viscosity were observed at 0.01
nanoparticle concentration and 30.4 degree Celsius. Using
the new correlations for Prandtl number and viscosity, this
study demonstrated an increase in the Prandtl number and
correlated with the previously published data. The nano-
fluid research study requires more precise analysis
methods, which will aid in the creation of more precise
designs for industrial equipment and the rescaling of
existing industrial designs. The additional correlations as
functions of temperature augment the literature-based
research models that have demonstrated their ability to
achieve the required results. With the results of the new
correlations shown in Figures 1-6, we observe a decrease in
viscosity and Prandtl number with an increase in tem-
perature, making the application of the new correlations
a viable alternative for analysing the viscosity at various
temperature ranges. Einstein’s viscosity model for nano-
fluid viscosity analysis does not include temperature; with
this new correlation for viscosity, temperature is included,
as is the case for Prandtl number. With the new correlations
introduced in this study, we note that the accuracy of
results remains within the same range as when using
theoretical models and that the new correlations for
Prandtl number and viscosity contribute to the analysis of
nanofluids.

Nomenclature

P.:  Prandtl number

U Viscosity

k: Thermal conductivity

C,:  Specific heat

P, ¢+ Nanofluid Prandtl number

P,,s: Base fluid Prandtl number

pps:  Base fluid viscosity

tnp: Nanofluid viscosity

kys:  Base fluid thermal conductivity
k,r:  Nanofluid thermal conductivity
C,p+ Nanoparticle specific heat
C,ps: - Base fluid specific heat

Cpnst Nanofluid specific heat

pp:  Nanoparticle density

pys:  Base fluid density

a: Nanoparticle concentration

T: Temperature

TiO,: Titanium oxide.
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