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In this paper, we proposed amodel in which a single level of two quantumdots is connected in parallel and embedded between two leads
with diferent temperatures and chemical potentials. Te temperature and chemical potential gradient help the electron fow cyclically
and act as a heat engine.We explore the thermodynamic properties of themodel such as heat fux and power as a function of dot energy.
We also carried out analytical and numerical solutions for efciency at maximum power of the thermoelectric engine. Te resulting
efciency of our engine agrees with the Curzon–Ahlborn expression up to quadratic terms in Carnot efciency.

1. Introduction

Te concept of thermodynamics has been developed from
the analysis of heat engines’ performance. Carnot invented
an idealized mathematical model of heat engines called the
Carnot cycle and proved that there exists a maximum ef-
fciency of all heat engines, which is given by Carnot ef-
ciency. Tis efciency is a central cornerstone of
thermodynamics. It states that a reversible Carnot engine’s
efciency attains the maximum possible work for a given
temperature of the hot (Th) and cold (Tc) reservoirs but
generates zero power because it is an infnitely slow oper-
ation. Te efciency (ηc � 1 − Tc/Th) of the Carnot cycle is
the upper bound on the efciency at which real heat engines
are unrealistically high. Te practical implications are more
limited since the upper limit ηc is only reached for reversible
engine. One of the important questions is what will be the
efciency at maximum power of a system that operates in
fnite time. In a groundbreaking work, Curzon and Ahlborn
[1] obtained this efciency for the Carnot engine by

optimizing the Carnot cycle with respect to power rather
than efciency, which is given by Curzon–Ahlborn ef-
ciency, ηCA

ηCA � 1 −

���
Tc

Th



�
ηc

2
+
η2c
8

+ ϑ η3c . (1)

Tis efciency is used to seek a more realistic upper
bound on the efciency of a heat engine in the endor-
eversible approximation [1, 2] (taking into account the
dissipation only in the heat transfer process). Currently, it
has been shown that the Curzon–Ahlborn efciency is an
exact consequence of linear irreversible thermodynamics
when operating under conditions of strong coupling be-
tween the heat fux and the work [3–5]. Te value of 1/2 for
the linear coefcient in equation (1) is therefore universal for
such systems. Furthermore, the diverse system in nature has
been found investigating efciency at maximum power such
as Brownian particle undergoing a Carnot cycle through the
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modulation of a harmonic potential [6], Feynman Ratchet
and Powl model [7], and quantum dots connected in two
leads with diferent temperatures and chemical potential [8].
Te result of efciency at maximum power for all models
mentioned previously agreed up to quadratic order in ηc.

In thermoelectricity devices, the phenomena of the
Seebeck efect, Peltier efect, and Tomson efect have been
described by the temperature or potential diference. Snyder
and Toberer [9] have discovered the thermoelectric material
with signifcantly higher thermodynamic yields in the early
1990s. Te development in the feld of nanostructured
materials is particularly intriguing [10]. Since then, ther-
moelectric experiments on silicon nanowires [11], individual
carbon nanotubes [12], and molecular junctions [13] have
been reported. Such thermoelectric devices can be used as an
energy converter, i.e., heat to work. In particular, Humphrey
et al. [14, 15] reported that Carnot efciency could be
reached for electron transport between two leads at diferent
temperatures and chemical potentials, by connecting them
through a channel sharply tuned at the energy for which the
electron density is the same in both leads.

Recently, a tiny heat engine (with a single level quantum
dots) in contact with hot and cold heat reservoirs with
diferent chemical potentials has been proposed by Esposito
et al. [8]. Tey studied how the device operates and de-
termined the efciency at maximum power and compared
their value with that of the Curzon–Ahlborn efciency.
Besides, the thermoelectric properties of two quantum dots
connected in parallel have been studied in Reference [16].

In this paper, we introduce a detailed thermodynamic
analysis of electron transport through parallelly connected
two identical quantum dots connecting two leads at diferent
temperatures and chemical potentials. Due to the temper-
ature gradient, the electrons transport from hot lead to cold
lead through a dot; in contrast, electrons transport from cold
lead to hot lead through a dot due to chemical potential. Te
temperature and chemical potential gradient cause the
electron transport through quantum dots to act as a ther-
moelectric engine.

Te rest of this paper is organized as follows: in Section 2,
the model is introduced and thermodynamic quantities are
determined. Section 3 evaluates and explores the behaviors
of heat fux and power as a function of energy parameter,
a scaled ∆/ϵ characterizing the energy diference between the
two levels. In Section 4, we evaluate the efciency at max-
imum power by using a perturbation solution and numerical
solution, and the result that we get for the efciency at
maximum power lies between the Carnot efciency and
Curzon–Ahlborn efciency. In Section 5, we summarize and
conclude.

2. The Model and Derivation of the
Thermodynamic Quantities

We consider a model that is two quantum dots parallelly
connected into hot and cold reservoirs of temperatures Tr

and Tl and chemical potentials μr and μl, respectively, as
shown in Figure 1. Due to their size variation, the quantum
dots have diferent single energy levels associated with each

of them. Accordingly, we consider the single energy level of
the frst quantum dot ϵ1 to be ϵ + ∆, while that of the second
quantum dot ϵ2 has to be ϵ − ∆.

We assume that the electrons thermalize instantaneously
to the temperature of the leads upon tunnelling to the
reservoirs and the electron transports through quantum dots
with a sharply defned energy. If the level remains occupied
by an electron while it is lowered (raised), power is extracted
from (injected into) the system, W< 0(W> 0), respectively.
If the level remains empty while energy changes, neither
power nor heat fux is produced. When the empty (flled)
level at energy ϵ + ∆ and ϵ − ∆ is flled (emptied) by an
electron, an amount of heat fux Qr(Ql) enters the system,
respectively.

Te dots with energy levels ϵ + ∆ and ϵ − ∆ exchange
electrons with leads as shown in Figure 1. Te quantum dot is
either empty (state 1) or flled (state 2) for the frst quantum dot
and the second quantum dot either empty (state 3) or flled
(state 4). Te crucial variables of the problem are the scaled
energy barriers with (kB � 1) of the frst and second quantum
dots, respectively, which are given by

xv �
ϵ + ∆ − μv

Tv

,

yv �
ϵ − ∆ − μv

Tv

,

(2)

where v � l, r

Te master equation [17–19] describes the probabilities
of the dots being in a particular state change in time as

_P1(t)

_P2(t)
⎛⎝ ⎞⎠ �

− W21 W12

W21 − W12
 

P1(t)

P2(t)
 ,

_P3(t)

_P4(t)
⎛⎝ ⎞⎠ �

− W43 W34

W43 − W34
 

P3(t)

P4(t)
 ,

(3)

where P1, P2, P3, and P4 are the probability of the quantum
dots in state 1, state 2, state 3, and state 4, respectively.

left lead right lead

ε1

ε2

Tr

μrT1

μ1

Figure 1: Sketch of nanothermoelectric engine consisting of two
quantum dots embedded between two leads at diferent temper-
atures and chemical potentials. We choose by convention Tl < Tr.
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Here, the transitional rate in the frst quantum dot is
given by

W12 � 
v�l,r

W
(v)
12 � 

v�l,r

av 1 − fv( ,

W21 � 
v�l,r

W
(v)
21 � 

v�l,r

av fv( ,
(4)

and the transitional rates in the second quantum dot are
given by

W34 � 
v�l,r

W
(v)
34 � 

v�l,r

bv 1 − gv( ,

W43 � 
v�l,r

W
(v)
43 � 

v�l,r

bv gv( .
(5)

Here, av and bv are the Einstein coefcients which are
independent of the dots’ energy and fv and gv are the Fermi
distributions given by

fv � exp xv(  + 1 
− 1

,

gv � exp yv(  + 1 
− 1

.
(6)

In this paper, we focus on the steady state properties of
the device. Te steady state distributions for both dots’
occupation follow from W21(43)P

ss
1(3) � W12(34)P

ss
2(4) with

Pss
1(3) + Pss

2(4) � 1. Te resulting probability current from the
lead v to the frst and second dot is

Iv � W
v
21P

ss
1 − W

v
12P

ss
2 ,

Jv � W
v
43P

ss
3 − W

v
34P

ss
4 ,

(7)

respectively. Using Ir � − Il, Jr � − Jl, W12 + W21 � ar + al,
and W34 + W43 � br + bl, we can rewrite the result for the
fux from the right lead as

Ir � α fr − fl( ,

Jr � c gr − gl( ,
(8)

where α � (aral)/(ar + al) and c � (brbl)/(br + bl). Equation
(8) is the Landauer formula for a single infnitely sharp res-
onance (i.e., without broadening).Te steady state heat per unit
time for the frst quantum dot _Qr

′ and the second quantum dot
_Qr
″ extracted from the lead r is, respectively, given by

_Qr
′ � ϵ + ∆ − μr( Ir � αTrxr fr − fl( ,

_Qr
″ � ϵ − ∆ − μr( Jr � αTryr gr − gl( .

(9)

Te total heat fux enters into the quantum dots from lead r.
_Qr � _Qr
′ + _Qr
″ � αTr xr fr − fl(  + yr gr − gl(  . (10)

Te net power output by both quantum dots is the sum
of the total heat fux getting into it and dissipates cold into
cold reservoir which is given by

_W � αTr xr fr − fl(  + yr gr − gl(  

+αTl xl fr − fl(  + yl gr − gl(  .
(11)

Te corresponding thermodynamic efciency reads

η �
W

Qr

�
_W

_Qr

�
fr − fl(  xr − 1 − ηc( xl  + gr − gl(  yr − 1 − ηc( yl 

xr fr − fl(  + yr gr − gl( 
.

(12)

Te entropy production associated with the master
equation (3) is given as follows [20–23] for the frst quantum
dot:

σ1 � 
i,j,v

W
v
ijP

ss
j ln

W
v
ijP

ss
j

W
v
jiP

ss
i

, (13)

where i, j � 1, 2. Noting that InW12/W21 � xv, one fnds, in
agreement with standard irreversible thermodynamics [19],
the following expression for the entropy production:

σ1 � FmJm − FeJe � α xl − xr(  fr − fl( ≥ 0. (14)

Termodynamics forces for matter and energy fow, Fm

and Fe, are given by

Fm ≡
μr

Tr

 , Fe ≡
1

Tr

−
1
Tl

. (15)

We stress that the corresponding matter and heat fow
are given by

Jm � − Ir, Je � − (ϵ + ∆)Ir. (16)

In the same spirit, the entropy production, thermody-
namics forces for matter and energy fow, and their cor-
responding matter and fow of the second quantum dot can
expressed as

σ2 � KmRm − KeRe � α yl − yr(  gr − gl( ≥ 0, (17)

Km ≡ −
μr

Tr

 , Ke ≡
1

Tr

−
1
Tl

, (18)

Rm � − Jr, Re � − (ϵ − ∆)Jr, (19)

respectively.
Te matter and heat fow are perfectly coupled and the

condition for attaining both Carnot and Curzon–Ahlborn
efciency, namely, that the determinant of the corre-
sponding Onsager matrix be zero, is fulflled [1, 24].

Likewise [8], we frst discuss the case of equilibrium. It
can control thermodynamic quantities by controlling the
current because of the perfect coupling. Under this condi-
tion, detailed balance is valid, Iv � 0 and Jv � 0, valid if and
only if fl � fr, gl � gr or equivalently, xl � xr, yl � yr. Te
efciency and the entropy production then become equal to
the Carnot efciency, cf.equation (12), and vanishes (cf.
equation (13) and cf. equation (17)), respectively. We note
that xl � xr, yl � yr do not require that the thermodynamic
forces Fm and Fe vanish separately, i.e., this singular bal-
ancing point equilibrium does not require temperature and
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chemical potential to be identical in both reservoirs
[3–5, 14, 15, 24].

3. Thermodynamic Properties of the Model

In this section, we evaluate and explore the behaviours of
thermodynamic quantities such as heat fux and power as
a function of a scaled energy parameter ∆/ϵ, which

characterizes the energy diference between the two levels of
the model.

3.1. Heat Flux. Te rate of heat energy transferred through
a given surface of a system can be described by the ther-
modynamic quantity, which is called heat fux. Substituting
equations (2) and (6) into (10), the steady state heat per unit
time as a function of ∆/ϵ becomes

_Qr

∆
ϵ

  � αϵ
∆
ϵ

 
1

1 + exp(10(x +(∆/ϵ)))

−
1

1 + exp(20(y +(∆/ϵ)))
+ −

∆
ϵ

 
1

1 + exp(10(x − (∆/ϵ)))

−
1

1 + exp(20(y − (∆/ϵ))),

(20)

where x � 1 − μr/ϵ, y � 1 − μl/ϵ.
Te steady state heat per unit time with ∆ � 0 becomes

_Qr(∆ � 0) � 2αϵx
1

1 + exp(20x)
−

1
1 + exp(20y)

 . (21)

Te scaled heat per unit time of the thermodynamic
quantity (( _Qr(∆/ϵ))/( _Qr(∆ � 0))) can be exploited in
Figure 2 as a function of ∆/ϵ. Figure 2 depicts the ratio of
total heat fux as a function of ∆/ϵ. Te heat fux getting into

the quantum dots increases when y increases. Tis means
that when y increases, the chemical potential μl decreases. If
x and y are comparable, this means that the chemical po-
tentials μl and μr are equal and the power output will be zero.
We note that μl is diferent from μr since the thermoelectric
engine operates under an irreversible process.

3.2. Power. Te steady state work per unit time (power) as
the function of ∆/ϵ is given by
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Figure 2: Te ratio of total heat fux ( _Qr(∆/ϵ))/( _Qr(∆ � 0)) from
the hot reservoir at a temperature Tr as a function of ∆/ϵ when
x � 0.99999.
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Figure 3: Te net power output ( _W(∆/ϵ)/ _W(∆ � 0)) that delivers
from the quantum dots as a function of ∆/ϵ when x � 0.99999.
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_W
∆
ϵ

  � αϵ x +
∆
ϵ

 
1

1 + exp ϵ/Tl( (x +(∆/ϵ))( 


−
1

1 + exp ϵ/Tl( (y +(∆/ϵ))( 
 + x −

∆
ϵ

 
1

1 + exp ϵ/Tl( (x − (∆/ϵ))( 


−
1

1 + exp ϵ/Tl( (y − (∆/ϵ))( 
 − y +

∆
ϵ

 
1

1 + exp ϵ/Tl( (x +(∆/ϵ))( 


−
1

1 + exp ϵ/Tl( (y +(∆/ϵ))( 
 − y −

∆
ϵ

 
1

1 + exp ϵ/Tl( (x − (∆/ϵ))( 


−
1

1 + exp ϵ/Tl( (y − (∆/ϵ))( 
.

(22)

Te steady state power when ∆ � 0 is given by

_W(∆ � 0) � αϵ
1

1 + exp ϵx/Tr( 
−

1
1 + exp ϵy/Tl( 

 (2x − 2y).

(23)

Te scaled net power output ( _W(∆/ϵ)/ _W(∆ � 0)) can be
shown in Figure 3 as a function of ∆/ϵ.

In Figure 3, the scaled net power that delivers from the
quantum dots increases when y increases. In general, the
scaled input heat fux increases if the scaled net power output
also increases. In Section 4, we study the efciency at
maximum power of the thermoelectric heat engine.

4. Thermoelectric Efficiency at
Maximum Power

In this section, we determine the efciency at maximum
power of parallelly connected quantum dots (i.e., having the
same dot energy) thermoelectric heat engine. To obtain the
maximum power condition for a given temperature Tl and
Tr, we search for the values of the scaled electron energy, i.e.,
the frst derivative of power barriers xl, xr, yl, and yr that
maximize _W becomes zero. We fnd the following four
equations for both quantum dots. Te frst two equations
corresponding to the frst quantum dot are given by

fl − fr(  + xr( − 1 − ηc( xl f
2
r exp xr(  � 0,

fl − fr(  +
xr

1 − ηc

− xl f
2
l exp xl(  � 0,

(24)

and the second two equations corresponding to the second
quantum dot are given by

gl − gr(  + yr − 1 − ηc( yl g
2
r exp yr(  � 0,

gl − gr(  +
yr

1 − ηc

− yl g
2
l exp yl(  � 0.

(25)

Equations (24) and (25) depend on the ratio of the two
temperatures. From the two simultaneous equations

(equations (24) and (25)), we fnd a transcendental equation
which is expressed as

xl � 2∗ ln
cosh xr/2( 

�����
1 − ηc

 +

�������������

cosh2 xr/2( 

1 − ηc

− 1



⎡⎢⎢⎣ ⎤⎥⎥⎦

yl � 2∗ ln
cosh yr/2( 

�����
1 − ηc

 +

�������������

cosh2 yr/2( 

1 − ηc

− 1



⎡⎢⎢⎣ ⎤⎥⎥⎦

(26)

and

xr −
�
2

√
cosh xr/2( 

���������������

2ηc − 1 + cosh xr( 



+ 2 ηc − 1( 

× ln
cosh xr/2(  +

�������������������

2ηc − 1 + cosh xr( /
�
2

√

�����
1 − ηc

⎡⎢⎢⎢⎢⎢⎢⎣

+ sinh xr(  � 0,

(27)

yr −
�
2

√
cosh yr/2( 

����������������

2ηc − 1 + cosh yr( 



+ 2 ηc − 1( 

× ln
cosh yr/2(  +

�������������������

2ηc − 1 + cosh yr( /
�
2

√

�����
1 − ηc

⎡⎢⎢⎢⎢⎢⎢⎣

+ sinh yr(  � 0,

(28)

respectively. Since an analytic solution of this equation is not
possible, we frst turn to perturbative solutions for ηc close to
the limiting values 0 (reservoirs of equal temperatures) and 1
(cold reservoir at zero temperature) and also fnd the nu-
merical values of x

mp
l and x

mp
r for any values of ηc. For the

case ηc ≈ 0, we substitute xr � a0 + a1ηc + a2η2c + O(η3c) and
yr � b0 + b1ηc + b2η2c + O(η3c) in equations (27) and (28),
respectively, and expand the resulting equation in ηc. Te
coefcients, a0, a1, a2, b0, b1, b2, and others, are found re-
cursively by solving order by order in ηc. At order zero, we
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fnd an identity. At the frst order, we fnd the transcendental
equations a0 � 2 coth(a0/2) and b0 � 2 coth(b0/2). Te
numerical solution is a0 � b0 � 2.39936. At second order
and third order in η0, we fnd that a1 � b1 � − a0/4 and
a2 � b2 � sinh(a0)/(b(1 − cosh(a0))). As we obtain from
the perturbative solution, the values of a0 � b0, a1 � b1, and
a2 � b2, then xr � yr and the Fermi distribution becomes
fr � gr and fl � gl. Ten, substituting all terms in equation
(12) gets reduced into

ηmp
� 1 − 1 − ηc( 

x
mp
l

x
mp
r

� 1 − 1 − ηc( 
y
mp
l

y
mp
r

. (29)

Te efciency at maximum power in the regime of small
ηc:

ηmp
�
ηc

2
+
η2c
8

+
31
400

η3c + O η4c . (30)

Before we evaluate, numerically, let us defne a di-
mensionless quantity τ which is the diference between the
hot and cold reservoir temperature with respect to the cold
reservoir, i.e.,

τ �
Tr − Tl

Tl

. (31)

From equations (27) and (28), we solve for the value of
x
mp
r and y

mp
r for diferent values of τ numerically. Ten, we

fnd the corresponding value of x
mp
l and y

mp
l from equation

(26). Finally, we substitute the values and we get for x
mp
r ,

y
mp
r , x

mp
l , and y

mp
l in equation (12) to fnd the efciency at

maximum power.
From Figure 4 which is the numerical solution for the

efciency at maximum power versus τ, we can observe that
as τ goes to zero, the efciency at maximum power becomes
zero. Tis is because when τ becomes very small, the heat
fux that is getting into the quantum dot becomes very small;
hence, the efciency is zero and as τ becomes large, the
efciency at maximumpower approaches to one because as τ
increases, the input power that the quantum dot receives
increases which leads to an increase in efciency.

We are solving the efciency at maximumpower as ηc runs
from 0 to 1 numerically. First, we are solving the roots of
equations (27) and (28) by varying ηc from 0 to 1 and
substituting the values into equation (26) to fnd xl and yl.
Ten, we substitute all values into equation (12), and fnally, we
get Figure 5. Figure 5 shows that the efciency at maximum
power increases monotonically when we drive out of equi-
librium. It is bounded from above by Carnot efciency ηC,
while the Curzon–Ahlborn efciency ηCA provides a rather
tight lower bound. Te deviation between efciency at maxi-
mum power and the Curzon–Ahlborn efciency observes the
values of ηc which goes to the maximum value.

5. Summary and Conclusion

In this work, we have taken a simple model of single-level two
quantum dots connected between two heat reservoirs working
as a heat engine. Te model’s simplicity enabled us to get
analytic solutions for important quantities, such as efciency at

maximum power. To analyse the way energy is utilized by the
engine, we started from the master equation and derived the
efciency, η, for the heat engine by frst evaluating the heat fux
extracted from the hot reservoir, _Qr, heat fux dissipated into
the cold reservoir, _Ql, and delivered by the quantum dot.
Maximizing the efciency with respect to our power, _W, free
parameters are the scaled electron energy barriers, xr, xl, yr,
and yl. Te efciency at maximum power is evaluated by two
approaches such as analytical solution and numerical solution.
When the temperature of thermal reservoirs gets closer to each
other, the coefcient of the linear therm for the efciency at
maximum power is 1/2.

In conclusion, since the quantum dots are connected in
parallel, the resulting efciency at maximum power is the
same as that obtained from one quantum dot. Tis model
introduces another transport mechanism that prevents the
energy conversion of thermoelectric devices.
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