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Monitoring the condition of the aircraft actuators in various operating and environmental circumstances, this paper presents
a method for measuring the surface roughness of aircraft actuators. Te proposed method starts with the current and vibration
signal as failure indicators and a dual-tree complex wavelet transformation (DTCWT) to generate the necessary features. Time-
delay neural networks (TDNNs) have been developed for real-time performance monitoring to categorize problems and de-
termine their severity. Te simulation results show that the suggested method can accurately identify various faults.

1. Introduction

Health monitoring and predicting the severity of the fault,
especially for critical applications, are essential for avoiding
unwanted events and improving activity. Electromechanical
actuators (EMAs) are becoming more popular in fight
control surfaces as actuation devices. However, EMAs fre-
quently operate under fuctuating operating conditions. Te
present work aims to create a dependable condition mon-
itoring system that will allow EMA to maintain the general
safety of new aircraft design. As a result, early detection of
defects in the monitored process allows for critical pre-
ventive actions. Te EMA surface turns out to be an un-
wanted vibration signal directly related to the location of the
defective part [1]. However, it has been shown that the
vibration signal may be related to other mechanical parts
whichmay lead to a false alarm. So, to increase the diagnostic
reliability of the proposed fault analysis technique, current
can be used with vibration signals as an additional fault
indicator, especially for critical applications [2]. Te current
sensor is still separated from power safety circuits, so it does
not necessarily refect other power system costs [3–5]. To
extract valuable features, DTCWT is a suitable method for
analyzing motor signals to provide features in the time-
frequency domain under diferent speed and load

conditions. DTCWT’s work is to decompose the signal into
a set of (detailed and approximate) subcomponents [6, 7].

Te redundancy wavelet features should be removed for
an accurate and reliable diagnosis system. A powerful feature
reduction tool is needed to avoid redundancy that afects
classifcation accuracy. Many diagnostic techniques have
been developed, and they can be divided into groups
according to the indication signals they use such as current,
voltage, temperature, vibration, and sound. More than often,
vibration signals are used for fault analysis. However, the
vibration signal will be feeble at low speeds and may connect
to other motor mechanical components. Te current signal
has been added as another problem indicator together with
the vibration signal to improve diagnostic accuracy [8]. To
avoid high dimensionality, both the principle component
analysis (PCA) and linear discriminant analysis (LDA) were
used [7]. However, PCA limitation is the ability to manage
the dynamic behavior of data. Although LDA is a limited
dimension reduction (class number-1), this will afect the
best classifcation projection directions [9].

Recently, soft computing algorithms based on fault
recognition are becoming more popular for various reasons
such as using input and output data without model in-
formation or human experience [10–12]. Due to the ability
to classify conditions, NN is commonly used among
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various pattern recognition tools to diagnose electrical
machinery faults. Tus, the EMA’s fault diagnosis tech-
nique is based on decomposing the variation mode (VMD)
for extraction features than reducing the extracted features
using PCA [13]. Optimization features feed to the prob-
abilistic neural network (PNN) for fault classifcation; most
industrial systems have nonlinear structures. Tey have
considered the dynamic behavior of the electric EMA
motor which was overlooked in previous techniques. Tus,
dynamic neural networks (DNNs) for modeling nonlinear
dynamic systems receive a lot of attention because of their
capabilities. An efective modeling mapping should be
performed where DNN output is based on the network’s
current and past inputs, outputs, or states. However, the
conventional static NN cannot yield a degree [14]. Most
contributions to the current work’s feld fault analysis of
electrical machinery can be summed up as follows: building
a test to see how the EMA motor would perform in various
generalized (corrosion) variable and constant situations.
Using current and vibration signals, mimicking vibration
signals as a problem indicator has been defeated to provide
a dependable diagnostic method. In addition, a dynamic
TDNN algorithm that considers the dynamic behavior of
electrical machines has been created.Temajority of earlier
work was focused on static NN for fault classifcation. Te
structure and content of the paper start with introductory
material, and Section 2 summarizes the current methods
used for fault diagnosis. Moreover, a feature extraction tool
is introduced in Section 3. In Section 4, a description of
a ground-breaking defect prediction method based on
dynamic neural network architecture follows. Section 5
contains a discussion and comparison section. Lastly,
Section 6 provides conclusions.

2. Feature Extraction

Te proposed fault analysis consists of three signifcant steps
as shown in Figure 1. Te EMA motor raw stator winding
current and vibration signals are observed in healthy and
faulty conditions with a total dataset size of 36, sampling
rates of 300, and 15,000 samples per test. Ten, using
DTCWT, the time and frequency domain features are re-
trieved. By using wavelet window length 50, 300 features are
obtained. Figure 2 illustrates the DTCW-reconstructed
signal. One tree’s low-pass (scaling) and high-pass flters
are implemented as independent two-channel flter banks in
DTCWT. Wavelet coefcients and scale coefcients can be
employed to improve signal processing. Furthermore, the
two trees’ complex-valued scaling functions and wavelets are
analytic. As a result, DTCWT has less shift variance and
more directional selectivity for two-dimensional data than
critically sampled DWT with simply a redundancy factor.
DTCWT has substantially less redundancy than undeci-
mated DWT [7]. Te two discrete wavelets are ψh(t) and
ψg(t), respectively, and by converting them to the complex
domain, the double-tree complex wavelet is formed. Te
wavelet is as follows:

ψ(t) � ψh (t) + iψg(t), (1)

where ψh(t) is the real tree wavelet and ψg(t) represents the
imaginary tree wavelet (both are real wavelets and I rep-
resent a complex unit).Te real wavelet coefcients and scale
coefcients for a real tree can be derived using wavelet
transform theory from the inner product operation as
follows:

cIJRe � 2j/2


+∞

−∞
x(t)yh 2j

t − k dt, j � 1, 2 . . . , J,

cIJRe � 2I/2


+∞

−∞
x(t)yh(2∧j t − k)dt,

(2)

where i is the scale factor and j is the most signifcant scale.
Similarly, an imaginary tree’s wavelet coefcients and scale
coefcients are as follows:

dIJIm � 2j/2


+∞

−∞
x(t)ψg(2jt − k)dt, j � 1, 2., J,

cIJIm � 2I/2


+∞

−∞
x(t)ψg 2j

t − k dt.

(3)

Te DTCWT’s wavelet coefcients and scale coefcients
can be calculated using the formula above as follows:
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Figure 1: Proposed fault analysis technique.
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dJ
ϕ
(k) � dIJRe(k) + idIJIm(k), j � 1, 2, . . . , J,

CJ∧ϕ (k) � cIJ∧Re (k) + CIJ∧Im (k).
(4)

Te wavelet coefcients and scale coefcients after signal
reconstruction are as follows:

C(J) � 22J−1


∞

k�−∞
cIJRe(k)ψh

′
(2 t − k) + 

∞

k�−∞
dIJIm(k)ψg

′
(2 t − k)⎡⎣ ⎤⎦,

x∧(t) � 

J

J�1
dj(t) + cJ(t) j � 1, 2, , J.

(5)

Te components of the various frequency bands can be
obtained by reproducing the wavelet and scale coefcients.
Because h(t) and g(t) are a Hilbert transform pair, the
double-tree complex wavelet has many positive character-
istics including translation invariance frequency mixing
suppression and two low-pass flter coefcients. We match
the requirements for the following sample delay.

In the frst level of decomposition, the interval of sample
values coincides with the delay between the real and
imaginary part flter banks. Te second sampling yields
a complementary link, meaning that the data sampled by the
imaginary component are the same as the data not sampled.
Te actuator motor is simulated with the SimPower system
toolbox using Matlab/Simulink environment.

Te resultant features are used as input to TDNN that
introduces the classifcation of faults and predicts their
severity.

3. Level of Fault Severity Prediction

Most industrial systems are dynamic and nonlinear, and it
appears ideal to use models that can describe the system’s
dynamics during fault identifcation to maximize opera-
tional reliability and optimize preventive maintenance.
Furthermore, DNNs succeed in learning the dynamics of
complex nonlinear systems, while traditional static NNs fail
to provide and perform appropriate modeling representa-
tion and mapping.
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Figure 2: DTCWT structure.
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Initially, the network input vector of the DNN is a moving
window on the load time series, and it is trained using historical
demand data. As time goes on, the NNweights are dynamically
modifed. It is typical to conclude that the networks will
perform consistently well for the predicted demand trends once
validated on the test data. Te suggested technique in the
current study has been tested with various applications [15–18]
and does not require dynamic BP to compute the network
gradient static MLP network. Te TDNN, such as other neural
networks, operates on multiple interconnected layers of per-
ceptron and is implemented as a feed-forward neural network
in which all neurons (at each layer) receive input from neuron
outputs, where x (t) and y (t) are the input and output,
respectively.

Te system’s operating conditions are needed to estimate
the useful life of the EMA engine components (see Figure 3).
It helps to analyze the information that indicates the system’s
behavior. Te proposed feature reduction technique de-
scribed above was prepared to eliminate any undesirable
features of DWT from 12 to 4 for faster computing.

Tese features represent fve TDNN network inputs and
TDNN works with interconnected layers as a forward NN
feed. We receive feedback from inputs at each layer neuron.

Table 1 demonstrates the capacity of the TDNN to di-
agnose rare conditions using training, testing, and validation
data collection. Te EMA engine was examined under
variable speed and load conditions, and Figure 4 shows the
performance of the current approach. Te fgure indicates
that the length of misclassifcation periods is less than 0.7 s;
thus, all misclassifcations can be ignored [19, 20].

4. Results, Discussion, and Comparison

Te present fault diagnostic technique compares with re-
cently published works on artifcial intelligent techniques,
feature extraction, and dimensional reduction tools.

Vibration and current signals were recorded and
shown in time and frequency domains to indicate normal
and corrosion faults under various speed and load situ-
ations. Te indirect way to evaluate the system’s state is by
collecting vibration and current signals and extracting
useful features during simulation tests. A fault analysis
based on time- and frequency-domain data is unreliable,
especially when there is a large variety of fault severities
and operational conditions. Liu [21] used PCA as an
extraction technique and current diagnostic function and
measured to extract useful data for the training and testing
of the PNN. DWT of current signals was used with
Welch’s spectral density analysis in the experimental test
to monitor EMA performance [22–25].

In addition, due to the nonlinear operating environment,
it is challenging to accurately assess the operating condition
by analysis in the time or frequency domains. Any pattern
recognition system’s frst step is often feature extraction, and
the most crucial step in pattern recognition is extracting the
suitable feature set. Hence, every pattern classifcation
system’s efectiveness largely depends on the features se-
lected to represent continuous-time waveforms.

DTCWT overcomes the shortcomings of other signal
processing methods and can identify stationary and non-
stationary signals, with the windowing of DTCW auto-
matically adjusted for low and high frequencies.

In the current work, the EMA engine was tested under
diferent load conditions at a constant speed, and the results
show a mean accuracy of approximately 98.235, 97.30, and
95.46 percent. At the same time, the mean forecast fault
accuracy under nonstationary rotation and constant load is
98.19, 96.36, and 97.63 percent. Te overall classifcation
accuracy is approximately 99 percent.

Table 1 displays the overall categorization accuracy. Te
performance of diagnostic accuracy is shown in Figure 4
where the y-axis shows how well current methods for

Aircraft actuator [9]
Aircraft actuator surface at faulty condition [10] 
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diagnosing faults compare TDNN output to the target.
Figure 4 illustrates misclassifcation; such times would not be
apparent. Hence, all incorrect classifcations can be regarded
as random and disregarded.

Te suggested defect detection technique is compared in
Table 1 with the recently published research study based on
feature extraction, soft computing techniques, and di-
mensionality reduction tools. Since the wavelet transform
consists of many levels and provides information in both the
time and frequency domains, it is more ideal for diagnostic
purposes than for the fast Fourier transform and is superior
to the short-time fast Fourier transformwhich has a constant
window. Te DTCWT technique helps determine the lo-
cation and severity of defects. Most industrial systems are
dynamic and nonlinear, and it is ideal to use models that can
capture the dynamics of the system during fault identif-
cation. Terefore, providing a powerful tool for real-time

analysis and process monitoring is essential. Tere are two
types of NNs: static and dynamic. In static NNs, there are no
delays or feedback because the output is calculated imme-
diately from the input using feed-forward connections.
However, in DNN, the output is based on the network’s
inputs, outputs, and states from the present and the past.
Studies have demonstrated that adopting DNN can help
increase the reliability of electric motor condition moni-
toring systems since they are often more active than
static NN.

Underftting will occur in the hidden layers of the NN
when insufcient neurons are present. Underftting occurs
when there need to be more neurons in the hidden layers to
identify the signals in a complex dataset accurately. Con-
versely, overftting can happen when too many neurons are
in the hidden layers. Overftting happens when the NN can
process so much data that the small amount of data in the
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Figure 4: Prediction accuracy of corrosion fault at variable load and constant speed (1200 rpm). (a) Full load. (b) Half load. (c) No load.
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training set is insufcient to train all neurons in the hidden
layers properly.

DNNs have been used to diagnose faults successfully;
they outperform their static counterparts and can learn the
dynamics of complex nonlinear systems which the standard
static NN cannot describe. An aircraft actuator is a dynamic
system so the use of TDNN for fault diagnosis is more
suitable compared with the static neural network that is
implemented in most of the previous work [26–29].

Camarena-Martinez et al. [26] used empirical mode
decomposition features under variable load conditions to
train static NNs, and the overall fault classifcation accuracy
is 90%. At the same time, Andrijauska et al. [27] and Zhang
et al. [28] used current and vibration signals, respectively, as
fault indicators and WT as feature extraction tools to train
and test diferent soft computing techniques. Meanwhile,
Moloi and Yusuf [29] used continuous DWT to train GA
and NN under variable speed conditions.

 . Conclusions

Te current work analyzes the aircraft’s EMA performance
using an intelligent approach. Generalized roughness
(corrosion) is considered in this work. EMA was tested
under constant, variable conditions during the simulation
test engine. EMA engine stator current and vibration signals
were collected as fault indications. Many defects are used to
support the ability of the proposed technique. DTCWT is
implemented as an efcient method to extract functions.
However, to improve the fault classifcation accuracy, WT
features alone cannot achieve the optimum characteristics.
Ten, these features are used in real time for the training and
testing of TDNN.

Te obtained results illustrate the ability of the proposed
technique to classify unwanted defects with high accuracy
under variable load and speed conditions by comparing
them with the previous related work.

Te application of these techniques has shown the ca-
pability of the presented technique for detecting and clas-
sifying faults under variable operating working conditions
with high accuracy. Some of the features are redundant
features that may afect diagnostic accuracy. So in future
works, the dimensionality reduction approach should be
used to improve the proposed diagnostic performance.
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Journal Européen des Systèmes Automatisés, vol. 53, no. 2,
pp. 233–242, 2020.

[23] C. Wang, L. Tao, Y. Ding, C. Lu, and J. Ma, “An adversarial
model for electromechanical actuator fault diagnosis under
noni deal data conditions,”Neural Computing & Applications,
vol. 34, no. 8, pp. 5883–5904, 2022.

[24] S. Li, H. Wang, A. Aitouche, and N. Christov, “Active fault
tolerant control of wind turbine systems based on DFIG with
actuator fault and disturbance using Takagi–Sugeno fuzzy
model,” Journal of the Franklin Institute, vol. 355, no. 16,
pp. 8194–8212, 2018.

[25] S. Buchaiah and P. Shakya, “Bearing fault diagnosis and
prognosis using data fusion based feature extraction and
feature selection,” Measurement, vol. 188, Article ID 110506,
2022.

[26] D. Camarena-Martinez, M. Valtierra-Rodriguez, A. Garcia-
Perez, R. A. Osornio-Rios, and R. D. J. Romero-Troncoso,
“Empirical mode decomposition and neural networks on
FPGA for fault diagnosis in induction motors,” Te Scientifc
World Journal, vol. 2014, Article ID 908140, 17 pages, 2014.

[27] I. Andrijauskas, M. Vaitkunas, and R. Adaskevicius, “Gen-
eralized roughness bearing faults diagnosis based on in-
duction motor stator current,” Radioengineering, vol. 27,
no. 4, pp. 1166–1173, 2018.

[28] X. Zhang, J. Wang, Z. Liu, and J. Wang, “Weak feature en-
hancement in machinery fault diagnosis using empirical
wavelet transform and an improved adaptive bistable sto-
chastic resonance,” ISA Transactions, vol. 84, pp. 283–295,
2019.

[29] K. Moloi and A. Yusuf, “Power distribution system fault
diagnostic using genetic algorithm and neural network,” in
Proceedings of the IEEE Southern African Universities Power
Engineering Conference/Robotics and Mechatronics/Pattern
Recognition Association of South Africa, pp. 1–5, Potchefst-
room, South Africa, January 2021.

8 Journal of Engineering




