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Mounting temperatures in electronic devices during operation may damage sensitive internal components if too much thermal
energy accumulates inside the system. Te advent of an innovative ultrahigh-performance thermal management technology
known as nanofuid has provided a veritable platform to improve the system performance and reliability by removing the high
heat fux generated in the engineering and industrial devices. Tis paper examines the combined efects of Darcy–Forchheimer
porous medium-resistant heating and viscous dissipation on stagnation point fow of a Casson nanofuid (CoFe2O4-H2O and
TiO2-H2O) towards a convectively heated slippery stretching/shrinking cylindrical surface in a porous medium. Te governing
nonlinear model equations are obtained, analysed, and tackled numerically via the shooting technique with the Run-
ge–Kutta–Fehlberg integration scheme. A unique solution is obtained when the surface is stretching. For shrinking cylindrical
surface, the model exhibits nonunique dual solutions for a defned range of parameter values, and a temporal stability analysis is
conducted to ascertain the stable and physically achievable solution. Te efects of emerging thermophysical parameters on the
overall fow structure and thermal management such as velocity and temperature profles, skin friction, and Nusselt number are
quantitatively discussed through graphs and in tabular form. It is found that the thermal performance heat transfer enhancement
capability of TiO2-H2O is higher than that of CoFe2O4-H2O. Moreover, the nanofuid thermal performance is enhanced with
nanoparticles volume fraction, Casson nanofuid parameter, and Biot number but lessened with porous medium permeability.

1. Introduction

Non-Newtonian fuids have various applications: damp-
ing and braking devices, printing technology, personal
protective equipment, food products, and drag-reducing
agents. Casson fuids are used to characterize non-
Newtonian fuids with shear-thinning properties. Naka-
mura and Sawada [1] studied non-Newtonian fuid and
introduced the biviscosity model as a constitutive equa-
tion (1) for blood instead of the usually used Casson
model equation for blood. Animasaun [2] studied in-
compressible Casson fuid fow with viscous dissipation
and obtained that the temperature profle reduces as the
Casson parameter rises. Rasool et al. [3] discussed the heat

and mass transfer characteristics of Casson-type MHD
nanofuid fow. Recently, Khan et al. [4] and Alkasasbeh
[5] also studied Casson-type fuid fow.

Due to the advancement of thermal devices in engi-
neering systems, the applications of nanofuids have been
playing a vital role in the enhancement of heat transfer and
cooling processes of electronic devices in many
manufacturing industry processes (Tadesse et al.) [6].
Nanoparticles provide a huge surface area for heat transfer
because of their special features, such as lower density and
excellent chemical and physical stabilities. For instance, due
to its hard magnetic material with high coercivity and good
mechanical stabilities at higher temperature and great
chemical and physical stability, cobalt ferrite CoFe2O4 is the
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most suitable for several applications: audio, videotape,
generator, etc. (Kazemi et al.) [7] and its high thermal
conductivity made TiO2 nanoparticles for use as enhance-
ments in the heat transfer rate and has great applications in
the areas of paints and coatings, cooling of radiators and
electronic devices, nucleate pool boiling, heat exchangers,
preparation of sunscreen, catalysts, etc. (Ali et al.) [8].
Mebarek-Oudina and Chabani [9] reviewed nanofuid ap-
plications and heat transfer enhancement techniques in
diferent enclosures, and they concluded that porous media
and nanofuid properties have a direct relation with fow
enhancement and heat transfer-boosting impacts. Ganesh
et al. [10] carried out a boundary layer analysis to investigate
the infuences of slip and viscous fow on water-based MHD
nanofuid, and Jawad et al. [11] investigated variable heat
transmission in MHD nanofuid fow. Furthermore, the
Darcy–Forchheimer fow of Sisko nanofuid with convective
thermal boundary conditions and viscous dissipation was
investigated, and it was revealed that Darcy number en-
hanced while the Forchheimer number reduced the rate of
heat transfer, and the values of Darcy number controls the
skin friction as discussed by Bisht and Sharma [12]. Singh
et al. [13] assessed nonuniform heat source and melting heat
transfer onmagnetized Cu-H2O nanofuid and obtained that
an increment in porous media parameter values, the heat
transfer rate, and surface drag force diminished near the
surface of the cylinder. Moreover, it was observed that an
augmentation in Reynolds number Re declined the surface
drag force and raised Nusselt number (heat transfer rate).
Poornima et al. [14] mathematically studied heat transfer in
boundary-layer stagnation fow past a stretching/shrinking
cylinder and found that the coefcients of drag force and the
heat transfer rate at the surface enhanced with an aug-
mentation in Reynolds number. Most recently, Najib et al.
[15] investigated stagnation point nanofuid fow past an
exponentially shrinking/stretching cylinder inserted, and
they discovered that as the slip parameter rised, the skin
friction coefcient dropped, whereas the heat transfer co-
efcient enhanced. Moreover, the heat transfer and skin
friction coefcients increased with the larger nanoparticle
volume fraction and curvature parameter, and the Cu
nanoparticle has the highest coefcient of skin friction and
heat transfer rate. Our recent articles Duguma et al. [16, 17]
detailed about the applications of non-Newtonian Casson
nanofuids.

For their various practical applications in the areas of
polymer technology, metallurgy, chemical engineering, in-
dustrial processes, etc., boundary layer fuid fow due to
stretching-shrinking/stretching has received due attention
for the last few decades (Tadesse et al.) [6]. According to
Jawad et al. [11], the stretching surface is formed by
boundary layer fows, which usually occur in various en-
gineering applications such as the sketching of plastic flms,
pseudofbers, permanent casting, glass blowing, metal
spinning, etc. Weidman et al. [18] considered uniform shear
fow past a stretching sheet surface, and Das et al. [19]
characterized the fuid fow over an inclined, exponentially
stretching fat surface. Fluid fow towards a shrinking case is
possible due to stagnation point fow (Wang [20]).

According to him, even though no possible solution is found
for the unconfned fuid fow occurring in the boundary
layer of the shrinking surface, due to the addition of stag-
nation fow, a nonunique solution exists. Lund et al. [21]
studied nanofuid fow across an exponentially contracting
sheet surface and demonstrated that multiple solutions exist.
Moreover, they investigated that as the shrinking rate in-
creases, convective heat transfer drops due to an augmen-
tation in the thickness of the boundary layer. Ganesh et al.
[10] carried out a boundary layer analysis to investigate the
infuences of slip and viscous fow of water-based MHD
nanofuid past a stretching/shrinking surface and discovered
dual solutions under diferent conditions of stretching/
shrinking and suction/injection parameters. Ferdows et al.
[22] studied a biomagnetic fuid (blood taken as a base fuid
and CoFe2O4 as magnetic particles) fow and heat transfer
through a stretching/shrinking cylinder. Najib et al. [15]
investigated the impact of stretching/shrinking surfaces on
the nanofuid fow and demonstrated that as slip and cur-
vature parameters enhance, the range of the upper branch
solutions expands.

Te study of fow at the stagnation point (which means
fuid fow over a solid surface stagnation area) of nanofuids
has many applications in plastic sheet extrusion,
manufacturing and industrial processing, aerodynamics,
cooling and drying of paper products, etc. [6]. Gorla [23]
made an analysis for the steady-state heat transfer in an
axisymmetric stagnation fow on a circular cylinder. Gorla
[24] investigated the boundary layer solutions for the axi-
symmetric stagnation mixed convection fow past a vertical
cylinder. Again, Harris et al. [25] considered the steady
mixed convection stagnation point boundary layer fow on
an impermeable surface with slip. Moreover, Shatnawi et al.
[26] made a mathematical analysis of the stagnation point
fow of Casson nanofuid fow over a vertical Riga plate
surface and solved it using the bvp4c technique built into
Matlab packages. Basha and Sivaraj [27] numerically in-
vestigated the dual solutions and stability analysis over the
extending/contracting wedge and stagnation point for the
Casson nanofuid fow. Murad et al. [28] solved the heat
transfer properties of Casson–Carreau fuid at the stagnation
point over a continuous moving plate surface. More on
stagnation point boundary layer fows, the existence of dual
solutions, and stability analysis are discussed in
[14, 16, 29–39].

For decades, convective heat transfer through a porous
medium has attracted the interest of scientists due to its
numerous applications in felds such as nuclear waste re-
positories, thermal insulation, solar power, geophysics,
pollutant dispersion in aquifers, ground hydrology, grain
storage devices, high-performance building insulation,
chemical catalytic reactors, cooling of electronic systems,
fossil fuel beds, petroleum reservoirs, aerodynamic heat
shielding, etc. (Hussain and Sheremet [40]). Te fuid fow
regime through a porous space was frst studied by Darcy
(Darcy’s law, for small Reynolds numbers) and then later
developed to consider large Reynolds numbers (Dar-
cy–Forchheimer model), as discussed in Das et al. [19].
Hayat et al. [41] studied the Cattaneo–Christov heat fux
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model for fow past a porous medium and obtained that as
the values of the porosity parameter enhance, the velocity
profle and momentum boundary layer thickness are re-
duced while the temperature profle falls. Mebarek and
Chabani [9] reviewed nanofuid applications and heat
transfer enhancement techniques in diferent enclosures,
and they concluded that porous media and nanofuid
properties have a direct relationship with fow enhancement
and heat transfer boosting impacts. Another study [4] in-
vestigated theoretically the Casson nanofuids fow past
a vertical Riga plate embedded in porous medium and
obtained that as permeability of the porous medium (Darcy
number) increased, velocity profle increases (and drops for
increment in nanoparticle volume fraction), and the drag
force reduced for enhancement in porous medium pa-
rameters. Another study [42] presented MHD Newtonian
fuid fow on a vertical sheet in the porous medium. Tey
observed that as the velocity slip, curvature of the cylinder,
and the porosity enhanced the velocity and temperature
profles and their boundary layer, and the drag force
dropped, respectively. Lund et al. [21] analysed the impact of
Darcy–Forchheimer on the fow of two-dimensional MHD
nanofuid across an exponentially shrinking sheet surface
and deduced that the velocity profle was reduced for en-
hancing the permeability parameter of the porous media.
More discussion on the efects of porous media on non-
Newtonian Casson nanofuids was found in our recent
works (Duguma et al.) [16, 17].

In recent years, great interest has been developed in the
study of convective fuid fow due to its applications in
geophysics, techniques of oil recovery, heat storage systems,
engineering of thermal insulation, etc. Moreover, numerous
industrial and environmental systems such as geothermal
energy systems, heat exchanger design, geophysics, fbrous
insulation, catalytic reactors, etc. involve convection fow
through porous media. Merkin [43] made an investigation
into the existence of dual solutions in mixed convection in
a porous medium. Makinde [44] theoretically investigated
the stagnation point hydromagnetic fow of Fe3O4-water
past a convectively heated permeable shrinking/stretching
sheet and revealed that dual solutions exist for a certain
range of stretching/shrinking parameters (λc < λ< 0) and
confrmed that the upper branch solution is temporally
stable and physically realizable while the lower branch so-
lution is not. Moreover, he confrmed the existence of
a critical shrinking parameter value λc below which no real
solution occurs. Alizadeh et al. [45] investigated the forced
convection of heat fow past cylinders impinging in porous
media. Hong et al. [46] investigated the nonlinear mixed
convection of heat in a stagnation-point fow past a solid
cylinder inserted in a porous medium. More work regarding
the convective fow in porous media and its impacts is found
in [2, 12, 13].

From the aforementioned literature, no scientifc work
has been done to consider the collective efects of all em-
bedded parameters under consideration on the complex
non-Newtonian Casson nanofuid fow with heat transfer
characteristics. Te main goal of this paper is to investigate
the existence of dual solutions, which is expected due to

shrinking surfaces, and apply stability analysis to de-
termine the stable and physically reliable solutions that
buttress the theoretical relevance of the work for the
hydrodynamic Casson nanofuid fow past a stretching/
shrinking slippery surface in a Darcy–Forchheimer porous
medium with the presence of viscous dissipation and
convective heating using CoFe2O4-H2O and TiO2-H2O as
nanoparticles in comparison, flling the gap of the articles
of Duguma et al. [16, 17] with considering cylindrical
geometry of fow surface, where the novelty is tested nearer
to the critical shrinking parameter |λc|. Moreover, this
study brings signifcant input in the feld of chemical and
mechanical engineering sciences. Particularly, nanofuids
are widely employed in diferent cooling systems in en-
gineering and in industries for efective heat removal from
electronics. For the modeled boundary layer PDEs which
were transformed into similar ODEs with their corre-
sponding boundary conditions, the numerical results of
similar velocity and thermal profles, skin friction co-
efcient, and rates of heat transfer and enhancement were
discussed both graphically and quantitatively using the
shooting technique with bvp solver embedded in Maple
software packages.

2. Mathematical Description of the Problem

Consider a laminar, steady, viscous, incompressible two-
dimensional stagnation point fow of CoFe2O4-H2O and
TiO2-H2O Casson nanofuid towards a horizontal linearly
stretching/shrinking cylindrical surface in a Dar-
cy–Forchheimer porous medium with surface velocity Uw �

2bz and free stream stagnation point velocity U∞ � 2cz. Te
fow physical model presented in Figure 1, modifed from the
model used by Alizadeh et al. [45], is a convectively heated
horizontal cylinder embedded in porous media. A cylin-
drical coordinate system is used, where the axial length of the
cylinder (z-axis) is considered in the direction of the
stretching/shrinking surface and the dimension (r-axis) is
the radial change of the cylinder. Te free stream temper-
ature of the fuid fow is taken as T∞, and the convectively
heated temperature of the stretching/shrinking surface of the
cylinder is Tf � T∞ + nz2.

Following Nakamura and Sawada [1] and Animasaun
[2], the rheological equation of an incompressible and
isotropic fow of a Casson fuid is expressed as follows:

τij �

2 μB +
py
���
2π

√􏼠 􏼡eij, if π > πc,

2 μB +
py
���
2πc

􏽰􏼠 􏼡eij, if π < πc,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where τij is the component of the stress tensor, μB is the
plastic dynamic viscosity of the non-Newtonian fuid fow,
β ≡ μB

���
2πc

􏽰
/py is the non-Newtonian Casson parameter, py

is the yield stress of the Casson fuid, π � eijeij is the (i, j)th

rate of deformation component (product of strain tensor
rate with itself ), eij � 1/2[zui/zxj + zuj/zxi] is the strain
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tensor rate, and πc is a critical value of π, that is defned based
on the non-Newtonian model. In the case of Casson fuid
fow, π > πc. Te dynamic viscosity is computed as follows:
μf � μB + py/

���
2π

√
. On substitution, the kinematic viscosity

becomes ]f � μB/ρf(1 + 1/β). For non-Newtonian Casson
fuid fow π > πc, μ � μB + py/

���
2π

√
. Assuming the

Darcy–Forchheimer fow model of fows in porous media,
for this analysis, the governing equations of this problem are
formulated from the balance of continuity, linear momen-
tum, and energy towards a stretching/shrinking cylindrical
surface with respect to a cylindrical coordinate z − r system
and are given by

zru

zz
+

zrv

zr
� 0, (2)

u
zu

zz
+ v

zu

zr
� U∞

dU∞
dz

+
μnf

ρnf

1 +
1
β

􏼠 􏼡
z
2
u

zr
2 +

1
r

zu

zr
􏼠 􏼡

−
μnf

ρnfk1
1 +

1
β

􏼠 􏼡 u − U∞( 􏼁 −
F

ρnf

��

k1

􏽱 u − U∞( 􏼁
2
,

(3)

u
zT

zz
+ v

zT

zr
�

knf

ρcp􏼐 􏼑
nf

z
2
T

zr
2 +

1
r

zT

zr
􏼠 􏼡 +

μnf

ρcp􏼐 􏼑
nf

1 +
1
β

􏼠 􏼡
zu

zr
􏼠 􏼡

2

+
μnf

ρCp􏼐 􏼑
nf

k1
1 +

1
β

􏼠 􏼡 u − U∞( 􏼁
2

+
F

ρCp􏼐 􏼑
nf

��

k1

􏽱 u − U∞( 􏼁
3
,

(4)

subjected to boundary conditions given by

u(z, a) � Uw(z) +
μf

L
1 +

1
β

􏼠 􏼡
zu

zr
, v(z, a) � 0

− kf

zT

zr
(z, a) � hf Tf(z) − T(z, a)􏽨 􏽩

u(z,∞)⟶ U∞(z), T(z,∞)⟶ T∞

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (5)

where u, v, μnf, β, ρnf, k1, F , knf, (ρCp)nf, Cp, μf, L, kf, hf,
a, b, c, and n are the z direction velocity, r direction velocity,

efective dynamic viscosity, non-Newtonian/Casson pa-
rameter, efective density, permeability of the porous
medium, Forchheimer drag force coefcient, efective
thermal conductivity, efective heat capacity, specifc heat
at constant pressure, dynamic viscocity, slip length co-
efcient, thermal conductivity, convective heat transfer
coefcient, radius of the cylinder, constant of strain rate at
the cylinder surface, constant of free stream strain rate of
the nanoparticles, and real constant (Km− 2) of the Casson
nanofuid fow, respectively. Te parameters knf, Cp, μnf,
and ρnf are defned (following Makinde [44], and Tadesse
et al. [6]) as follows:

a Uw

Uw

r
z

Tf

Tf

v

u
Nanofuid in Porous Media

Figure 1: Schematic diagram of a stationary cylinder with radial stagnation fow and Casson nanofuid in porous media.
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knf �
ks + 2kf − 2ϕ kf − ks􏼐 􏼑

ks + 2kf + ϕ kf − ks􏼐 􏼑
kf, ρCp􏼐 􏼑

nf
� (1 − ϕ) ρCp􏼐 􏼑

f
+ ϕ ρCp􏼐 􏼑

s

μnf � μf(1 − ϕ)
− 2.5

, ρnf � (1 − ϕ)ρf + ϕρs

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (6)

where ρf is the density of the base fuid, ρs is density of the
solid nanoparticle, kf is the base fuid thermal conductivity,
ks is the nanoparticles thermal conductivity, ϕ is the
nanoparticles volume fraction, and μf is the base fuid
dynamic viscosity, and these are the thermophysical prop-
erties of the nanoparticles. Note that

knf �
ks +(n − 1)kf − (n − 1)ϕ kf − ks􏼐 􏼑

ks +(n − 1)kf + ϕ kf − ks􏼐 􏼑
kf, (7)

n � 3/ψ, where ψ is called the “sphericity” which is defned as
the ratio of the surface area of the sphere to that of the
particle for the same volume. For spherical particles, ψ � 1,
and for the cylinders, ψ � 0.5. Tis study considers the
copper particle is spherical in shape, so that n � 3, as dis-
cussed by Hamilton and Crosser [47]. Te thermophysical
properties of H2O, Casson fuid, CoFe2O4, and TiO2 are
given in Table 1, following Tshivhi and Makinde [48] and
Shaw et al. [49].

Equations (3)–(5) represent the nanofuid fow when
β⟶∞, ϕ≠ 0 and the non-Newtonian Casson fuid fow
when β≠∞ and ϕ � 0. Te governing equations (2)–(4) are
transformed into dimensionless form by introducing non-
dimensional variables defned as follows to obtain similar
solutions:

u � 2czf
′
(η),

v � −
ca

��η√ f(η),

η �
r

a
􏼒 􏼓

2
,

θ(η) �
T − T∞

Tf − T∞
,

(8)

where the stream function ψ � aU∞/2rf(η) is related to
a velocity component as follows:

u �
zψ
zr

,

v � −
zψ
zz

.

(9)

Since the nondimensional variables in (8) and (9) satisfy
the continuity equation in (2), equations (3) and (4) are
converted into the following nondimensional form:

A1 1 +
1
β

􏼠 􏼡 ηf
‴

+ f
″

−
Re

Da
f
′
− 1􏼒 􏼓􏼔 􏼕 + Re A2 ff

″
− f
′2

+ 1􏼒 􏼓 − Fr f
′
− 1􏼒 􏼓

2
􏼢 􏼣 � 0, (10)

A3

Pr
ηθ″ + θ′􏼒 􏼓 + A4Re(fθ′ − 2f′θ) + 4A1Ec 1 +

1
β

􏼠 􏼡 ηf
″2

+
Re

Da
f
′
− 1􏼒 􏼓

2
􏼢 􏼣 + 4ReEcFr f

′
− 1􏼒 􏼓

3
� 0. (11)

With the boundary conditions in the dimensionless
form,

f(1) � 0, f
′(1)

� λ + δ 1 +
1
β

􏼠 􏼡f
″
(1), θ′(1) � Bi[θ(1) − 1],

f
′
(∞)⟶ 1, θ(∞)⟶ 0,

(12)

where η, Da, Fr, λ, Re, Pr, δ, Ec, and Bi are the similarity
variable, Darcy number (porous media parameter),
Forchheimer (second order porous resistance) parame-
ter, velocity ratio (stretching/shrinking) parameter
(where λ< 0 for stretching and λ> 0 for shrinking of
the surface), free stream Reynolds number, Prandtl
number, velocity slip parameter, Eckert number, and
Biot number (convective parameter), respectively. Tese
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dimensionless parameters and the variables A1, A2, A3
and A4 quantities are defned as follows:

Da �
2ck1

]f

, A1 � (1 − ϕ)
− 2.5

, A2 � 1 − ϕ + ϕ
ρs

ρf

, Fr �
zF

ρf

��

k1

􏽱 ,

Ec �
U

2
∞

Cp􏼐 􏼑
f

Tf − T∞􏼐 􏼑
, δ �

2rμf

a
2
L

, Bi �
a
2
hf

2rkf

, Re �
a
2
c

2]f

, λ �
b

c
,

A3 �
ks + 2kf − 2ϕ kf − ks􏼐 􏼑

ks + 2kf + ϕ kf − ks􏼐 􏼑
, Pr �

]f ρCp􏼐 􏼑
f

kf

, A4 � 1 − ϕ + ϕ
ρCp􏼐 􏼑

s

ρCp􏼐 􏼑
f

.

(13)

Note that

(i) According to Joseph et al. [50], the pressure gradient
in the fow due to porous medium ▽P is given by

▽P � −
μ
k1

q −
CFρf

��
k1

􏽰 |q|q, (14)

where q is the velocity vector, k1 is the permeability
of the porous medium (m2), CF � 11/20(1 − 11/
20d/De) is a dimensionless form-drag constant, d is
the diameter of spheres of the porous medium, and
De � 2wh/w + h is the equivalent diameter of the bed
(defned in terms of the height h and width w of the
bed). Tus, putting F ≡ ρCF (kgm− 3) confrms the
dimensionlessness of Fr.

(ii) Re ≡ 1/4κ2, where κ �
���������
z]f/U∞a2

􏽱
is the curvature

of the cylinderical surface, as described by Gorla [24]
and Alizadeh et al. [38].

3. Physical Quantities of Engineering Interest

Te heat fux qw and wall skin friction τw are computed as
follows:

qw � − knf

zT

zr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
r�a,

τw � μnf 1 +
1
β

􏼠 􏼡
zu

zr

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
r�a,

(15)

and thus, the physical quantities of engineering interest: the
reduced local Nusselt number Nuz and coefcient of re-
duced skin friction Cf are given by

Nuz �
zqw

kf Tf − T∞􏼐 􏼑
,

Cf �
τw

ρfU
2
∞

.

(16)

On simplifcation,
a

z
Nuz � − 2A3θ

′
(1),

z

a
ReCf �

A1

2
1 +

1
β

􏼠 􏼡f
″
(1),

(17)

where Re � a2c/2]f represents Reynolds number (Gorla
[24]). Te heat transfer enhancement (HTE) of the
CoFe2O4-H2O and TiO2-H2O nanoparticles are computed
using the following formula:

HTE �
Nuz(ϕ≠ 0) − Nuz(ϕ � 0)

Nuz(ϕ � 0)
∗ 100. (18)

4. Temporal Stability Analysis of the Solution

On solving problems involving boundary layer fow, the
solution could be multiple, unique, or does not exist. In the
case of two or more solutions, the upper branch (frst)
solution is given to the solution that initially satisfes the
boundary condition at the far feld. Te temporal stability
analysis has proved that the upper branch solution is the
only one that is physically realizable and stable in most
problems. However, according to Weidman et al. [18], there
also exists a problem that has a lower branch solution that is
stable. Terefore, it is necessary to execute the stability

Table 1: Termophysical properties of H2O, CoFe2O4, and TiO2 nanoparticles.

Termophysical properties H2O Casson fuid CoFe2O4 TiO2

Termal conductivity, k [W.m− 1.K− 1] 0.613 0.505 3.7 8.9568
Specifc heat, Cp [J.kg− 1.K] 4179 3490 700 686.2
Density, ρ [kg.m− 3] 997.1 1060 4907 4250
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analysis and validate the reliability of the stable solutions. If
an initial growth of perturbation appears in the solution, the
solution is not physically realizable. Te perturbation may
exponentially increase or decay with time, and that is the

reason for considering an unsteady (time-dependent)
problem form in the stability analysis formulation. Tus, an
unsteady form, Merkin [43], of equations (3) and (4)
becomes

zu

zt
+ u

zu

zz
+ v

zu

zr
� U∞

dU∞
dz

+
μnf

ρnf

1 +
1
β

􏼠 􏼡
z
2
u

zr
2 +

1
r

zu

zr
􏼠 􏼡

−
μnf

ρnfk1
1 +

1
β

􏼠 􏼡 u − U∞( 􏼁 −
F

ρnf

��
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􏽱 u − U∞( 􏼁
2
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(19)
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nf
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1
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􏼠 􏼡
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+
μnf
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1 +

1
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2

+
F

ρCp􏼐 􏼑
nf

��

k1

􏽱 u − U∞( 􏼁
3
,

(20)

where t is time. Te unsteady equations (19) and (20) are
transformed as follows:

u � 2czf
′
(η, τ),

v � −
ca

��η√ f(η, τ),

η �
r

a
􏼒 􏼓

2
,

θ(η, τ) �
T − T∞

Tf − T∞
,

τ � 2ct,

(21)

where τ represents the nondimensional time variable.
Inserting (21) into equations (15) and (16), the resulting
equations become

A1 1 +
1
β

􏼠 􏼡 η
z
3
f

zη3
+

z
2
f

zη2
−

1
Da

zf

zη
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z
2
f

zη2
−

zf

zη
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2

−
z
2
f

zτzη
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− ReFr

zf

zη
− 1􏼠 􏼡

2

� 0,

(22)

A3

Pr
η

z
2θ

zη2
+

zθ
zη

􏼠 􏼡 + A4Re f
zθ
zη

− 2
zf

zη
θ −

zθ
zτ

􏼠 􏼡 + 4ReEcFr

zf

zη
− 1􏼠 􏼡

3

+ 4A1Ec 1 +
1
β

􏼠 􏼡 η
z2f

zη2
􏼠 􏼡

2

+
1

Da

zf

zη
− 1􏼠 􏼡

2
⎡⎣ ⎤⎦ � 0,

(23)

with the time dependent boundary conditions
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f(1, τ) � 0,
zf

zη
(1, τ) � λ + δ 1 +

1
β

􏼠 􏼡
z
2
f

zη2
(1, τ),

zθ
zη

(1, τ) � − Bi[1 − θ(1, τ)],
zf

zη
(∞, τ)⟶ 1, θ(∞, τ)⟶ 0.

(24)

To investigate the stability of the similarity solutions
f(η) � f0(η) and θ(η) � θ0(η) that satisfy boundary value
problems (10)–(12), the perturbation equation (25) is in-
duced following Weidman et al. [51]. Here, F(η, τ) and

G(η, τ) are small relative to f0(η) and θ0(η), respectively,
whereas an unknown eigenvalue parameter (a small dis-
turbance of decay or growth) ε is used in the formulation,
which provides an infnite set of the eigenvalues
ε1 < ε2 < ε3 < . . .

f(η, τ) � f0(η) + e
− ετ

F(η, τ)

θ(η, τ) � θ0(η) + e
− ετ

G(η, τ)
􏼩. (25)

After employing (25) into (22)–(24), the following lin-
earized eigenvalue problem is attained such that

A1 1 +
1
β

􏼠 􏼡 η
z
3
F

zη3
+ A1 1 +

1
β

􏼠 􏼡 + A2Ref0􏼢 􏼣
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2
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zη2
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z
2
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zτzη
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A1

Da
1 +

1
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􏼠 􏼡 − 2ReFr f0′ − 1( 􏼁􏼢 􏼣
zF

zη
+ A2Ref0″F � 0,

(26)
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Pr
η
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2
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Pr
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zη
+ A4Re ε − 2f0′( 􏼁G + 8A1Ec 1 +

1
β

􏼠 􏼡f0″
z
2
F

zη2

+
8A1Ec

Da
1 +

1
β

􏼠 􏼡 f0′ − 1( 􏼁 + 12ReEcFr f0′ − 1( 􏼁
2

− 2A4Reθ0􏼢 􏼣
zF

zη
+ A4Reθ0′F

− A4Re
zG

zτ
� 0,

(27)

subjected to modifed the boundary conditions:

F(1, τ) � 0,
zF

zη
(1, τ) � δ 1 +

1
β

􏼠 􏼡
z
2
F

zη2
(1, τ),

zG

zη
(1, τ) � Bi G(1, τ),

zF

zη
(∞, τ)⟶ 0, G(∞, τ)⟶ 0.

(28)

Te initial decay or growth of the solution (25) is
identifed by obtaining the steady state solution taking τ � 0
and hence F � F0(η) and G � G0(η) in equations (22)–(24),
where 0<F0(η)≪ 1 and 0<G0(η)≪ 1 (Weidman et al.)
[51]. Te stability of the solution obtained depends on the
sign of the smallest eigenvalue ε. Te fact that the eigenvalue

ε1 is positive implies that the fow is real and stable and that
there is an initial decay. To the contrary, the value of ε1 is
negative, which indicates that the steady fow solution is
unstable and that there is an initial growth of disturbance.
Now, the simplifed and linearized eigenvalue problem
above can be rewritten as follows:
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A1 1 +
1
β

􏼠 􏼡 ηF0‴ + A1 1 +
1
β

􏼠 􏼡 + A2Ref0􏼢 􏼣F0″

+ A2Re ε − 2f0′( 􏼁 −
A1

Da
1 +

1
β

􏼠 􏼡 − 2ReFr f0′ − 1( 􏼁􏼢 􏼣F0′ + A2Ref0″F0 � 0,

(29)

A3

Pr
ηG0″ +

A3

Pr
+ A4Ref0􏼒 􏼓G0′ + A4Re ε − 2f0′( 􏼁G0 + 8A1Ec 1 +

1
β

􏼠 􏼡f0″F0″

+
8A1Ec

Da
1 +

1
β

􏼠 􏼡 f0′ − 1( 􏼁 + 12ReEcFr f0′ − 1( 􏼁
2

− 2A4Reθ0􏼢 􏼣F0′ + A4Reθ0′F0 � 0,

(30)

subjected to the following boundary conditions:

F0(1) � 0, F0′(1) � δ 1 +
1
β

􏼠 􏼡F0″(1), G0′(1) � Bi G0(1),

F0′(∞)⟶ 0, G0(∞)⟶ 0.

(31)

To fnd the possible range of the smallest eigenvalue ε1,
equations (25) and (26) along with the boundary conditions
(31) are computed using the bvp solver functions embedded
in Maple. To do this, (29) needs a modifcation, and hence,
the BVP code can successfully execute the computation.
Terefore, F0′(∞)⟶ 0 is relaxed and substituted with
a condition such as F0″(0) � 1, following Harris et al. [25].
Te modifed boundary conditions in (31) becomes

F0(1) � 0, F0′(1) � δ 1 +
1
β

􏼠 􏼡F0″(1), G0′(1)

� Bi G0(1), F0″(1) � 1,

F0′(∞)⟶ 0, G0(∞)⟶ 0.

(32)

5. Numerical Method

In order to apply the solver, the equations must be rewritten
as a set of equivalent ordinary diferential equations of frst
order. Tis is done using the substitutions, where y(1) � f

and y(4) � θ as follows:
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2
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3
􏼣􏼩.

(33)

For the boundary conditions (12), we get
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ya(1) � 0, ya(2) � λ + δ 1 +
1
β

􏼠 􏼡k1, ya(3) � k1, yb(2) � 1,

ya(4) � k2, ya(5) � Bi k2 − 1􏼂 􏼃, yb(4) � 0.

(34)

Te same procedures are followed for stability analysis.
New substitutions are introduced to rewrite equations (25)
and (26) and the boundary conditions (32) into frst-order
ordinary diferential equations by letting where y(1) � F0,
y(4) � G0, z(1) � f0, and z(4) � θ0:

y(1)
′

� F0′ � y(2),
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y(3)
′

� F0‴ � −
1

A1(1 + 1/β)η
A1 1 +

1
β

􏼠 􏼡 + A2Rez(1)􏼢 􏼣y(3) + 􏼢A2Re(ε − 2z(2))􏼨

−
A1Re

Da
1 +

1
β

􏼠 􏼡 − 2ReFr(z(2) − 1)􏼣y(2) + A2Rez(3)y(1)􏼩,

y(4)
′

� G0′ � y(5),

y(5)
′

� G0″ � −
Pr

A3η
A3
Pr

+ A4Rez(1)􏼣y(5) + A4Re􏼣ε − 2z(2)􏼢 􏼣y(4)􏼨

+ 8A1ReEc 1 +
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8A1Ec

Da
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1
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+ 12ReEcFr(z(2) − 1)
2

− 2A4Rez(4)􏼣y(2) + A4Rez(5)y(1)􏼩.

(35)

For the boundary conditions, we get

ya(1) � 0, ya(2) � δ 1 +
1
β

􏼠 􏼡k1, ya(3) � k1, yb(2) � 0,

ya(4) � k2, ya(5) � Bi k2, ya(3) � 1, yb(4) � 0,

za(1) � 0, za(2) � λ + δ 1 +
1
β

􏼠 􏼡l1, za(3) � l1, zb(2) � 1,

a(4) � l1, za(5) � Bi l2 − 1􏼂 􏼃, zb(4) � 0.

(36)

To determine the unknown initial conditions k1, k2, l1,
and l2 (i.e., the values of f″(1), θ(1), F0″(1), and G0(1),
respectively), shooting the equations is performed for an
arbitrary slope so that the solution of the system of ODEs
satisfes the boundary conditions at∞, and its accuracy is
checked by comparing the calculated quantities with the
provided end points. After obtaining these values, the
fourth-ffth order Runge–Kutta–Fehlberg techniques
applied to solve the system of frst-order ODEs in
(33) with boundary conditions (33) and determine ε
from (35). To get the dual solutions, diferent initial
approximates for the values of k1, k2 are considered
where all profles asymptotically satisfy the ∞ boundary
conditions.

6. Results and Discussion

In this research article, the cumulative efects of the velocity
ratio (stretching/shrinking) parameter λ, free stream Rey-
nolds number Re, Casson parameter (factor) β, porous
media parameter (Darcy number) Da, porous media inertial
resistance parameter (Forchheimer parameter) Fr, velocity
slip (slipperiness) parameter δ, Prandtl number Pr, viscous
dissipation parameter (Eckert number) Ec, convective
heating parameter (Biot number) Bi, and nanoparticle
volume fractions ϕ, on the fuid velocity and temperature
profles, drag force, and heat transfer rate are illustrated
graphically in a chart, and numerically computed results are
presented in tables. Te range of parameters used in this
article are as follows: 0.0≤ϕ≤ 0.1,0.1≤ β≤ 10,1≤Da≤ 10,

0.1 ≤Fr ≤ 0.3,0.5 ≤Re ≤ 1,0.1 ≤ δ ≤ 0.15,2.2 ≤ Pr ≤ 6.2,0.1 ≤
Ec≤ 0.3,0.1≤Bi≤ 0.14. Moreover, the appearance of dual
solutions for some intervals of varying parameter values is
explained for the coefcients of skin friction (surface drag
force) A1/2(1 + 1/β)f″(1) and Nusselt number (heat
transfer rate) − 2A3θ

′(1) in plots and/or tables for various
numerical quantities of the involving parameters. For the
governing systems of highly nonlinear ordinary diferential
equations (9) and (10) that cannot be solved analytically,
they are numerically tackled using the shooting technique
with Maple 2018 (which is coded with a fnite diference
fourth order accuracy level and solves the boundary value
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problem, bvp), subjected to initial and far feld boundary
conditions (12). To validate this method, the computational
results of (i) dimensionless stream function (f) and di-
mensionless temperature (θ) at η � 2, Gorla [23] and Alizadeh
et al. [38] presented in Table 2, and (ii) the coefcient of skin
friction, Gorla [23] and Wang [52] presented in Table 3, are
compared. It is seen from the tabulated results that the
comparison reveals a better agreement for each value of the
dimensionless stream function, dimensionless temperature,
and coefcient of skin friction. Terefore, we, the authors, are
guaranteed that the method and results obtained under this
study are all valid and acceptable. Te velocity, temperature,
local Nusselt number, and local skin friction profles are il-
lustrated graphically and are presented in tables.

6.1. Existence of Dual Solutions due to Shrinking Surface.
For the shrinking parameter λ, the infuences of varying
embedded parameters on the skin friction are presented in
Figures 2–5 for CoFe2O4 (CF) nanoparticle case only, and this
result is compared with that of TiO2 (TD) nanoparticle case
using Table 4. Accordingly, it is revealed that dual solutions
exist: the upper (solid curve) and lower (dotted curve) solution
branches exist for λ> λc, and no real solution exists for λ< λc.
Tat means, λc is the shrinking parameter value for the upper
and lower solutions, which physically demonstrates the extent
to which the surface is able to shrink while in processing.
Moreover, Figures 2–5 shows that the skin friction is a de-
creasing function of the shrinking parameter λ for all the
parameters involved in the upper branch solutions except
nearer to λc, whereas it is purely a decreasing function for the
lower branch solutions. |λc| (the range of λ for which the
similarity solution appears) increases with the slipperiness
parameter δ and higher values of the nanoparticle volume
fraction parameter ϕ, whereas it decreases with increasing
values of the Casson factor β, the porous media parameter Da,
porous media inertia resistance parameter Fr, and Reynolds
numberRe for the upper branch solutions. Beyond this critical
value λc, no similarity solutions exist due to the boundary layer
separation from the surface, which leads us to the difculty of
using boundary layer approximations to solve the problem.
Furthermore, from these fgures, it is observed that the upper
and lower branch solutions for the coefcient of skin friction
are in opposite trend except for increment in values of ϕ and δ.
Comparing the graphical results with Table 4, it is revealed that
the critical value λc is wider for TD with respect to CF
nanoparticles. Figures 2(a) and 5(a) demonstrate that for the
shrinking parameter λ, the coefcient of skin friction gets
enhanced as the nanoparticle volume fraction ϕ increases for
the upper branch solution, which could be due to the high
coercivity CF. Physically, the augmentation in nanoparticle
volume fraction implies that the base fuid and the nano-
particles collision raises the motion of the nanofuid, resulting
in a diminishing of the momentum boundary layer thickness
and increasing the drag force at the surface. It is noted that in
Figures 5, 6(b), and 7, the thinner and bold curves represent
upper and lower branch solutions, respectively.

Te coefcient of skin friction falls as the Casson pa-
rameter β rises for the upper branch solution, as shown in
Figures 2(b) and 5(a). Te coefcient of skin friction is

observed to drop upon improving the Casson factor β, which
means that less applied force is required to move the Casson
nanofuid past the surface for higher values of the Casson
factor β. In other words, β⟶∞ implies that the fuid
misses its non-Newtonian properties and behaves like
a Newtonian type, and hence, its velocity augments due to
the reduction in the shear stress.

Figures 3(a) and 5(b) reveal that the skin friction de-
creases as the porous media parameter (Darcy number Da)
gets higher for the upper branch solution. Again, the skin
friction drops as the porous media inertial parameter Fr

rises for the upper branch solution, whereas the solution
interval reduced, as illustrated in Figures 3(b) and 5(b).

As demonstrated in Figures 4(a) and 5(b), the coefcient
of skin friction drops with an increment in the values of
Reynolds number Re for the upper branch solution.Te skin
friction (surface drag force) diminishes with a rise in the
values of the slipperiness parameter δ, as illustrated in
Figures 4(b) and 5(b) for the upper branch solution.

Generally, the above results are observed nearer to the
critical shrinking parameter λc values, as illustrated by the plots;
the computed results from Tables 4 and 5 support what is
discussed above. From Table 6, far from λc (say at λ � − 0.1), it
is revealed that coefcient of the skin friction increases only
with rising values of phi and Re but drops with other pa-
rameters. Moreover, it is observable that the skin friction
(surface drag force) coefcient is higher for CF compared to
TD near the critical λc, as it is observed from Table 5.

6.2. Rate of Heat Transfer. Figures 6–11 and Table 5 explain
the efects of all the parameters under discussion on the heat
transfer rate (local Nusselt number Nu). It is noted from the
model that the energy and momentum equations are cou-
pled, and hence, the Nusselt number characterizes a dual
solution for λc < λ< 0 for the case of shrinking surfaces.

Table 2: Comparison of values of the dimensionless stream
function (f) and temperature (θ) at η � 2 for varying values of the
free stream Reynolds number Re, when ϕ � Fr � λ � δ � Ec � 0,
Pr � 1.0, and β � Da � Bi �∞.

Re

f(2) θ(2)

[23] [38] Present
result [23] [38] Present

result
0.01 0.12075 0.12051 0.1207572 0.84549 0.84557 0.8455064
0.1 0.22652 0.22659 0.2265285 0.73715 0.73701 0.7371582
1 0.46647 0.46683 0.4664705 0.46070 0.46045 0.4606932
10 0.78731 0.78725 0.7873119 0.02970 0.02983 0.0297425

Table 3: Comparison of values of skin friction Re− 1/2f″(1) for
varying values of the free stream Reynolds number Re, when β �

Da �∞ and Fr � ϕ � λ � δ � 0.

Re [52] [23] Present result
0.2 1.7577 1.75770 1.75771210
1 1.484185 1.484185 1.48418510
10 1.31643 1.316427 1.31643081
100 — 1.259642 1.25964253
∞ 1.232588 1.232585 1.23258819
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Moreover, it is revealed that dual solutions exist and that the
upper branch solutions (represented by the solid curve) for
the Nusselt number are an increasing function of the
shrinking parameter λ, whereas the opposite trend is

observed for the lower branch solutions. Te critical
shrinking parameter |λc| for the solution decreases for in-
creasing values of nanoparticle volume fraction, porous
media inertia parameter, and Biot numbers, whereas for the
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Figure 2: λ against skin friction for varying values of (a) ϕ and (b) β.
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Figure 3: λ against skin friction for varying values of (a) Da and (b) Fr.
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Casson, Reynolds, slipperiness, and velocity ratio parame-
ters, Darcy, Prandtl, and Eckert numbers, it gets widened for
the upper branch solutions.

It is observable that rising values of nanoparticle volume
fraction ϕ resulted in an ascending heat transfer rate (Nusselt
number Nu) for the upper branch solution, as seen in
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Figure 4: λ against skin friction for varying values of (a) Re and (b) δ.
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Figure 5: (a) ϕ, β, and δ and (b) Da, Fr, and Re against skin friction.
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Figures 6(b) and 8(a) nearer to the critical shrinking pa-
rameter λc.

Figures 6(b) and 8(b) reveal that the augmentation in the
values of the Casson factor β produces an intensifed heat
transfer rate nearer to the critical shrinking parameter values
for the upper branch solution. Physically, an increment in
the Casson factor augments the fuid motion and the
thermal profle, resulting in an increase in the heat transfer
rate. As β⟶∞ (the Newtonian fuid case), the heat

transfer rate is highly reduced compared to the non-
Newtonian Casson fuid.

Figures 7(a) and 9 demonstrate that the in-
tensifcation in the values of porous media parameter
Da and porous inertia resistance parameter Fr resulted
in the dropping of the heat transfer rate for the upper
branch solutions nearer to the critical shrinking pa-
rameter λc due to the efect of the porous media against
the fow rate. For the upper branch solution, nearer to

Table 4: Te computational results of critical shrinking parameter and skin friction for varying values of parameters for both upper branch
(UB) and lower branch (LB) solutions, where the universal results on the 3rd row is computed for Da � 10, Re � 0.5, ϕ � β � Fr � δ � 0.1
for CoFe2O4 and TiO2 nanoparticles application.

Values
CoFe2O4 nanoparticle case TiO2 nanoparticle case

Shrinking parameter Skin friction, z/aReCf Shrinking parameter Skin friction, z/aReCf

λc λ LB UB λc λ LB UB

φ 0.0 − 6.296 − 6.291 7.804424 13.41113 − 6.296 − 6.291 7.441272 13.41113
0.05 − 6.163 − 6.160 8.751245 14.71521 − 6.291 − 6.287 8.589124 14.79627

Da 5 − 6.599 − 6.594 9.824713 18.23317 − 6.858 − 6.853 10.88821 18.54962
7 − 6.369 − 6.364 9.973547 17.17354 − 6.597 − 6.594 10.77125 17.79559

− 6.121 − 6.117 10.08922 17.06109 − 6.358 − 6.353 10.398941 17.39894
β 0.15 − 4.548 − 4.544 5.432811 10.35182 − 4.733 − 4.730 6.055124 10.41189

0.2 − 3.751 − 3.747 4.017591 7.557561 − 3.887 − 3.883 4.002217 7.609331
Fr 0.2 − 5.712 − 5.708 8.421154 15.75589 − 5.913 − 5.910 10.00817 16.10817

0.3 − 5.302 − 5.298 7.798566 14.99881 − 5.490 − 5.486 8.507728 15.19526
Re 0.6 − 5.281 − 5.278 8.672531 14.76315 − 5.467 − 5.462 8.009925 15.30241

0.7 − 4.656 − 4.652 7.121718 13.30115 − 4.822 − 4.817 7.553292 13.63655
δ 0.15 − 6.121 − 6.117 8.500941 14.44912 − 6.358 − 6.353 8.522848 14.71149

0.2 − 6.121 − 6.117 7.298143 12.41321 − 6.358 − 6.353 7.811162 12.72238
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Figure 6: (a) λ against Nusselt number with varying Bi. (b) ϕ, β, and δ against Nusselt number.
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Figure 7: (a) Da, Fr, and Re and (b) Ec, Bi, and λ against Nusselt number.

Table 5: Te computational results for critical shrinking parameter and the smallest eigenvalues ε of both upper branch (UB) and lower
branch (LB) solutions, where the universal results on the 3rd row is computed for Da � 10, Re � 0.5,ϕ � β � Fr � δ � 0.1 for CoFe2O4 and
TiO2 nanoparticles application.

Values

CoFe2O4 nanoparticle case TiO2 nanoparticle case
Shrinking
parameter Eigenvalue ε Shrinking

parameter Eigenvalue ε

λc λ LB UB λc λ UB LB

φ 0.0 − 6.296 − 6.291 − 0.433091 4.128013 − 6.337 − 6.333 − 0.889731 4.241711
0.05 − 6.163 − 6.160 − 0.454080 3.850957 − 6.291 − 6.287 − 0.725491 3.715033

Da 5 − 6.599 − 6.594 − 0.573897 4.644802 − 6.858 − 6.853 − 0.048141 4.671653
7 − 6.369 − 6.364 − 0.533424 3.956016 − 6.597 − 6.594 − 0.170224 4.156063

− 6.121 − 6.117 − 0.335706 3.909736 − 6.358 − 6.353 − 0.365095 3.937407
β 0.15 − 6.121 − 6.117 − 0.335706 3.909736 − 6.358 − 6.353 − 0.365095 3.937407

0.2 − 3.751 − 3.747 − 0.171095 1.350239 − 3.887 − 3.883 − 0.319463 2.738349
Fr 0.2 − 5.712 − 5.708 − 1.096991 3.821874 − 5.913 − 5.910 − 0.067453 3.898320

0.3 − 5.302 − 5.298 − 1.030511 4.037972 − 5.490 − 5.486 − 0.663476 4.042332
Re 0.6 − 5.281 − 5.278 − 0.309304 3.469464 − 5.467 − 5.462 − 0.991754 3.650911

0.7 − 4.656 − 4.652 − 0.637060 3.288788 − 4.822 − 4.817 − 0.478861 3.375309
δ 0.15 − 6.121 − 6.117 − 0.773934 3.939137 − 6.358 − 6.353 − 1.050795 3.932585

0.2 − 6.121 − 6.117 − 1.068120 3.973537 − 6.358 − 6.353 − 0.811844 4.019688

Table 6: Te computational results velocity profle, skin friction, temperature profle, and the Nusselt number for varying values of
parameters, where the universal results on the 5th row is computed for Da � 10, Re � 0.5, λ � − 0.08, Pr � 6.2,ϕ � β � Fr � δ � Ec � Bi �

0.1 for both CoFe2O4 and TiO2 nanoparticles.

Parameters CoFe2O4 nanoparticle TiO2 nanoparticle
Names Values f′(1) z/aReCf θ(1) a/zNuz f′(1) z/aReCf θ(1) a/zNuz

ϕ 0.0 0.3443 2.1214179 0.7885156 0.0422969 0.3443 2.1214179 0.7885156 0.0422969
0.05 0.3470 2.4273017 0.8733792 0.0277817 0.3456 2.4190332 0.8690478 0.0295468

Pr 2.2 0.3480 2.7850414 0.6941179 0.0734467 0.3455 2.7685602 0.6854795 0.0797462
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the critical shrinking parameter λc, increment in
Reynolds number Re drops the convective heat
transfer rate, as demonstrated in Figures 7(a) and
10(a). Physically, the added nanoparticles increases
viscosity (Figure 2(a)), producing dominated inertial
forces nearer to λc. Moreover, the retarded fow rate at
this region leads to the overcoming of conductive heat
transfer to the convective one due to better thermal

conductivity of the used nanoparticles than the normal
base fuid, and therefore, weak temperature gradient
(Nusselt number) is observed, resulting in reduced
heat transfer rate of the Casson Nanofuid fow.

Stepping up in the values of the slip parameter δ en-
hances the convective heat transfer rate (Nusselt number
Nu) in the upper branch solution as we see from Figures 6(b)
and 10(b), nearer to the critical shrinking parameter λc

Table 6: Continued.

Parameters CoFe2O4 nanoparticle TiO2 nanoparticle
Names Values f′(1) z/aReCf θ(1) a/zNuz f′(1) z/aReCf θ(1) a/zNuz

4.2 0.3480 2.7850414 0.8611957 0.0333289 0.3455 2.7685602 0.8517387 0.0375914
Ec 0.08 0.3480 2.7850414 0.7882636 0.0508410 0.3455 2.7685602 0.7809155 0.0555485

0.09 0.3480 2.7850414 0.8805976 0.0286702 0.3455 2.7685602 0.8721518 0.0324157
0.3480 2.7850414 0.9729317 0.0064995 0.3455 2.7685602 0.9633880 0.0092829

β 0.15 0.2755 2.3130649 0.9932522 0.0016203 0.2727 2.2949169 0.9799335 0.0050878
0.2 0.2316 2.0275647 0.9866240 0.0032118 0.2287 2.0088823 0.9708014 0.0074033
1 0.0881 1.0935478 0.8090054 0.0458605 0.0856 1.0774762 0.7871929 0.0539569

Da 12 0.3432 2.7538371 0.9515903 0.0116239 0.3406 2.7367457 0.9419657 0.0147145
15 0.3382 2.7213940 0.9289476 0.0170607 0.3355 2.7036478 0.9192120 0.0204837

Fr 0.2 0.3473 2.7800302 0.9688303 0.0074843 0.3447 2.7634303 0.9592648 0.0103283
0.3 0.3465 2.7749759 0.9646787 0.0084812 0.3439 2.7582552 0.9550899 0.0113869

Re 0.6 0.3632 2.8840611 0.8886610 0.0267341 0.3605 2.8663237 0.8807833 0.0302272
0.7 0.3769 2.9729610 0.8217108 0.0428098 0.3740 2.9542409 0.8151097 0.0468786

δ 0.12 0.3972 2.5874533 0.8004842 0.0479066 0.3945 2.5731069 0.7940280 0.0522239
0.14 0.4396 2.4151383 0.6721195 0.0787288 0.4369 2.4025556 0.6677003 0.0842540

λ 0 0.3975 2.5862853 0.7995491 0.0481311 0.3951 2.5708519 0.7922350 0.0526785
0.08 0.4467 2.3862249 0.6523665 0.0834718 0.4445 2.3718715 0.6468595 0.0895382

Bi 0.11 0.3480 2.7850414 0.9730653 0.0071142 0.3455 2.7685602 0.9635739 0.0101594
0.12 0.3480 2.7850414 0.9731975 0.0077228 0.3455 2.7685602 0.9637579 0.0110270
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Figure 8: λ against Nusselt number with varying (a) ϕ and (b) β.
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values. Physically, heat transfer rate increases as a result of an
improvement in the slipperiness of the cylindrical surface,
reducing adhesion of the nanofuid to it.

Figure 11(a) shows that as the Pradntl number Pr

increases, the convective heat transfer rate gets higher in
the upper branch solution nearer to the critical shrinking
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Figure 9: λ against Nusselt number with varying (a) Da and (b) Fr.
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parameter λc values. Physically, this is due to an in-
crement in Pr, which signifes that the momentum dif-
fuses more quickly and the velocity boundary layer is less
thick than the thermal boundary layer of the fuid,
meaning more heat transfer by convection is dominant in
the Casson nonofuid fow.

Figures 7(b) and 11(b) illustrate as the viscous dis-
sipation parameter Ec increases, the local Nusselt number
(heat transfer rate) also increases nearer to the critical
shrinking λc values for the upper branch solution.
Figures 6(a) and 7(b) demonstrate the heat transfer rate
(local Nusselt number Nuz) against the Biot number Bi,
and as it can be observed, the heat transfer rate Nuz is
increasing as the convective heating parameter (Biot
number Bi) increases for the upper branch solution
nearer to the critical shrinking λc values. Physically, it
means that the coefcient of heat transfer caused by the
hot fuid beneath the sheet is directly associated with the
convective heating parameter. Moreover, from
Figure 7(b), it is demonstrated that the heat transfer rate
(Nu) escalates as the values of the shrinking parameter λ
increases for the upper branch solution.

Generally, it is observed from the graphs and Table 6 that
the heat transfer rate (the Nusselt number) is more pro-
nounced for TD compared to CF nanoparticles. Moreover,
nearer to λc, heat transfer rate (Nusselt number) increases
for rising values of β, Pr, and Ec but decreases for higher
values of Fr and Bi; however, the opposite trend holds far
from λc (say at λ � − 0.08).

6.3. Numerical Analysis of the Stability Test. From the nu-
merical results of this problem, the dual solution exists for
some interval of λ. Te stability analysis is made to de-
termine stable solutions within diferent solutions that arise
due to shrinking cylindrical surfaces. As detailed in Table 5,
for varying values of involving parameters, the smallest
eigenvalue ε is calculated for the temporary change of small
disturbances/perturbations regarding the basic steady fow,
with respect to the fxed values of Da � 10, Re � 0.5,

ϕ � β � Fr � δ � 0.1. From the table, it is observed that
corresponding to the upper branch solutions, the smallest
eigenvalue ε obtained is positive for shrinking surfaces,
implicating that the upper branch solution is hydrody-
namically temporally stable and therefore physically re-
alizable. Clearly, for the lower branch solution, the negative
value of ε revealed that it is unstable and physically
unachievable. In addition, ε> 0 demonstrates the rate of
declination of small disturbances on the upper branch so-
lution, whereas ε< 0 for the lower branch solution shows the
enhancement of the disturbances.

6.4. Velocity Profle. Figures 12–13(a) demonstrate the ef-
fects of diferent values of the embedded parameters on the
fuid fow velocity profle in the case of CF nanoparticles for
the UB (which is the only stable and physically realizable
one) and LB (unstable and cannot be realized) solutions
nearer to the critical shrinking λc values. In all plots, it is
demonstrated that the upper and lower branch solutions are
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Figure 11: λ against Nusselt number with varying (a) Pr and (b) Ec.
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in opposite trend. Moreover, the velocity profle is an in-
creasing function of η, whereas for all rising values of
ϕ, β, Da, Fr, Re, and δ, the velocity profle is decreasing with

raising of its momentum boundary layer thicknesses nearer
to |λc| in the upper branch solutions. Furthermore, Fr, EC,
and Bi do not have observable efect on the velocity profle
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Figure 12: Velocity profle for shrinking parameter with (a) ϕ and (b) β.
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and coefcient of the skin friction as Table 6, and no plot is
demonstrated in this regard.

Te infuence of CF nanopartile volume fraction ϕ on
the fow velocity profle is displayed in Figure 12(a), and it
is observed that the velocity profle drops and the fow
boundary layer thickness increases with enhancing
nanopartile volume fraction ϕ for the upper branch so-
lution nearer to |λc|, and the lower branch solution drops.
Figure 12(b) depicts the infuence of the Casson factor β
on the fuid velocity profle, and it is observed that the
velocity profle decreases with rising boundary layer
thickness as the values of β augment for both the upper
branch solutions. Tat is, the velocity of Casson nanofuid
fow gets diminished when β increases, which might be
due to the inverse proportionality of the Casson factor to
plastic viscosity. Te Newtonian fuid case happened as β
got higher (β⟶∞), and it is observed that the velocity
of the Newtonian fuid is lower than that of the Casson
nanofuid with widened boundary layer thicknesses.

Te diminishing velocity profles and increasing
boundary layer thicknesses are observed for the rising po-
rous media parameter Da which could be due to the in-
fuence of the application of the nanoparticles into the
Casson fuid and porous matrix resistance force, which will
retard fow, as demonstrated in Figure 14(a) within the fow
regimes of the Casson nanofuid for both the upper branch
solutions. Similarly, from Figure 14(b), it is observed that the
dropping of velocity profles for rising in porous media
inertial resistance parameter Fr for the upper branch so-
lutions with increasing boundary layer thickness. Te im-
pacts of Reynolds number Re (which measures the ratio of
momentum/inertia to viscous forces) on the velocity profle
are illustrated in Figure 15(a), and it is seen that as Re in-
creases, the velocity profle drops nearer to the critical
shrinking parameter value λc as with rising boundary layer
thickness for the upper branch solutions; however, the ve-
locity profle rises for lower branch solution. Figure 15(b)
shows that as the slipperiness parameter δ increases, the
velocity profle decreases with increasing boundary layer
thickness for both the upper and lower branch solutions.
Moreover, Figures 13(a) and 15(b) show that as the values of
the velocity ratio parameter λ increases, the velocity profle
increases and its boundary layer thickness diminishes in
both upper and lower branch solutions.

To generalize, it is observable from the graphs under
this subsection and Table 6 that the velocity profle is higher
for CF compared to TD in the case of the upper branch
solution at the surface of fow. Moreover, for the shrinking
surface case, unlike nearer to λc where the velocity profle
decreases with all parameters, except for λ, Table 6 reveals
that far from λc (say at λ � − 0.08), the velocity profle
increases for rising values of ϕ, Da, Re, δ, and λ for the
upper branch solution. Furthermore, fuctuating values of
Pr, Ec, and Bi showed unobservant efects on the velocity
profle and its boundary layer thickness and the skin
friction coefcient, perhaps due to dominance in the
thermal difusivity, energy, and resistance for convection at
the cylindrical surface of the Casson nanofuid in the upper
branch solutions.

6.5. Temperature Profle. Te overall impacts of
varying values of the involving parameters on the fuid
temperature profle and related boundary layer thickness
for the shrinking parameter λ are demonstrated in
Figures 13(b)–16. It is observed from the plots that the
temperature profle is a decreasing function of η for all
parameters under consideration nearer to λc. Te upper
and lower branch solutions are in opposite trend except
for the parameters ϕ and Bi.

Te temperature profle behavior in dealing with dif-
ferent values of nanoparticle volume fraction ϕ is illustrated
in Figure 13(b), and it is observed that the temperature
profle and its boundary layer thickness diminishes for in-
creasing ϕ in both upper and lower branch solutions.
Physically, increasing the nanoparticle volume fraction ϕ
raises the thermal conductivity of the fuid, and hence,
intensifes the temperature gradient of the Casson nanofuid,
and drops the thermal behavior of the Casson
nanofuid fow.

From Figure 17(a), it is observed that the temperature
profle and the corresponding boundary layer thickness
diminish with increasing values of the Casson factor β for the
upper branch solution. Physically, when the Casson factor
values become higher, the strength of the yield stress of the
Casson fuid is weakened, enhancing the plastic dynamic
viscosity and therefore diminishing the thickness of the
thermal boundary layer of the fow temperature profle. Note
that the Casson nanofuid’s thermal boundary layer thick-
ness is higher than that of the Newtonian fuid. Te values of
the Casson parameter get higher (β⟶∞) which shows
weaker interactions of molecular motion within the Casson
nanofuid behaving as a Newtonian Casson fuid, which
ultimately reduces the Casson nanofuid’s temperature
profle.

Figure 17(b) shows that the temperature profle and
its boundary layer thickness rises against the increment in
Da within the fow regime for the upper branch
solution. Physically, the increment in porous matrix
reduces the temperature gradient and hence enhances the
thermal properties of the Casson nanofuid fow. More-
over, from Figure 18(a), it is observed that the temper-
ature profle and its boundary layer thickness rises against
the increment in the values of Fr for the upper branch
solution.

Figure 18(b) reveals that rising values of Reynolds
number Re resulted in an intensifcation of the temperature
profle and its thermal boundary layer thickness for the
upper branch solutions. Physically, it indicates that as
Reynolds number Re rises, the temperature gradient drops
due to dominance in thermal conductivity, and hence, the
temperature of the fuid starts to rise. In Figure 19(a), it is
demonstrated that an increment in the slipperiness pa-
rameter δ resulted in the dropping of the temperature profle
and its thermal boundary layer thickness for the upper
branch solution. Physically, the slipperiness of the surface
facilitates the temperature gradient, resulting in a reduction
of the temperature profle and a lessening of the corre-
sponding thermal boundary layer thickness of the Casson
nanofuid fow.

20 Journal of Engineering



Re = 0.5, λ = -6.116, ϕ = β = Fr = δ = 0.1

Da = 5, 7, 10

Upper Branch

Lower Branch

4 6 8 10 12 14 162
η

–6

–5

–4

–3

–2

–1

0

1
f' 

(η
)

(a)

Fr = 0.1, 0.2, 0.3

Da = 10, Re = 0.5, λ = -5.259, ϕ = β = δ = 0.1

Upper Branch

Lower Branch

4 6 8 10 12 14 16 18 202
η

–5

–4

–3

–2

–1

0

1

f' 
(η

)

(b)

Figure 14: Velocity profle for shrinking parameter with (a) Da and (b) Fr.
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Figure 15: Velocity profle for shrinking parameter with (a) Re and (b) δ.
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Te efect of the Prandtl number Pr on the thermal
properties of the Casson nanofuid fows is revealed, and it is
observed that as Pr upsurges, the temperature and its
boundary layer thickness diminish for the upper branch

solutions, as presented in Figure 19(b). Figure 20(a) illus-
trates the infuence of the viscous dissipation parameter
(Eckert number Ec) on the thermal profle.Te rising of both
the temperature profle and the boundary layer thickness are
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Figure 16: Temperature profle for the shrinking parameter with λ.
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Figure 17: Temperature profle for the shrinking parameter with (a) β and (b) Da.
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observed at the expense of enhancing the viscous dissipation
parameter Ec for the upper branch solution. It is known that
the kinetic energy is absorbed by viscosity from the fuid

motion and converted into internal energy that raises the
heating of the fuid fow, thus increasing both the temper-
ature profle and its boundary layer thickness.
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Figure 18: Temperature profle for the shrinking parameter with (a) Fr and (b) Re.

Upper Branch

Lower Branch

200 300 400100
η

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

θ 
(η

)

Da = 10, Re = 0.5, Pr = 6.2, λ = -1, 
ϕ = β = Fr = Ec = Bi = 0.1

δ = 0.1, 0.11, 0.12

(a)

Upper Branch

Lower Branch

Da = 10, Re = 0.5, λ = -1, 
ϕ = β = Fr = δ = Bi = 0.1

Pr = 2.2, 4.2, 6.2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

θ 
(η
)

300 400100 200
η

(b)

Figure 19: Temperature profle for the shrinking parameter with (a) δ and (b) Pr.
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Figure 20(b) depicts that increasing the convective
heating parameter Bi drops the temperature profle and the
related boundary layer thickness of Casson nanofuid fow
for the upper branch solution. Physically, for Bi< 1, the
temperature on the surface and beneath the surface (inside
the cylinder) will be approximately similar, and/or the
surface is a good conductor of heat, so the temperature is
uniformly distributed throughout the surface of the cylinder.

As the velocity ratio λ increases, the temperature profle
drops and the thermal boundary layer diminishes for the
upper branch solutions, as depicted in Figure 16.

Generalizing based on the plots under discussion and
Table 6, the temperature profle is higher for CF compared to
TD for the upper branch solutions. Moreover, nearer to λc,
temperature profle and its thermal boundary layer decrease
for increasing values of β, Pr, Ec, and Bi; however, the op-
posite trend holds far from λc (say at λ � − 0.1).

6.6. Heat Transfer Enhancement. Te chart in Figure 21
demonstrates how the rate of heat transfer is enhanced
for increasing values of the nanoparticles’ cobalt ferrite
(CoFe2O4) and/or titanium dioxide (TiO2) volume fraction
ϕ in the Casson fuid for the shrinking, fxed, and stretching
surfaces. Te heat transfer enhancement is more pro-
nounced for TiO2 nanoparticles compared to that of
CoFe2O4 nanoparticles, which could be due to the larger
thermal conductivity of TD with respect to CF. Moreover,
the rate of heat transfer enhancement is higher for the
working Casson nanofuids with increasing nanoparticle
volume fraction ϕ for a higher shrinking parameter com-
pared to other cases. Studies revealed that nanoparticles
serve as better coolants for industrial and engineering usage
when compared to base fuids; for instance, TD can be used
as a better enhancer of heat transfer rate and cooling of
radiators and electronic devices, etc.

7. Conclusions

Numerical investigation into the stagnation point fow of
CoFe2O4/TiO2-H2O-Casson nanofuid past a slippery surface
stretching/shrinking through a Darcy–Forchheimer porous
medium in the presence of viscous dissipation and convective
heating has been worked out. By using similarity trans-
formations, the modeled boundary layer PDEs were converted
into a system of ODEs with their corresponding boundary
conditions, and the shooting technique with bvp solver em-
bedded inMaple software packages was used for the numerical
computation of the solutions. Te temporal stability analysis
has been done to identify stable and physically reliable solutions
subjected to small disturbances. Te efect of various param-
eters on the dimensionless velocity and temperature profles,
the coefcient of skin friction, and rates of heat transfer and
enhancement are obtained numerically and presented in
graphs, tables, and a chart. Te following fndings are sum-
marized from the discussion:

(i) Tere is a critical value of the shrinking parameter
λc that determines the interval of solutions, such
that the critical value |λc| widens only for higher

values of nanoparticle volume fraction and slip-
periness parameters, and increment in |λc| is
higher for TiO2 than CoFe2O4.

(ii) Te skin friction (drag force) coefcient of fow
escalates only as the nanoparticle volume fraction
parameter increases and reduces with an in-
crement in the values of other parameters for the
upper branch solutions.

(iii) For the shrinking surface nearer to the critical
shrinking parameter λc, the coefcient of skin
friction increasingly overshot as λ rises for all
parameters (ϕ, β, Da, Fr, Re, and δ), resulting in
a reduced velocity profle with increasing mo-
mentum boundary layer thickness for all param-
eters in the upper branch solutions.

(iv) For the shrinking surface, there are unobservable
efects of Pr, Ec, and Bi on fow velocity profle and
coefcient of skin friction nearer to the fxed
surface.

(v) For the shrinking surface, the increment in Da, Fr,

and Re declines the heat transfer rate and raises the
thermal behavior the Casson nanofuid near λc,
and the reverse is observed nearer to the fxed
cylindrical surface.

(vi) Te coefcient of skin friction (drag force) and the
temperature profle are a decreasing function of
the shrinking parameter λ; however, the reverse is
true for the velocity profle and rate of heat transfer
in the upper branch solutions.

(vii) For the upper branch solutions, the rate of heat
transfer drops for increasing values of the nano-
particle volume fraction parameter, Forchheimer
parameter, and Biot number nearer to λc and
upsurges for the other parameters.

(viii) Increasing the amount of nanoparticle volume
fraction in the Casson fuid boosts the heat transfer
enhancement rate, which is higher for TiO2 than
CoFe2O4.

(ix) Te temporal stability analysis determined the
smallest eigenvalue ε which revealed that only the
upper branch solution is stable and physically
realizable, whereas the lower branch solution is
unstable and not realistic for the fow problem.

(x) For the upper branch solutions, the velocity profle
drops with all parameters nearer to λc and en-
hances with an increment in the values of the
nanoparticle volume fraction parameter, slipperi-
ness parameter, Darcy number, and Reynolds
number far from λc for the shrinking surface.

(xi) For the upper branch solutions, the temperature
profle and thermal boundary layer thickness in-
crease only with enhancing values of nanoparticle
volume fractions and porous inertia resistance
parameters nearer to λc, and increase the nano-
particle volume fraction parameter, Casson factor,
Prandtl number, Eckert number, and Biot number
far from λc.
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(xii) For the Newtonian fow (as β⟶∞), the critical
shrinking parameter |λc|, surface drag force co-
efcient, velocity profle, and temperature profle with
its boundary layer thickness diminish, whereas the
heat transfer rate andmomentum boundary layer rise
for the upper branch solutions nearer to λc.

(xiii) Te critical shrinking parameter |λc| and heat
transfer rate and enhancement are higher for TiO2
nanoparticles compared to CoFe2O4 nano-
particles, whereas the skin friction coefcient,
velocity, and temperature profles are higher for
CoFe2O4 nanoparticles relative to TiO2 for the
upper branch solutions.

Nomenclature

a: Radius of the cylinder (m)

b, c: Real constants (s− 1)

Bi: Biot number (� a2hf/2rkf)

Cf: Coefcient of the skin friction
Cp: Specifc heat at constant pressure of the fuid

(Jkg− 1K− 1)

Da: Darcy number (porous media parameter) (� 2ck1/]f)

eij: Te rate of strain tensor
Ec: Eckert number (� U2

∞/(Cp)f(Tf − T∞))

f: Dimensionless stream function
F: Forchheimer drag force coefcient m− 1

Fr: Forchheimer parameter (� zF/ρf

��
k1

􏽰
)

hf: Convective heat transfer coefcient (Wm− 2K− 1)

k1: Porous medium permeability (m2)

kf: Termal conductivity of the base fuid (Wm− 1K− 1)

ks: Nanoparticles’ thermal conductivity [Wm− 1K− 1]

knf: Nanofuids’ efective thermal conductivity
[Wm− 1K− 1]

L: Slip length coefcient (Kgm− 1s− 2)

n: Real constant (Km− 2)

Nuz: Local Nusselt number
Pr: Prandtl number (� ]f(ρCp)f/kf)

py: Yield stress of the fuid (Nm− 2)

qw: Heat fux (Wm− 2)

Re: Reynolds number (� a2c/2]f)

T: Temperature of the fuid (K)

Tf: Local fuid temperature (K)

T∞: Ambient temperature of the Casson nanofuid (K)

u, v: Velocity components along z, r coordinates,
respectively (ms− 1)

U∞: Free stream velocity of the Casson fuid (ms− 1)

z, r: Coordinates along the surface and the radial
coordinate, respectively (m)

Greek Symbols
β: Non-Newtonian/Casson parameter/factor
δ: Velocity slip parameter (� 2rμf/a2L)

ε: Eigenvalue parameter
η: Similarity variable
θ: Dimensionless temperature
λ: Velocity ratio (stretching/shrinking) parameter

(� b/c)

μB: Te plastic dynamic viscosity of the Casson
nanofuid (Nm− 2s)

μf: Dynamic viscocity of the base fuid (kgm− 1s− 2)

μnf: Efective dynamic viscosity of the Casson
nanofuid (kgms− 2)

]f: Base fuids’ kinematic viscocity (m2s− 1)

π: Te (i, j)th component of deformation rate
(Nm− 2)

πc: Critical value of π (Nm− 2)

ρf: Density of the base fuid (kgm− 3)

ρs: Density of the solid nanoparticle (kgm− 3)

ρnf: Efective density of the Casson nanofuid (kgm− 3)

(ρCp)nf: Efective heat capacity of the Casson nanofuid
(Jm− 3K− 1)

τ: Nondimensional time variable
τij: Components of stress tensor (Nm− 2)

τw: Wall skin friction (Nm− 2)

ϕ: Nanoparticles volume fraction.
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Additional Points

Future Perspective. Tis present study on nanofuid heat
transfer enhancement is valid for Casson nanofuid and did
not incorporate the efects of other important factors such as
nanoparticle shape factors, hybrid nanoparticles, thermo-
phoresis, and Brownian motion. Te authors envisage
extending this study in the future to include other non-
Newtonian nanofuids (both single-phase and two-phase
fow models) as well as the efects of all the omitted factors.
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