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Tire pressure monitoring system (TPMS) has a critical role in safeguarding vehicle safety by monitoring tire pressure levels.
Keeping the accurate tire pressure is necessary for confrming comfortable driving and safety, and improving fuel consumption.
Tire problems can result from various factors, such as road surface conditions, weather changes, and driving activities, em-
phasizing the importance of systematic tire checks. Tis study presents a novel method for tire condition monitoring using
weightless neural networks (WNN), which mimic neural processes using random-access memory (RAM) components, sup-
porting fast and precise training.Wilkes, Stonham, and Aleksander Recognition Device (WiSARD), a type ofWNN, stands out for
its capability in classifcation and pattern recognition, gaining from its ability to avoid repetitive training and residual formation.
For vibration data acquisition from tires, cost-efective micro-electro-mechanical system (MEMS) sensors are employed, ofering
a more economical solution than piezoelectric sensors. Tis approach yields a variety of features, such as autoregressive moving
average (ARMA), statistical and histogram features. Te J48 decision tree algorithm plays a critical role in selecting essential
features for classifcation, which are subsequently divided into training and testing sets, crucial for assessing the WiSARD
classifer’s efcacy. Hyperparameter optimization of the WNN leads to improved classifcation accuracy and shorter computation
times. In practical tests, the WiSARD classifer, when optimally confgured, achieved an impressive 97.92% accuracy with
histogram features in only 0.008 seconds, showcasing the capability of WNN to enhance tire technology and the accuracy and
efciency of tire monitoring and maintenance.

1. Introduction

Networks and technologies related to transport play a critical
role in the economy by enabling the fow of goods across
international borders by removing barriers for efective
point-to-point travel and expediting the construction of
infrastructure that raises the standard of living.Tis mobility
depends on a vehicle’s ability to travel great distances that

has been augmented through the invention of pneumatic
tires which are considered as a signifcant advancement in
this regard [1]. Constant advancements in tire design, weight
reduction, and production methods enhance the economic
possibilities for the tire sector. Finding the ideal balance
between fuel economy, ride comfort, and occupant safety is
a common concern shared by both designers and pur-
chasers. Tires must be built with strength since they are
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crucial safety components and must withstand challenging
driving conditions [2]. Maintaining passenger safety, fuel
efciency, and utility requires proper tire care. While tires
are made to endure for a very long period before re-
placement, things like inadequate infation and reckless
driving can limit their lifespan and cause quick wear, lower
lifespan, and greater fuel consumption owing to increased
rolling resistance [3]. Tis domino efect has long-lasting
implications such as increased environmental impact from
frequent refueling and early tire set disposal, as tire materials
and additives are nonbiodegradable. Te signifcance of
prolonging tire lifespan is highlighted by this trifecta of
problems which also include rising fuel prices, consumer
desire for quality, and demand for cost-efectiveness [4]. A
solution for both preventive and predictive maintenance is
ofered by tire conditionmonitoring systems (TCMS), which
tracks tire pressure. Tere are two main types of TCMS that
are described as follows:

(i) In the case of direct TCMS, specifc pressure sensors
are located on tire valve stems or wheel hubs to send
pressure information to the vehicle control unit.

(ii) Indirect TPMS relies on the vehicle’s existing sensors
and employs advanced spectral analysis to infer tire
pressure. Tese TPMS systems are crucial tools for
improving safety, maximizing tire performance, and
reducing environmental impact.

Te feld of TCMS has experienced substantial advances
because of studies that focused at improving system operation
and design. Recent research has provided insightful in-
formation building on the ground-breaking work of Hasan
et al., which included pressure sensors, signal conditioning,
radio frequency transmitters, and batteries [5]. Silalahi et al.
built a TCMS incorporating pressure sensors, microcontrollers,
and bluetooth connectivity [6]. For vehicle suspension, Lee
et al. investigated an indirect TCMS employing adaptive ex-
tended Kalman fltering [7]. Tere are numerous fault di-
agnosis techniques each having their own advantages and
disadvantages. As the complexity of features grows, traditional
machine learning mandates explicit feature selection and ex-
traction, posing a challenge. Rather than requiring explicit
feature extraction, DNNalgorithms enable direct learning from
unprocessed data, such as image-based data plots. Te ex-
traction of raw input data from experimental setups is made
easier by sensors and computers that have been specially
outftted. Among these techniques, vibration analysis stands
out as being essential for identifying faws. Signals from ma-
chine vibrations provide valuable information on the state of
the machine. Anomalies that a visual inspection may have
missed, such as imbalances, misalignments, and mechanical
wear, can be discovered by evaluating these signals. Vibration
analysis provides insights into component dynamics making it
possible to identify issues early on before they worsen. Fur-
thermore, it ofers ongoing, unobtrusive monitoring without
interfering with corporate operations. Although useful, vi-
bration analysis has a few shortcomings. Te utilization of
specialized equipment, complex vibration pattern in-
terpretation, and baseline data may be required for efective

analysis. In this research environment, vibration analysis be-
comes important for problem identifcation and tire condition
monitoring, leveraging inherently present vibration signal
information for accurate assessment and improved safety.

Deep neural networks (DNNs) are a type of artifcial
neural network that use layered design to gradually recognize
complicated patterns in incoming data. In contrast to con-
ventional machine learning, DNNs learn complex charac-
teristics hierarchically over several layers, enabling input data
to pass through various levels of processing. For problem
detection and condition monitoring, this “deep” design has
the potential to be disruptive and outperform current prac-
tices. Despite the early limitations of DNN applications in
fault diagnosis, current developments have brought to light
their importance. Various mechanical system conditions have
been identifed using DNNs. A deep statistical feature
learning method for diagnosing the status of bearings and
gearboxes was presented by Li et al. that makes use of
characteristics from the frequency, time, and time-frequency
domains [8]. Eighteen-time domain characteristics were used
by Shao et al. to optimize deep belief networks for roller-
bearing defect detection [9]. To diagnose the gearbox con-
dition, Chen et al. suggested a convolutional neural network
(CNN) that extracts information from the time and frequency
domains. Tese instances show how DNNs have transformed
from commonplace substitutes to essential instruments for
quick fault state categorization [10]. Signifcant progress has
been made in the feld of fault diagnosis as a consequence of
the use of machine learning (ML) and deep learning (DL).
Tese technologies are appropriate for complicated condition
monitoring scenarios since they ofer automatic fault iden-
tifcation and categorization in brief time intervals. Te
confuence of ML and DL approaches with fault detection in
recent years has opened the door for improved accuracy,
efciency, and dependability in locating and fxing me-
chanical system problems [11–13].

Weightless neural networks (WNNs) have emerged as
a game-changing answer to the challenges of merging neural
network techniques with low-power hardware devices,
which are usually constrained by memory, power, and
performance restrictions [14]. Bledsoe and Browning in-
troduced WNNs in 1959, which was a signifcant develop-
ment in hardware-optimized neural network approaches.
WNNs, also known as n-tuple classifers, ofer certain
benefts that set them apart:

(i) Efective hardware integration: WNNs are designed
to readily integrate into hardware environments
with constrained resources for low-power
devices [15].

(ii) Swiftness and simplicity of implementation: When
hardware resources are limited, WNNs are prefer-
able since they are much simpler to build than more
complicated neural network architecture.

(iii) Single iteration learning:WNN holds the capacity to
learn from data in a single iteration; providing quick
training and testing procedures is one of its most
notable advantages.
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(iv) N-Tuple classifers: Also known as n-tuple classi-
fers, WNNs represent a distinctive classifcation
methodology that enhances their efectiveness and
fexibility [16].

(v) Improved training and testing speed: WNNs per-
form training and testing operations with as-
tounding efciency, meeting the needs of real-time
or time-sensitive applications.

(vi) Memory storage optimization: WNNs store
knowledge in random-access memory (RAM), as
opposed to the traditional strategy of storing in-
formation in network weights, as seen in normal
multilayer feed-forward neural networks
(MLFFNN). Tis results in optimized memory
consumption [17].

However, despite the prospective benefts of WNNs,
there are still several research gaps that need to be addressed
for investigation and advancement:

(i) Application Complexity: Although WNNs excel at
integrating with hardware, further study is required
to examine their adaptability and performance
across a larger variety of complicated applications.

(ii) Techniques for Optimization: Researching cutting-
edge methods to improve the efectiveness and
optimization of WNNs, particularly in terms of
memory usage and power consumption, continue to
be a major focus.

(iii) Generalization Capability: Exploring the general-
ization capacities of WNNs in various data settings
and their resilience to noisy or inconsistent input
data is a crucial research direction.

(iv) Real-World Deployment: To ensureWNNs’ smooth
integration and performance in real-time applica-
tions, research eforts should concentrate on their
practical deployment in real-world systems.

1.1. Technical Contributions

(1) Te study includes a comprehensive analysis that
covers four diferent fault scenarios: high, normal,
puncture, and idle.

(2) Vibration data were acquired from the pneumatic
tire under varying conditions, ensuring precise
measurements by afxing two 20 g weights to the
tire.Te data collection process was carried out using
an economical MEMS accelerometer.

(3) Tese recorded vibration signals were transformed to
get statistical, histogram, and ARMA features.
Moreover, the J48 decision tree algorithm was
employed for the identifcation of prominent
features.

(4) Wilkes, Stonham and Aleksander Recognition De-
vice (WiSARD), a weightless neural network clas-
sifer, was used to accurately classify the various
events after the feature selection phase [18, 19].

(5) Te performance and accuracy of the classifers were
carefully examined by a methodical examination of
numerous hyperparameters. Variables including
bleach confdence, tic number, map type, bleach step,
bit number, and bleach fag were systematically
adjusted to evaluate their infuence on classifcation
results.

(6) Comparing the results from various hyper-
parameters provided an important insight into the
best features for monitoring tire condition, ofering
useful advice for practical application and im-
provement in TCMS.

1.2. Novelty. Te application of the ground-breaking
weightless neural network WiSARD classifer for the anal-
ysis of tire condition monitoring system is what makes this
study special in terms of originality. Tis innovative ap-
proach relies on the afordable MEMS accelerometer sen-
sor’s ability to collect vibration signals which are then
skillfully transformed into a variety of statistical, histogram,
and ARMA features. Feature selection is meticulously car-
ried out using the J48 decision tree approach to discover
important traits. Te next critical step in enhancing the
efcacy of the methodology is to train theWiSARD classifer
using these enhanced characteristics. Te classifer accuracy
is further improved by thorough hyperparameter tuning,
yielding fndings that are decisive. Notably, the study
highlights the WiSARD classifer’s outstanding capability in
precisely identifying and diagnosing diferent characteris-
tics, demonstrating its adaptability for numerous applica-
tions, and reafrming its reputation as a game-changing
innovation in the feld of tire condition monitoring systems.

2. Experimental Studies

In this section, a comprehensive explanation of the exper-
imental setup and the methodology employed for tire
condition monitoring using weightless neural networks is
presented.

2.1.Experimental Setup. In this experimental setup, aMaruti
Swift Dzire, which is a front-wheel drive car, was employed
as the test vehicle. Te primary goal of the study was to
capture vertical vibration signals that were generated spe-
cifcally by the air-flled pneumatic tire, with their origin at
the rear left wheel axis. To accomplish this, a triaxial MEMS
accelerometer with the model number MMA7361L was
meticulously afxed to the rear left wheel hub. Furthermore,
a waterproof sealant was applied to ensure the accelerom-
eter’s protection against external infuences and maintain its
integrity. Te selected accelerometer possesses a sensitivity
of 206mV/g, a frequency range that extends from 1 to
400Hz, and a resonance frequency of 6 kHz. Data acqui-
sition from the accelerometer primarily focused on the
Y-axis of the accelerometer data, thus enabling the capture of
vertical vibrations. For a visual representation of the MEMS
accelerometer employed for the collection of vibration data,
please refer to Figure 1.
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2.2. Method of Data Acquisition. In this research, the NI
USB-6001 DAQ device played a crucial role by converting
analog signals into a digital format for further signal pro-
cessing. Te device’s 12 input channels allowed simulta-
neous processing of multiple data streams from various
sources, and its 14 bit resolution maintained data quality.
With a maximum sampling rate of 20 kS/s, it enabled rapid
data acquisition for real-time analysis. Te integration of the
NI USB-6001 DAQ device with the NI LabVIEW software
ensured secure data transfer and efcient analysis, making it
a vital component of the experimental setup, delivering
accurate, high-quality data for subsequent analysis. In-
formation from the accelerometer was conveyed to the DAQ
through a shielded link, ofering an additional safeguard
against external electrical interference. Subsequently, the
output from the DAQ was securely linked to the monitored
computer system using NI LabVIEW software, guaranteeing
the secure transmission and analysis of data.

2.3. Experimental Procedure. Te data acquired for the study
was derived from the vehicle in real-time running conditions
on a national highway of India. Te road conditions were
nominally smooth, and the operating speed of the vehicle
was restricted between 10 km/h and 100 km/h to simulate
normal driving conditions. When assessing vibration sig-
nals, the following standards were adhered to.

(i) Sampling Frequency: Vibration signal data were
collected for tire rotation speeds between 10 kmph
and 100 kmph. Te maximum signal frequency
obtained from the accelerometer for the 165/80
radial pneumatic tire utilized in this study was ap-
proximately 14.73Hz, while theminimum frequency
was close to 1.47Hz.Te choice of a sampling rate of
1 kHz was made in accordance with the Nyquist
Sampling theorem.

(ii) Sample Length: To establish computational balance
across the four tire conditions under investigation,
an acceptable sample length of 5,000 data points was
chosen.

Te wheel practiced multiple preparations for this ex-
periment. Firstly, 40 g weights were attached to the rim to
achieve balance. Subsequently, the pneumatic tire on the
wheel was infated to a pressure of 31 psi, establishing the

standard condition known as “normal.”Te “high” state and
its corresponding vibrational signals were generated by
further increasing the pressure to 40 psi. Te “puncture”
scenario was simulated by lowering the tire’s pressure from
40 psi to 19 psi. Signals acquired at speeds under 10 kmph
were labeled as “idle” due to their low amplitude. A dataset
of 240 signals was generated with 60 data points collected for
each condition. According to the Nyquist sampling theorem,
the sampling frequency for each sample, which had 5,000
data points, was set at 1 kHz. Figure 2 represents the ac-
quired vibration signals for every tire condition.

3. Methodology

Te fault diagnosis process for evaluating tire conditions
within the TCMS comprises three distinct phases: feature
extraction, subsequent feature selection using the J48 al-
gorithm, and feature classifcation using the WiSARD
classifer. Figure 3 depicts the overall methodology of
WiSARD classifer-based monitoring of tire condition.

3.1. Feature Extraction. Feature extraction is a prime ma-
chine learning process that transforms raw vibration data
into a set of useful features that are appropriate for modeling
and analysis. Te objective of adopting feature extraction is
to reduce the dimensionality of the data whilst keeping the
information intact. Te present study utilizes the capability
of statistical, histogram, and ARMA features to portray the
information derived from vibration signals [20]. Te de-
scription of the features extracted is provided as follows.

(i) Statistical feature extraction is a fundamental pro-
cess that converts raw data such as tire pressure
fuctuations from TCMS into concise and in-
formative metrics. Tese metrics, referred to as
features, play a pivotal role in unveiling key insights
into the underlying characteristics of the data. In
essence, these statistical features play a trans-
formative role by translating intricate tire pressure
fuctuation data from TCMS into meaningful at-
tributes that harbor crucial insights into tire per-
formance. Trough the extraction and meticulous
analysis of these features, the TCMS can discern
deviations from the expected tire behavior, facili-
tating timely interventions and thereby augmenting
overall operational efciency and safety. Tis ap-
proach contributes to proactive maintenance
practices, ensuring optimal tire health and longevity
[21]. Table 1 in the supplementary data sheet details
the descriptive statistical features extracted.

(ii) Histogram feature extraction involves dividing the
spectrum of tire pressure fuctuations into discrete
intervals, each representing a specifc range of
values. Within each interval, the frequency or count
of tire pressure data points is methodically calcu-
lated, thus quantifying the inherent distribution of
pressure levels and visually depicting the patterns.
In the realm of tire condition monitoring systems
(TCMS), the histogram outlining tire pressure

Figure 1: MEMS accelerometer mounted on the test vehicle
rear axle.
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amplitudes assumes signifcant importance [22].
During typical tire performance phases, the pressure
fuctuations follow a distinctive pattern, translating
into a characteristic form within the histogram.
Typically, data points cluster around specifc pres-
sure ranges, vividly portraying the anticipated

operational behavior. In scenarios where anomalies
like tire issues or irregularities emerge, disruptions
within the pressure pattern become evident. Such
deviations manifest as alterations in the amplitude
distribution of the pressure signal. Tese deviations
can result in shifts, unconventional peaks, or
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troughs within the histogram, providing insights
into potential tire condition irregularities. Te
structure of the histogram serves as a powerful tool
for unearthing deviations from the standard dis-
tribution, enabling the detection of tire condition
inconsistencies. Tis scrutiny of the histogram acts
as a valuable mechanism to highlight deviations that
may signify tire condition anomalies, prompting
further in-depth analysis. In essence, histogram
feature extraction not only quantifes pressure level
distributions but also functions as a dynamic tool
for identifying and investigating deviations in tire
condition within the operational scope of TCMS.
For the present study, 100 bins of histogram features
were extracted and the most signifcant bin was
selected using the J48 algorithm, as presented in
Figure 4.

(iii) Autoregressive moving average (ARMA) feature
extraction represents an advanced technique for
unraveling the intricate dynamics within time-series
data, such as the tire pressure fuctuations observed
in tire condition monitoring systems (TCMS). Tis
method seamlessly combines two key ele-
ments—autoregressive (AR) and moving average
(MA)—to unveil the underlying temporal de-
pendencies shaping the evolution of the data over
time. Te autoregressive aspect, denoted as AR(p),
deciphers the present signal value by considering its
preceding p values, uncovering how past values
contribute to the current state and encapsulating the
data’s memory and historical trends. Conversely,
the moving average element, illustrated as MA(q),
captures the impact of prior error terms on the
current value, shedding light on the infuence of past
discrepancies on the trajectory of the pressure
signal. In the realm of tire condition monitoring,
these ARMA features hold paramount importance
[23]. Deviations in the ARMA coefcients from
established norms can serve as early indicators of
tire anomalies or irregularities within the TCMS.
Te method’s capability to capture cyclic patterns
and variations in pressure signals deepens the
comprehension of tire behavior, facilitating precise
anomaly detection and thereby enhancing the
overall efectiveness of tire performance monitoring
and maintenance strategies. In the present study,
ARMA orders were derived for a range starting
from 2 to 30 and the optimum value was selected
using the J48 algorithm, as shown in Figure 5.

3.2.FeatureSelection. Tepresence of irrelevant or duplicate
features in a dataset (due to unwanted noise) can induce
a detrimental efect on the performance of machine learning
models. Trough careful selection of most signifcant fea-
tures, the overall generalization capability of the model can
be enhanced. Adopting useful features can aid in more
consistent outcomes of the model that showcase minor
overftting with superior accuracy. An experimentation

using a relevant set of features can help in determining the
impact of features on the fnal predictions [24]. Tis ex-
perimentation enables an informed decision-making
through the selection of relevant features. Te complete
feature set can be streamlined to obtain faster model training
and swift time for interference. Delimiting the occurrence of
model overftting is another prime advantage of feature
selection. Overftting in a model occurs due to the presence
of a greater number of irrelevant features that can induce
noise during training that can impose improper pattern
learning. Te model attention is focused around prominent
information carriers present inside the data that can be
represented through signifcant features. Te study utilizes
the feature selection capability of the J48 decision tree al-
gorithm to detail the selected features in the form of an
inverted tree shape. Te feature of high importance is placed
on the top while the features of less importance are placed in
a descending manner. Te less signifcant and non-
contributing features are eliminated automatically through
the rules formulated by the tree with the information gains.
Te selected features are presented in the branch and leaf
nodes of the tree. Te decision tree selected for statistical,
histogram, and ARMA features is presented in Figures 6(a)–
6(c), respectively.

3.3. WNN-Based Feature Classifcation (WiSARD Classifer).
Aleksander introduced an inventive digital neuron that
employs RAM devices operating on Boolean logic. Tis
concept laid the groundwork for the creation of weightless
neural networks (WNNs), which utilize RAM-based neu-
rons for their learning processes. Within this system, in-
formation is conveyed through truth tables stored in the
RAM, constituting a vital element of WNN functionality
[25]. EachWNN node specializes in recognizing a particular
aspect of the input pattern, associated with a designated
RAM address that formulates a mapping criterion. RAM
network outputs are assigned with a value of 0 or 1. A
distinguishing characteristic between weighted and
weightless neural networks lies in their data processing
strategies, wherein weightless neural networks utilize
memory locations and hashing, while weighted neural
networks allocate weights to an extensive array of features, as
illustrated in Figure 7. Tis strategic choice afords WNNs
a distinct edge in scenarios with limited memory resources,
rendering them particularly appealing for real-world ap-
plications where optimizing memory overhead is essential.
Figure 8 details the outline of RAM network [26].

Wilkes, Stonham and Aleksander Recognition Device
(WiSARD), a pioneering innovation introduced by
Aleksander and his collaborators, constitutes a notable
stride in the realm of weightless artifcial neural networks.
Tis ground breaking n-tuple classifer presents a novel
approach to pattern recognition, featuring a network of
class discriminators, each equipped with a set of 'n' number
of RAM nodes with 'n' number of address lines for intricate
processing. At its core, the input retina orchestrates
a pseudo-random mapping of N∗n bits, establishing input
address lines across associated RAM nodes. Te
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Table 1: Descriptive statistical features extracted.

Statistical features Description

Mean
Te mean of the data is a representation of the data average value. It provides

a center around which the data gather. Deviations from the norm might indicate
abnormal behavior

Standard error Te standard error calculates the deviation between the sample mean and the actual
population mean. It displays the mean precision

Median Te median serves as the middle point when data are sorted. It provides
understanding of the data main topic and is robust to outliers

Mode Te mode is the value that is used the most. It can draw attention to persistent
patterns in the data

Standard deviation Te standard deviation measures how far apart data points are in relation to the
mean. Te greater the value, the more variations are implied

Sample variance Variance measures how far data points vary from the mean. It ofers understanding
of data variability

Kurtosis Kurtosis is a feature of the distribution shape. High kurtosis points towards extreme
values

Range Te range is the diference between the maximum and minimum values
Minimum Te minimum value signifes the lowest point of the data
Maximum Te maximum value represents the highest point of the data
Sum Te sum of all data points provides an insight into the overall magnitude

Skewness Skewness indicates the distribution asymmetry. One side is favored when the
skewness is high
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(a)
Figure 6: Continued.
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architecture dynamism, dynamic address line allocation,
and the inventive utilization of the input retina collectively
position WiSARD as an exemplar of adaptable pattern
recognition within artifcial neural networks. Leveraging
these benefts, WNN exemplifed by WiSARD emerge as
a preferred choice in contexts where computational ef-
ciency, scalability, and real-time applicability are of par-
amount importance [27]. Te overall workfow of steps
involved in WiSARD classifer is presented in Figure 9
while the complete model ofWiSARD classifer inbuilt with
discriminator module is presented in Figure 10.

4. Results and Discussion

Te present study centers on assessing the performance of
the WiSARD classifer in monitoring tire conditions. Four
conditions of the tire, namely, puncture, high, idle, and
normal were considered in the study.TeWiSARD classifer
performance relies on the numerous hyperparameters in-
volved such as tic number, map type, bleach fag, bleach
confdence, and bit number. For initial assessment, a train-
ing set with 80% of the initial data and a test set with 20% of
the initial data were formulated. Te experimentation was
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Figure 6: (a) Decision tree for statistical features. (b) Decision tree for histogram features. (c) Decision tree for ARMA features.
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carried out to determine the optimal hyperparameter con-
fguration of WiSARD classifer for every feature set to
obtain superior performance.

4.1. Efect of “Bit Number”. Te parameter “bit number” in
the WiSARD classifer holds great importance, as it directly
dictates the quantity of bits utilized in generating the sparse
distributed representation (SDR). Te choice of the
number of bits has a substantial impact on both the
classifer’s capacity and its precision. In the WiSARD
classifer context, “bits” denote the specifc binary units
employed for demonstrating information. Te classifer
operates as a pattern recognition technique relying on
a collection of randomly initialized binary bit cells for
recognizing input patterns. To illustrate the consequences

of varying the bit number, Tables 2–4 ofer a comprehen-
sive overview of how this variation afects diferent accu-
racy measures. Te optimal value, which consistently
delivered the highest accuracy across these parameters, was
carefully selected. Tis optimal value remained unchanged
when adjustments were made to other hyperparameters. To
ensure equitable experimental conditions, all parameters,
apart from the bit number, were maintained at their default
settings. Upon scrutinizing the outcomes presented in
Table 4, a consistent pattern emerges: the utilization of a bit
number set at 4 consistently resulted in higher accuracies
compared to other bit number choices. Consequently, bit
number 4 emerged as the favored and optimal selection,
emphasizing its compatibility with improved accuracy
across a range of evaluation metrics.
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4.2. Efect of Bleach Confdence. Within the WiSARD
classifer, the adjustment of the prediction confdence is
orchestrated by the bleach confdence parameter, con-
tingent upon the likeness between incoming data and the

stored patterns. If the input pattern matches one of the
stored patterns, the confdence level is increased; con-
versely, when there is no alignment, the confdence is
reduced. Tis adaptation contributes to the enhancement
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Figure 10: Complete model of the WiSARD classifer inbuilt with discriminator module.

Table 2: Training set accuracy for varying bit number.

Hyperparameter Statistical Histogram ARMA
Bit No. Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
4 98.54 0.058 93.23 0.078 98.75 0.096
8 99.79 0.040 95.63 0.044 99.79 0.070
16 100.00 0.054 97.92 0.054 100.00 0.060
32 100.00 0.044 98.44 0.038 100.00 0.060
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of the classifer’s predictive accuracy. Te study has fne-
tuned the bleach confdence values, and the outcomes are
presented in Tables 5–7. Te data in Table 7 reveal var-
iations in validation accuracies, with training and testing
accuracies staying consistent. Drawing from the presented
fndings, it can be deduced that the WiSARD classifer
exhibited heightened accuracy levels for statistical, his-
togram, and ARMA features when the bleach confdence
values were set to 0.70, 0.90, and 0.95.

4.3. Efect of “Bleach Flag”. Te bleach fag in the WiSARD
classifer operates as a binary indicator, determining the
necessity for adjusting prediction confdence. If confg-
ured as “true,” it triggers the bleach confdence procedure,
refning the confdence value. Conversely, when set to
“false,” the confdence level remains unchanged. Te
bleach fag plays a vital role in governing when and how
confdence adjustments take place within the classifer’s
decision-making process. Given its binary nature, the
bleach fag presents only two possible values: “true” or
“false.” Tables 8–10 provide a visual representation of the
collected outcomes concerning variations in the
bleach fag.

4.4. Efect of “Bleach Step”. Within the domain of neural
networks, the utilization of the bleaching process is aimed
at mitigating overftting, a situation wherein a model
becomes overly specialized to the training dataset. Stan-
dard approaches to tackle overftting encompass methods
such as dropout, regularization, modifcations to the
model’s architecture, and early stopping. Te control of
the pace of the bleaching process is entrusted to the bleach
step hyperparameter. A reduced value for the bleach step
results in a more gradual bleaching process, whereas an
increased value expedites it. Tables 11–13 provide an
extensive examination of how the bleach step parameter
infuences performance metrics.

4.5. Efect of “Map Type”. Te “map types” in the WiSARD
classifer are associated with the methods used to link input
patterns to the bit cells of the classifer, and this linkage
directly impacts the performance of the classifer. Two
utilized map types include linear and random.

(i) Linear map: Te linear map establishes a clear and
consistently straightforward mapping structure. In
the context of the linear map, input characteristics
are methodically distributed and sequentially
matched with specifc bits within the bit cells. Each
feature is distinctly linked to a particular bit, creating
a direct one-to-one relationship from input to bits.
For example, the frst feature corresponds to the frst
bit, the next feature to the second bit, and this se-
quence remains consistent.

(ii) Random map: Conversely, the random map entails
dispersing input characteristics and associating them
with bits in an irregular, nonsequential manner. Tis
results in an unpredictable mapping from input to
bit cells. Any feature can be paired with any bit
without adherence to order, introducing a degree of
variability and unpredictability into the mapping
process.

Te selection of the map type in the WiSARD classifer
wields a signifcant infuence over its performance and
behavior. Te linear map provides a systematic, predictable
pattern that proves to be benefcial in scenarios where
a distinct feature-to-bit relationship is desired. In contrast,
the random map introduces an element of unpredictability,
enhancing the classifer’s capacity to adapt to a wide array of
data types and bolstering its generalization capabilities. Te
importance of choosing the suitable map type is underscored
in Tables 14–16, highlighting its role in optimizing the
classifer’s efectiveness. Essentially, map types determine the
association between input characteristics and bits, and the
decision between linear and random maps can be pivotal in
achieving the intended classifcation results, with the former
ensuring predictability and the latter ofering adaptability.

Table 3: Cross-validation accuracy for varying bit number.

Hyperparameter Statistical Histogram ARMA
Bit No. Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
4 86.45 0.022 89.27 0.018 92.60 0.024
8 88.02 0.010 89.37 0.016 93.43 0.014
16 89.89 0.012 88.74 0.014 94.27 0.012
32 90.20 0.014 90.52 0.014 94.06 0.010

Table 4: Test accuracy for varying bit number.

Hyperparameter Statistical Histogram ARMA
Bit No. Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
4 86.25 0.010 95.83 0.010 97.50 0.022
8 85.00 0.010 92.08 0.018 95.83 0.020
16 84.16 0.018 93.75 0.016 97.50 0.020
32 82.50 0.012 93.75 0.010 95.41 0.020
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4.6. Efect of “Tic Number”. Te “tic number” within the
WiSARD classifer is a critical parameter that dictates the
number of bits assigned to each individual bit cell. Tis
parameter wields signifcant infuence over both memory
capacity and the degree of precision in representing data.
Opting for higher tic numbers enhances memory capacity,

enabling a more intricate and detailed data representation,
which proves particularly benefcial for complex in-
formation. However, this choice necessitates a trade-of, as it
leads to increased memory consumption and heightened
computational complexity. Consequently, the selection of tic
numbers entails a delicate equilibrium between memory

Table 5: Training set accuracy for varying bleach confdence.

Hyperparameter Statistical Histogram ARMA
Bleach confdence Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
0.6 99.06 0.054 94.68 0.062 98.64 0.074
0.7 99.38 0.062 93.02 0.068 98.54 0.080
0.8 98.12 0.054 93.95 0.068 99.06 0.082
0.9 99.16 0.100 92.81 0.062 98.95 0.074
0.95 98.54 0.064 94.27 0.076 98.95 0.078

Table 6: Cross-validation accuracy for varying bleach confdence.

Hyperparameter Statistical Histogram ARMA
Bleach confdence Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
0.6 87.37 0.020 88.15 0.020 93.33 0.020
0.7 85.90 0.020 89.87 0.018 92.39 0.018
0.8 86.25 0.016 88.64 0.014 92.60 0.020
0.9 86.05 0.160 87.21 0.014 93.12 0.022
0.95 87.18 0.018 89.06 0.022 93.12 0.020

Table 7: Test set accuracy for varying bleach confdence.

Hyperparameter Statistical Histogram ARMA
Bleach confdence Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
0.6 85.83 0.026 94.58 0.010 96.25 0.02
0.7 87.08 0.010 95.00 0.022 97.50 0.022
0.8 86.66 0.010 94.49 0.014 96.66 0.020
0.9 85.41 0.014 95.83 0.014 94.58 0.020
0.95 85.83 0.022 95.41 0.026 97.08 0.020

Table 8: Training set accuracy for varying bleach fag.

Hyperparameter Statistical Histogram ARMA
Bleach fag Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
True 98.66 0.140 94.06 0.152 91.35 0.154
False 98.66 0.140 94.15 0.074 98.22 0.072

Table 9: Cross-validation accuracy for varying bleach fag.

Hyperparameter Statistical Histogram ARMA
Bleach fag Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
True 50.10 0.020 94.06 0.152 52.00 0.020
False 86.87 0.016 94.15 0.074 92.30 0.020

Table 10: Test set accuracy for varying bleach fag.

Hyperparameter Statistical Histogram ARMA
Bleach fag Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
True 86.66 0.026 95.41 0.036 88.33 0.030
False 86.25 0.024 95.83 0.010 96.66 0.020

14 Journal of Engineering



capacity and computational efciency. Tables 17–19 furnish
valuable insights into how diverse tic numbers impact the
WiSARD classifer’s performance, providing informed
guidance for varied application scenarios.

4.7. Optimal Hyperparameter Selection. Table 20 provides
a visual representation of experiment outcomes, showcasing
the selection of optimal hyperparameters as discussed in
previous sections. Te data presented in Table 20 emphasize

Table 11: Training set accuracy for varying bleach step.

Hyperparameter Statistical Histogram ARMA
Bleach step Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
1 98.83 0.124 93.83 0.086 98.54 0.086
2 98.22 0.136 93.14 0.060 98.86 0.074
5 98.86 0.120 94.06 0.052 98.85 0.070
10 97.82 0.106 94.18 0.038 98.86 0.076

Table 12: Cross validation accuracy for varying bleach step.

Hyperparameter Statistical Histogram ARMA
Bleach step Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
1 51.25 0.020 88.32 0.016 92.39 0.020
2 49.37 0.136 88.44 0.018 92.39 0.020
5 46.66 0.020 88.43 0.012 92.83 0.020
10 51.97 0.016 88.02 0.016 92.70 0.018

Table 13: Supplied test set accuracy for varying bleach step.

Hyperparameter Statistical Histogram ARMA
Bleach step Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
1 87.50 0.020 94.16 0.012 95.00 0.020
2 86.25 0.046 96.66 0.014 97.08 0.020
5 87.08 0.024 94.16 0.020 97.08 0.020
10 87.08 0.032 95.83 0.014 98.33 0.020

Table 14: Training set accuracy for varying map type.

Hyperparameter Statistical Histogram ARMA
Map type Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
Random 99.07 0.150 93.55 0.072 98.85 0.074
Linear 99.47 0.082 98.43 0.040 99.47 0.056

Table 15: Cross validation accuracy for varying map type.

Hyperparameter Statistical Histogram ARMA
Map type Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
Random 49.58 0.180 88.43 0.022 92.70 0.020
Linear 31.77 0.140 88.02 0.020 87.50 0.010

Table 16: Test set accuracy for varying map type.

Hyperparameter Statistical Histogram ARMA
Map type Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
Random 85.41 0.028 94.58 0.120 97.08 0.020
Linear 81.25 0.018 89.58 0.014 91.66 0.016
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that, by utilizing histogram features, we achieved an im-
pressive 97.92% classifcation accuracy. To evaluate the
model’s performance under these optimal hyperparameter
settings, we employed a confusion matrix, as illustrated in
Figure 11. A confusion matrix, an essential tool for assessing
classifcation algorithms, provides a comprehensive over-
view of the algorithm’s predictions on a test dataset, allowing
for a detailed comparison between predicted and true labels.
In this specifc multiclass classifcation scenario, where
distinguishing between faulty and nonfaulty tires is of ut-
most importance, the matrix exhibited a remarkable level of
precision, with minimal misclassifcations. It is worth
underscoring that the model’s testing time was exceptionally
brief, measuring just 0.008 seconds, which implies its po-
tential applicability in real-time fault diagnosis systems. Te
WiSARD classifer obtained accurate classifcation results

with a bit number of 4 and tic number of 50 for the his-
togram features. Furthermore, the research efectively
demonstrates the profciency of the proposed fault diagnosis
approach employing the WiSARD classifer.

4.8. Performance Comparison with State-of-the-Art
Techniques. Te present section displays the superior per-
formance of the proposed technique over various meth-
odologies portrayed in a lot of literature. Te classifcation
accuracy obtained using the proposed methodology is
compared with various works of literature carried out over
the years as presented in Table 21. Te presented table
underscores the noteworthy success of the proposed ap-
proach, surpassing all preceding endeavors with a remark-
able classifcation accuracy of 97.92% and a minimal

Table 17: Training set accuracy for varying tic number.

Hyperparameter Statistical Histogram ARMA
Tic no Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
1 26.56 0.001 43.75 0.001 26.56 0.001
10 61.14 0.006 81.87 0.002 83.02 0.002
20 81.56 0.0100 84.27 0.018 89.89 0.010
50 90.52 0.018 90.83 0.010 95.10 0.016
100 94.88 0.034 90.05 0.022 95.20 0.030
256 99.37 0.114 93.14 0.072 98.95 0.078

Table 18: Cross-validation accuracy for varying tic number.

Hyperparameter Statistical Histogram ARMA
Tic no Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
1 23.66 0.001 43.02 0.001 25.52 0.001
10 47.70 0.002 79.58 0.010 78.43 0.002
20 53.95 0.001 82.60 0.001 85.72 0.020
50 54.37 0.002 87.40 0.002 90.62 0.100
100 51.14 0.010 88.33 0.010 92.60 0.008
256 49.78 0.018 88.43 0.014 93.12 0.02

Table 19: Test set accuracy for varying tic number.

Hyperparameter Statistical Histogram ARMA
Tic no Accuracy (%) Times Accuracy (%) Times Accuracy (%) Times
1 27.08 0.001 33.33 0.022 22.91 0.010
10 56.66 0.020 95.83 0.001 82.49 0.001
20 74.99 0.003 95.41 0.003 82.50 0.002
50 78.75 0.006 97.92 0.008 90.83 0.004
100 81.66 0.010 97.08 0.010 93.75 0.010
256 85.83 0.020 96.24 0.016 96.66 0.020

Table 20: Optimal hyper parameters of WiSARD classifer.

Features Bit
number

Bleach
confdence

Bleach
fag

Bleach
step Map type Tic

number
Accuracy

(%) Time

Statistical 4 0.7 True 1.0 RANDOM 256 85.83 0.020
Histogram 4 0.9 False 10.0 RANDOM 50 97.92 0.008
ARMA 4 0.7 False 10.0 RANDOM 256 96.66 0.020
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computational time of 0.008 s. From the observations listed
in Table 21, one can infer that various machine learning
algorithms like k star, random forest, J48, and random
committee displayed good classifcation accuracies with
values of 89.16%, 90.54%, 94.58%, and 90.41%, respectively.
It can be observed that the J48 algorithm achieved the
highest classifcation accuracy among the machine learning
algorithms. On the other hand, deep learning algorithms
displayed even an enhanced classifcation with CNN
(90.00%), LSTM (94.00%), ResNet (90.00%), and ResNet 50
(93.80%) models. However, the computational time of
machine learning algorithms was found to be low in
comparison to deep learning models from the literature
observations made.

5. Conclusion

In this investigation, a weightless neural network (WNN) is
applied to monitor the condition of vehicle tires. Te study
specifcally employs the WiSARD classifer, a variant of
WNN, to assess the efcacy of this classifcation method-
ology. Te research methodology encompasses the

extraction of statistical, histogram, and ARMA features from
the dataset, followed by the selection of pertinent features
using a J48 decision tree. Subsequently, the WiSARD clas-
sifer is used to classify these chosen features into one of the
four tire conditions under examination. Furthermore, an
exhaustive exploration of various hyperparameters is con-
ducted to identify the optimal confguration for the
WiSARD classifer, with the aim of achieving the highest
possible level of accuracy. Te outcomes derived from these
experiments reveal that the combination of the WiSARD
classifer with histogram features delivers an exceptional
accuracy rate of 97.92% when operating with the optimal
hyperparameter settings, as outlined in Table 20. Of par-
ticular note, these testing results are obtained within an
incredibly brief computational time of just 0.008 seconds,
underscoring the feasibility of implementing this method in
real-time scenarios. Tis proposed approach has the po-
tential to substantially enhance the precision and immediacy
of tire condition detection and diagnosis, thereby fortifying
the efectiveness and reliability of tire condition monitoring
systems. Furthermore, this approach can be seamlessly in-
tegrated into real-time monitoring systems, ensuring the

Table 21: Performance comparison with diferent approaches.

Ref no Technique Accuracy (%) Computational time
[28] K-star algorithm 89.16 0.01 s
[29] CNN 90.00 —
[30] Random forest 90.54 —
[31] Long short-term memory network (LSTM) 94.00 —
[29] ResNet 90.00 —
[21] Statistical analysis and regression algorithm 91.25 —
[32] ResNet 50 93.80 90 s
[20] J48 decision tree 94.58 —
[24] Random committee classifer 90.41 —
Proposed WiSARD 97.92 0.008 s
“—” indicates that the computational time data were not available.
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Figure 11: Confusion matrix of the WiSARD classifer for histogram features.
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provision of instantaneous results. Looking forward, there is
an opportunity to focus on the development of on-board
solutions that ofer cost-efective benefts to end-users.
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