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Artifcial neural networks (ANNs) have gained prominence among contemporary computing techniques due to their capacity to
handle complicated stochastic datasets and nonlinear modelling in combined gas and combined cycle power (COGAS) plants.
Researchers, academicians, and stakeholders have been unable to predict, ensure efective operation, and prevent power outages in
COGAS due to the nonlinearity. Te frst implementation of the simultaneous adoption of three types of ANNs using Lev-
enberg–Marquardt (LM), Bayesian regularisation (BR), and scaled conjugate gradient (SCG) confgurations for training and
assessing a combined cycle power plant output is presented. Te dataset used in this research is a 9568-unit full combined cycle
power plant basis load dataset, accessible through the public UCI Machine Learning Repository. It incorporates ambient
temperature, exhaust vacuum, ambient pressure, and relative humidity as input parameters to predict the electric output power.
Te most accurate and dependable electric power predictions could be identifed for 70% of the total data, of which 6698 were
trained, 15% were tested, and 15% were validated (2870). By using the three training techniques, namely, LM, BR, and SCG, the
parameterized networks are studied, increasing the number of hidden layers from 20 to 500. Te lowest root-mean-square error
value for a multilayer perceptron (MLP) architecture is 3.631%, which is lower than the values of 4.17%, 4.35%, and 4.63% for
comparable MLP structures (20 to 500), documented in the literature.Te LM and BR algorithms outperform SCG.Tese adopted
algorithms could be a cutting-edge application in the power plant industry and other real-world applications for reliable solutions,
to satisfy emerging societal needs with environmental benefts.

1. Introduction

Te production and consumption of many energy types,
especially electricity, heat, and chemicals, are very necessary
for each nation’s economic development. Te primary
source type of the area of concern in this regard is electricity.
Traditional and hybrid power plants implement an assort-
ment of fossil fuels and energy sources to produce electricity.
To generate electricity, power plants employ a variety of
renewable energy sources, including hydroelectric, solar,
and wind. Te variety of thermal power plant stations has

recently declined for several reasons, including increasing
capital prices, installation challenges, and resource avail-
ability. Consequently, active plants currently produce 65% of
the world’s energy despite having a negative infuence on the
environment [1].

Te forecasting of thermal power plant parameters using
artifcial intelligence (AI) has captured the attention of re-
searchers across the globe. Because of their similarity and
ease of use, ANNs have been the pioneers among artifcial
intelligence systems [2]. Modelling has been a reliable
correlation due to the varied design conditions of the
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thermodynamic input factors vs. response, specifcally in
power estimation [3]. Owing to their limited processing
capacity and ability to represent human-brain interactions,
McCullogh and Pitts [4] were the frst to introduce neural
networks.

Cutting-edge technology with exceptional capabilities
and extensive energy feld implementations is used in
modern, upgraded approaches for energy production. Aside
from the thermodynamic analysis, these approaches entail
the adaptation of fuzzy logic and neural networks, and they
provide engaging responses.

Numerous studies have emphasized the use of con-
ventional thermodynamic analysis to evaluate the power and
energy efciency of various kinds of power plants.

Mohammed [5] gave an overview of optimisation
techniques for enhancing the efciency of a combined cycle
power plant. According to Samani [6], the ANN model is
efective at accurately predicting a plant’s power production.
Yoru et al. [7] employed ANN to simulate an exergetic-based
cogeneration system and reported that it can determine the
system’s exergetic indices.

However, due to their exceptional features such as im-
proved fuel conversion performance for identical energy
produced and less fuel consumption with a positive impact
on the environment for the beneft of society, alternative
combined types of plants (CCPP and COGAS) have rapidly
expanded in recent years to replace conventional power
plants for power generation. Nevertheless, they present the
shortcoming of not improving their expensive energy prices,
which is more applicable. COGAS plants are applied to ship
propulsion extensively with optimum efciency and the
ability to handle troubleshooting issues, as well as mainte-
nance patterns [8].

Adaptation of novel machine learning methodology
towards the output power prediction in combined types of
power plants is very popular. An interesting comparison of
the logistic regression (LR), and the traditional MLP ar-
chitectures, indicates the advocacy of random forest net-
works using optimum regression values [9]. A continuous
conditional random feld model contributes to this direction
by improving the power plant’s performance based on mean
squared error (MSE) signifcantly, compared with regression
trees and neural network techniques [10]. Implementation of
a genetic multilayer perceptron algorithm forecasts higher
accurate power outcomes, compared with linear regression
and pace regression methodologies [11].

A new methodology of a grid search optimised stacked
ensemble machine learning algorithm with optimum per-
formance compared with the random forest and the vote
ensemble is identifed [12]. A gradient-based generalized
additive model provides optimum performance measures
that beneft the plant’s consistency and its fnancial per-
formance [13]. Te incorporation of simpler learning al-
gorithms instead of the combined deep machine learning
algorithms and neural networks with optimum outcomes at
the lowest computational cost is proposed [14, 15].Temain
confguration and the operational attributes of a combined
cycle power plant will be explained briefy in the method-
ology section.

Tere is an underlisted literature evaluation of the ar-
tifcial intelligence methodology with interesting results in
the power plant sector and additional positive qualities.

2. Literature Review

ANNs are assumed to be an efcient approach to handle
complex and ill-defned problems; therefore, they are
adopted by many researchers for diferent real-world en-
gineering applications, such as in the solar sector [16] and
solar power impact on islands [17]. Energy prediction in
solar power plants has been investigated as well [18]. In the
power plant sector, various models for many input and
output datasets have been proposed over the last few years
with reliable results. A CCPP’s power output has been
modelled and its fdelity outcomes have been approximated,
based on diferent thermodynamic input parameters [19].

A comparison between various machine learning
methods to predict the output energy of a basic load op-
eration has been proposed by Tufekci [20]. Te validity and
reliability of neural networks in a traditional gas turbine
power plant, in terms of ambient temperature impact on
power generation and fuel consumption, are highlighted
[21]. A modelling analysis in a single-shaft gas turbine
resulted in encouraging outcomes [22]. Te control and
performance analysis of a combined heat and power plant
has been studied by Kaiadi [23]. An interesting application
of neural networks via the CHP plant to microgas turbines
with encouraging outcomes was proposed [24]. A combined
cycle plant control technique using a linearisation model
technique was highlighted [25].

A novel methodology for the prediction of the electric
power output, with an optimised matching algorithm and
encouraging times, was investigated [26]. Te monitoring of
the drum level of a thermal power plant, adopting a back-
propagation neural network method was achieved [27].
Another application of artifcial intelligence (AI) is found in
a combined cooling, heating, and power plant, using various
input parameters without including the fuel gas character-
istics, to predict its performance [28].

An efciency of more than 60% was achieved by
modelling a COGAS power plant using the multilayer
perceptron network design [29]. In the construction sector,
distributed energy resources have been studied through
various neural network topologies for the evaluation of
a classifed pattern of a combined heat and power plant [30].
Te heat rate is incorporated as an output parameter using
three input parameters, including the fuel gas heat rate (P1),
the CO2 percentage (P2), and the power output (P3), for the
training/evaluation processes. Tis combination and the
absence of the input parameters (P1, P2, and P3) achieved an
improved heat rate with an assigned regression value of
0.995 [31].

A simulation of the transient performance with en-
couraging results was found [32]. Te monitoring and di-
agnosis of a combined heat and power plant have been
researched on with the aid of a neural network [33]. Te
efciency of an industrial gas turbine plant through neural
networks considering four input thermodynamic
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parameters is forecasted after 10,000 epochs [34]. Te
modelling of the hourly electrical output power of a COGAS
plant via neural networks involving various input param-
eters by improving the twofold approach and the mean
squared error by 3.176 and 0.99675 was performed [35]. Te
failure rate in the power equipment prediction for a number
of input variables afects its performance [36]. Another
application of the ANNs is found in the modelling of an
industrial oil-fred boiler plant with reliable results [37].

In the gas turbine feld, the performance map of
a compressor has been predicted and the noise reduction in
the measured data has been achieved via neural networks,
thus improving their operational quality [38]. In a steel
thermal plant with implicated input variables, ANN ef-
ciency is superior to the autoregressive moving average
exogenous time-series model [39]. In a CCHP, the exergy
efciency, the overall exergy destruction rate, and the per-
formance prognosis are predicted with accurate results. Te
fnancial development and the planning of a coupled power
network are optimised with the assistance of neural net-
works. Te short-term load prediction in power plants is
highlighted. A hybrid model consisting of a fuzzy logic
exergy model and a neural network of a CHP system pro-
vides a reliable performance [40].

Te overall performance prediction in a western Balkan
power plant with controlled modifcations was proposed
[41]. A comparison between the multilayer perceptron
(MLP) and the radial basis function (RBF) networks has
been explored for indicating the fault analysis of gas tur-
bines, indicating their outperformance [42]. Additionally,
the application of neural networks to reduce unusual (in-
direct) losses in a thermal power plant is proposed [43].
Another approach forecasts the performance of a traditional
thermal power plant and certifes reliable experiments by
considering minimal error and robust outcomes. An al-
ternative method for simulating thermodynamic systems,
applied to power plants, using machine learning and soft
computing approaches led to precise output power out-
comes [44]. A hybrid model consisting of an ANN and
a generic algorithm that selects the optimum architecture via
the trial-and-error process, improving the computational
cost, is presented [45].

Adaptation of various deep learning methods, such as
single and fast neural networks, has been implemented for
the electric power estimation of a combined cycle power
plant with the highest accuracy, at a minimum computa-
tional cost [46].

A statistical inference predictive performance model
with outstanding outcomes and cost benefts in the entire
process has been identifed by Dutta and Ghosh [47]. A
study by Kaewprapha et al. [48] reported the monitoring
process of a combined power plant optimised via the in-
corporation of machine learning estimators. A multilinear
regression machine learning methodology for optimum
predictive load estimator is acknowledged [49]. A fore-
casting model and a decision-making tool of coherent
complex data optimum environmental control via artifcial
intelligence have been validated successfully [50].

Wang et al. [51] have developed a hybrid optimisation
method between the butterfy optimisation algorithm and
the support vector regression model. Tis was used to es-
timate the electric power accurately, thereby avoiding local
optimisation outcomes. A sensitivity analysis of the inter-
preted neural network tool, including various agnostic
models, provides infuential and efcient results for full
operating conditions [52]. In the CCGT, an interesting
investigation of control optimisation of its auxiliary com-
ponents was carried out, through deep learning method-
ologies [53]. A metaheuristic optimisation algorithm,
coupling a novel neural network with an electrostatic dis-
charge optimiser, enhances robust solutions [54]. A brief
introduction on the closure of the gaps leading to contri-
bution to knowledge as well as the aims of the present study
is depicted therein.

3. Motivation, Gaps in Knowledge, and
Aim of Study

In this study, the main interest is devoted to COGAS and the
CCPPs with the main aim being to model and predict the
performance of this type of plant using a neural technique
for multidimensional data (9568) of a full CCPP basis load in
Turkey [55]. Terefore, four input parameters such as
ambient temperature, exhaust vacuum (V), ambient pres-
sure, and relative humidity are used to forecast the electric
output power (EP).

Table 1 highlights the application of AI tools in diferent
types of combined power plants. As observed, many tools
have been used to predict and model the CCPP and COGAS
plant, and the choice and suitable solicitation of leading-
edge tools, precisely AI-based extrapolative models, capable
of simulating nonlinear trends in the combined plant, have
not yet been copiously reconnoitred. It is based on this
premise that this study implemented an MLP network
structure of artifcial neural network (ANN), which is more
robust and reliable on the massive dataset (9568) using the
key fndings to make a comparison with the previous studies
[3, 5, 20]. To the best of the author’s knowledge, power plant
modelling and analysis have not fully and appropriately used
the MLP network. Te new approach is used to address the
problem of multidimensional handling of the full dataset to
close the knowledge gap efectively, prevent power outage,
and stabilize its operation. Te methodology, including the
operational characteristics of the COGAS plant and themain
aspects of the MLP architectural model of the current in-
vestigation, is described in the following section.

 . Methodology

In the current study, the proposed COGAS operational
diagram with its functional competencies will be used for the
novel estimation of the electric output power and the overall
performance. Terefore, as shown in Figure 1 and thor-
oughly explained elsewhere [20], it is made up of a gas
turbine, a steam turbine, and a heat recovery steam gen-
erator (HRSG).
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4.1. Operation of COGAS. Te following steps are involved
in the operation of the COGAS power plant:

(i) Te fuel burns on the gas turbine so that the turbine
blades spin and drive the electricity generators

(ii) Te HRSG captures the exhaust heat from the gas
turbine, creating a stream from the gas turbine
exhaust and delivering it to the steam turbine

(iii) Te steam turbine uses the steam delivered by the
HRSG to generate additional electricity driving an
electricity generator

Te collected data (9568) are obtained from actual and
reliable full basis measurements from a 210MW power
capacity in Turkey for the period from 2006 to 2011. Te
preprocessing phase of modelling the numerical data is
presented in Table 2. Te data information for the inlet and
outlet phases of a sample population of 9568 actual data
includes the ambient temperature, the exhaust vacuum (V,
cmHg), the ambient pressure, and the relative humidity
(RH), while the output parameter is the electric power (EP)
in MW.Tis population set will be split into the training and
testing portions, via the Neural Network Toolbox in the
MATLAB environment.

4.2. Development of the Multilayer Perceptron (MLP) for the
Plant. Using the Neural Network Toolbox in the MATLAB
environment, this population set will be split into training
and testing parts. As shown in Figure 2, an artifcial neural
network (ANN) is made up of several parallel processing,
networked adaptable units, or neurons. Te multilayer
perceptron (MLP) architecture at the hidden layer is visible
when there is more than one neuron. Using an applied
transfer function (activation function) to collect input values
from the input layer, the MLP learns to predict the fnal
output information (electric power (EP)) by sending its
outputs to the neurons in the output layer.

Tere are diferent activation function types such as the
logsigmoid (logsig) and the tansig with diferent attributes.
Both activation functions portray the input values within
a range from 0 to 1. Te logsig generates output as the
neuron’s net input goes from negative infnity to positive

infnity, and its expression and its characteristic response are
illustrated in the following equation and Figure 3,
respectively:

f(x) �
1

1 + e
−x. (1)

Identically, the tansig’s hyperbolic tangent is a training
function that calculates a layer’s output from its net input. Its
expression and its characteristic response are provided in (2)
and Figure 4. Tansig is adopted in this study to get more
accurate results.

f(x) �
2

1 + e
−2x

− 1. (2)

4.3. Methods for the MLP of the ANNs. Electric power is the
output variable, and the four input factors (features) that are
taken into account by ANNs as the primary modeller are (i)
ambient temperature, (ii) exhaust vacuum, (iii) ambient
pressure, and (iv) relative humidity.Te entire set of samples
(9568) was divided into training, testing, and validation sets
over a six-year period (2006–2011). As a result, given limited
CPU requirements, 70% are trained, 15% are tested, and 15%
are validated for the network’s performance in terms of the
lowest RMSE value.

4.3.1. Architectural Model. Figure 5 depicts the proposed
testing, training, and validation procedure for the 1000
validation steps and the three diferent training algorithms
(LM, BR, and SCG) employed in the current test scenario
with 10,000 epochs.

Te architecture of the ANN, which comprises the
number of neurons, layers, training functions, and learning
algorithms, is used to construct the network. Te study
comprises the automatic adoption of the neural network
architecture created using the graphical user interface (GUI)
features of MATLAB software. Additional investigation was
made to amend the dataset percentage in terms of training/
testing/validation without achieving more accurate out-
comes. Te input and target data are provided, and the
weight biases are adjusted to align the targets with the actual

Condensor

Pump

Steam turbine

Electric
generators Gas turbine

COMBINED CYLE GAS POWER PLANT

Boiler/
heat

exchanger

Figure 1: COGAS power plant diagram [20].

6 Journal of Engineering



Table 2: Sample real data of the combined cycle power plant [55].

Sample AT (input)
(°C)

V (input)
(cmHg)

AP (input)
(mbar) RH (input) EP (output)

(MW)
1 9.34 40.77 1010.94 90.01 490.48
2 23.64 59.49 1011.42 74.23 445.75
3 29.74 56.91 1007.15 41.91 439.76
4 19.07 49.69 1007.22 76.79 452.09
5 11.84 40.66 1017.12 97.23 464.43
. . . . . .. . . . . .. . . . . .. . . . . .. . .

9565 16.65 49.69 1014.01 91.04 460.03
9566 13.19 39.18 1023.67 66.78 469.62
9567 31.32 74.33 1012.92 36.48 429.57
9568 24.48 69.45 1013.86 62.39 435.74

Xm

Input
layer

Hidden
layers

Output
layer

Ур

Figure 2: ANN confguration with input, hidden (MLP), and output layers [20].
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0
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Figure 3: Characteristic response of the logsig activation function [60].
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Figure 4: Characteristic response of the tansig activation function [60].
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data. In addition, three training methods are chosen based
on theMATLABNeural Network Toolbox’s capabilities.Te
network’s database’s testing process and performance are
investigated via the mean squared error, according to the
long-term multidimensional forecasted data. Te imple-
mentation of the mean bias error (MBE) simultaneously
shows the deviation between the predicted data and the
actual data but is not considered. Terefore, the reliability of
the network’s performance only depends on the MSE. Te
structure of the network, designating the four input pa-
rameters with the hidden layers (1) and the output layer, is
presented in Figure 6, while the reliable and interesting
outcomes with their physical interpretation are discussed in
the following section.

5. Results and Discussion

Tis section highlights the fndings and their analysis as well
as some conclusions regarding their relevance. Due to the
network’s bias and random beginning weights, the training
process using the settings for the full dataset produces
diferent results for each simulation. Te real data are split
into three categories: training (70%), validation (15%), and
testing (15%). Table 3 illustrates these settings for the re-
spective number of runs.

Te subsequent subsections address the use and ex-
amination of the Neural Network Toolbox through the GUI
features of the Input/Output ftting tool inMATLAB R2018b
[61]. Tis approach involves the comparison of three al-
ternative training methods, namely, scaled conjugate gra-
dient, Levenberg–Marquardt, and Bayesian regularisation.
Te theoretical study of these methods’ theoretical foun-
dation is excluded, and further details are available in the
literature.

5.1. Levenberg–Marquardt Training Algorithm. Figure 2,
which is depicted in the previously mentioned section,
shows the neural network architecture for the test scenario
in which 20 neurons are used as hidden layers for the four
input parameters (AT, V, AP, and RH) that correspond to
the output variable (EP).Te Levenberg–Marquardt training
algorithm involves fnding dependable answers for varying
numbers of hidden layers after the initial setup.

Figures 7–9 show the trained network models and their
performance plots. Te performance graph shows the per-
formance of the network, which is displayed when the
performance button is clicked in the training window. Tis
enables one to know the status of the training process. While
the x-axis indicates a number of iterations, the y-axis

Starting point

Training data (70%),
Validate data (15%),

Test data (15%)

Train the data

Evaluate of the
training data

Evaluate the
performance of the

neural network

End

Figure 5: Architecture of the fowchart process.
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Figure 6: Neural network structure with four input parameters and 20 hidden layers.

Table 3: Dataset setting.

Data size 9568
Applied variables AT, V, AP, and RH
Number of neurons (hidden layer) 20
Training set size (%) 70
Validation set (%) 15
Testing set (%) 15
Training functions LM, BR, and SCG
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Best Validation Performance is 16.9874 at epoch 38

Figure 7: Te LM network’s optimum validation performance for 20 neurons.

Best Training Performance is 16.3058 at epoch 306
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Figure 8: Optimum training performance of the BR network for 20 hidden layers.
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Best Validation Performance is 16.62 at epoch 133
104

103

102

101

100

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

m
se

)

0 20 40 60 80 100 120
139 Epochs

Test
Best

Train
Validation

Figure 9: SCG network performance for 20 neurons at its best validation.
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Figure 11: Regression analysis for the sample LM network.

Table 4: Hidden layers’ size impact of the LM training algorithm.

Hidden
layers

Training
performance

Validation
performance

Training
regression

Validation
regression

Test
regression

Stopping
criterion Iteration Best

epoch

10 15.785 16.917 0.972 0.970 0.971 Validation
stops 38 34

20 15.695 16.922 0.973 0.969 0.973 Validation
stops 44 38

50 14.122 14.615 0.975 0.974 0.972 Validation
stops 108 102

100 13.162 16.362 0.977 0.972 0.970 Validation
stops 34 28

200 11.773 16.958 0.972 0.969 0.974 Validation
stops 27 21

500 10.286 13.226 0.966 0.964 0.964 Validation
stops 227 221
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represents the MSE that occurred for each iteration. From
the plotted line graph, the blue colour represents the training
results, the green colour represents the validation results,
and the red colour represents the test results. At the point
when testing, training, and validation coincide, the best
performance is considered to have been reached. At this
point, no further training is required, and training should be
stopped.

Figure 7 shows that, after 44 iterations (epochs), the 38th
iteration verifed the best (lowest) performance, with a mean
squared error value of 16.9%.

After training, the quality of the network illustrated
through the error histogram and the regression analysis is
depicted in Figures 10 and 11.Te discrepancies between the
target and the output separated by the zero-line data are
shown, presenting a small to larger divergence within the
range of −11.52 to 14.96; thus, the lowest the peak, the more
improved the network’s performance.

Te regression coefcient (correlation) for the training,
validating, and testing of the entire number of data presents
a very strong attitude and a high-quality network, reaching
the mean value of R � 0.972, an almost excellent ftting
(R� 1) between the target and the actual dataset, thus se-
curing reliability, robustness, and good network quality.

Table 4 displays the interesting results of examining the
efect on the network’s quality and performance for varying
numbers of neurons (hidden layers). For the lowest training

and validation values, 500 neurons exhibit the best quality
and network performance, while 10 neurons exhibit the
worst performance.

5.2. Bayesian Regularisation Training Algorithm. Te out-
comes of the modifcation of the Bayesian regularisation
(BR) training algorithm are shown in this section. Imple-
mentation of the Bayesian regularisation training algorithm
involves the design of a network using 20 neurons (hidden
layers), whereas the maximum value of the μ parameter is
reached, without considering the validated data. Figure 8
shows the network’s performance, with an MSE score of
16.3% at the 307th iteration, indicating excellent agreement
between the training and testing data. Figure 12 depicts the
error histogram and the error deviations, between −14.92
and 13.18%, ensuring improved network performance.

Figure 13 illustrates a precise ft between the target data
and the output for very strong regression values (R� 0.9716),
approaching 1. As a result, both the training samples and the
tested samples show that this network quality is very good,
although the validated data are not considered. Te efect of
the increasing number of hidden layers (neurons) on the
quality is illustrated in Table 5. Te performance parameter
for 500 neurons provides improved outcomes, producing
the poorest results for 10 neurons, with an assigned value of
13.185% for the error (MSE).
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Figure 13: Regression analysis for the sample BR network.

Table 5: Hidden layers’ size impact of the BR training algorithm.

Hidden
layers

Training
performance

Validation
performance

Training
regression

Validation
regression

Test
regression

Stopping
criterion Iteration Best

epoch
10 15.787 16.984 0.973 0.970 0.971 Maximum 307 306
20 15.294 16.852 0.974 0.000 0.973 Maximum 866 865

50 13.921 13.631 0.975 0.000 0.976 Maximum
epochs 1000 1000

100 14.993 0.000 0.973 0.000 0.976 Maximum
epochs 1000 1000

200 14.866 0.000 0.974 0.000 0.970 Validation
stops 377 376

500 13.185 0.000 0.975 0.000 0.975 Maximum
epochs 1000 1000
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5.3. Scaled Conjugate Gradient Training Algorithm. Te re-
sults of adapting the scaled conjugate gradient training al-
gorithm at the appropriate process are covered in this
section. Te design process uses a sample of 20 neurons, and
the best validation of the network’s performance was verifed
after 133 iterations through 139 epochs. Figure 9 shows the
assigned value of the MSE for the identical network as in the
preceding two cases, which was 17.62%.

Figure 14 shows the error histogram, illustrating the
error (error� target – output) via the divergent peaks’ oc-
currence. A poor network is illustrated by the targets,
showing low to high divergence for the outputs relative to
the targets, compared with the other two networks, de-
scribed previously.

Figure 15 illustrates a good agreement between the
output and the target data for regression values (R) from
0.968 to 0.972, for the training, validating, and testing data,
showing a good and acceptable performance, although the
regression values are slightly less compared with the LM and
BR structures. Te main key parameter that highlights the
performance of these networks is the mean squared error,
and the robustness of the target versus the experimental data
is expressed in terms of the regression coefcient R. Te
efect of the increasing number of neurons on the network’s
quality is depicted in Table 6, and outstanding solutions take
place for 10 hidden layers. However, the worst solutions take
place for 500 neurons and the opposite outcome occurs,
compared with Tables 4 and 5.

5.4. Comparison of the Tree Training Algorithms. Te su-
periority of the Bayesian regularisation (BR) algorithm in
terms of performance and accuracy is acknowledged
reaching an improved minimum mean square value of
16.31% and an enhanced more robust regression coefcient
value (R) of 0.972, higher than the regression values of 0.966,
0.962, and 0.959, obtained from other studies. In terms of the
computational cost, the dominance of the LM algorithm
after 44 simulations is identifed, whilst the error histogram
depicts the dominance of the Bayesian regularisation net-
works, due to the lowest error peak’s deviation values. A
considerable agreement between the BR network’s advocacy,
the poorness of the SCG networks, and the faster speed of
LM networks is achieved with other potential investigators’
performance values (MSE) of 16.75%, 16.82%, and 16.93%
[3, 5, 20]. Table 7 summarises the outcomes of the three
training techniques in numerical comparison used in the
current study, and the physical interpretation of these results
is pointed out in the succeeding section.

5.5. Physical Interpretation of the Results. In the present
study, the pioneered approach of selecting the entire mul-
tidimensional dataset of 9568 for 70% training, 15% testing,
and 15% validating provides robust and reliable outcomes,
due to the initial weight’s values and bias division by default
randomly. Tis means that the training data are divided
automatically (dividerand) and the validation error in terms
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Figure 15: Regression analysis for the sample SCG network.

Table 6: Hidden layers’ size impact of the SCG training algorithm.

Hidden
layers

Training
performance

Validation
performance

Training
regression

Validation
regression

Test
regression

Stopping
criterion Iteration Best

epoch

10 18.106 16.620 0.968 0.971 0.972 Validation
stops 139 133

20 18.172 18.326 0.968 0.965 0.970 Validation
stops 127 121

50 18.839 18.132 0.967 0.967 0.967 Validation
stops 111 105

100 16.330 19.446 0.971 0.966 0.969 Validation
stops 230 224

200 19.328 19.799 0.966 0.964 0.964 Validation
stops 227 221

500 25.786 33.113 0.956 0.943 0.947 Validation
stops 307 301
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of MSE and/or RMSE (3.631) is reduced and kept at
a minimum value for the increased number of hidden layers.
Te quality of the training process is dependent on the
normalisation method, and mapping within the range from
0.01 to 0.99 is considered. Te adaptation of the tan-sigmoid
(tansig) transfer function secures robustness in the present
study.Te superiority of the Bayesian regularisation training
algorithm compared with the Levenberg–Marquardt and the
scaled conjugate gradient validates an upgraded perfor-
mance for the network with the highest number of hidden
layers (500) of MSE� 13.185%, and an alternative ftting
(correlation) of the input and output datasets occurs at
R� 0.972.

6. Conclusions

Te electric power output of a 210MW combined cycle
power plant in Turkey is modelled using the regression
analysis of a neural network, based on four design variables
with long-term datasets over a period of six years without the
use of intricate mathematical calculations and modelling.
Te MATLAB Neural Network Toolbox is the study’s pri-
mary implementation tool with reliable settings and with
very good impact on the neural network’s performance.
Various researchers produced interesting and reliable results
for diferent sizes of datasets, and the novelty of this study is
that it adapts the entire dataset with robust solutions with
the incorporation and comparison of the three training
algorithms. Terefore, for the increased size of the hidden
layers, a root mean square error of 3.631% is lower than the
related values of 4.17%, 4.35%, and 4.63%, as well as an
improved correlation value of 0.972 compared with 0.966,
0.962, and 0.959 values obtained from other published works
[3, 5, 20]. Terefore, the Levenberg–Marquardt training
algorithm and the Bayesian regularisation algorithm per-
form better than the SCG when compared to the error rates
(MSE) for the diferent regression coefcients (R), and BR’s
supremacy is attained. Te improved computational cost of
the simulations depicts the superiority of the LM networks.

Te randomness of the ANN’s model performance for
each training iteration is highlighted, due to the initial
weight and bias values. Te increasing and diferent number
of hidden layers does not contribute signifcantly to the
network’s quality, although the supreme-performed net-
works with the three diferent training algorithms (LM, BR,
and SCG) are found for the maximum number of neurons in
the present study (500), considering the superiority of the BR
training algorithm of 16.31%, compared with theMSE values
of 16.75%, 16.82%, and 16.93% from the literature. Te
importance of robust outcomes in the engineering industry
is proved, by the almost excellent regression coefcients for
the training, validation, and testing data (R� 1), in terms of
a very good matching between the actual data and the target
data. Te “limited” capabilities of the toolbox did not
provide further error analysis, and overftting issues are not
considered. Lastly, the key fndings of the proposed meth-
odology are successfully validated, showing reliable out-
comes for the output electric power estimation, advocating
ANN for handling massive amounts of quality datasets with

faster iterations. Tis will contribute further to the power
plant industry and other real-world applications for reliable
solutions, to satisfy emerging societal needs with environ-
mental benefts. A future study should deal with the in-
troduction of an original error analysis methodology
towards optimum performance and the coupling of sto-
chastic techniques such as genetic algorithms for locally
optimised solutions.

Nomenclature

AI: Artifcial intelligence
ANN: Artifcial neural network
AP: Ambient pressure (mbar)
AT: Ambient temperature (K)
BR: Bayesian regularisation
CCHP: Combined cycle heat plant
CCGT: Combined cycle gas turbine
CCPP: Combined cycle power plant
CHP: Combined heat and power
COGAS: Combined gas air plant
HRSG: Heat recovery system generator
LM: Levenberg–Marquardt
MBE: Mean bias error (%)
MLP: Multilayer perceptron
RMSE: Root mean square error (%)
SCG: Scaled conjugate gradient.
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