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Brain cancer deaths are signifcantly increased in all categories of aged persons due to the abnormal growth of brain tumor tissues
in the brain. Te death rate can be controlled by accurate early stage brain tumor diagnosis. Te detection and classifcation of
brain tumors play a crucial role in early diagnosis and treatment planning. Brain tumor detection and classifcation have become
challenging and time-consuming for domain-specifc radiologists and pathologists in medical image analysis. So, automatic
detection and classifcation are essential to reduce the time of diagnosis. In recent years, machine learning classifers have played
an essential role in automatically classifying brain tumors. In this research, an approach based on an improved fuzzy factor fuzzy
local information C means (IFF-FLICM) segmentation and hybrid modifed harmony search and sine cosine algorithm (MHS-
SCA) optimized extreme learning machine (ELM) is proposed for brain tumor detection and classifcation. Te IFF-FLICM
algorithm is utilized to accurately segment the brain’s magnetic resonance (MR) images to identify the tumor regions. Te
Mexican hat wavelet transform is employed for feature extraction from the segmented images. Te extracted features from the
segmented regions are fed into theMHS-SCA-ELM classifer for classifcation.TeMHS-SCA is proposed to optimize the weights
of the ELM model to improve the classifcation performance. Five distinct multimodal and unimodal benchmark functions are
considered for optimization to demonstrate the robustness of the proposed MHS-SCA optimization technique. Te image
Dataset-255 is considered for this study. Te quality measures such as SSIM and PSNR are considered for segmentation. Te
proposed IFF-FLICM segmentation achieved a peak signal-to-noise ratio (PSNR) of 37.24 dB and a structural similarity index
(SSIM) of 0.9823. Te proposed MHS-SCA-based ELM model achieved a sensitivity, specifcity, and accuracy of 98.78%, 99.23%,
and 99.12%. Te classifcation performance results of the proposed MHS-SCA-ELM model are compared with MHS-ELM, SCA-
ELM, and PSO-ELM models, and the comparison results are presented.

1. Introduction

Brain tumor detection and classifcation from MRI images
have become an essential part of the diagnostic systems in
the medical domain. Te mortality rate grows abnormally
due to brain tumors in the human brain. Te early detection
and diagnosis of brain tumors have become difcult due to
the ignorance of human physiology. Te brain tumor is
a chronic brain disease characterized by repeated edges.
Brain cancer is a complex and varied disease, and statistics

can vary widely depending on factors such as the type of
tumor, its location, and the patient’s age, race, and other
demographic characteristics. According to the American
Brain Tumor Association (ABTA) [1], 80000 cases were
reported where malignant brain tumors impact children and
young people. Additional molecular features and updated
pathologic diagnoses have even been added to the recently
released 5th edition of the “World Health Organization
Classifcation of Tumors of the Central Nervous System” in
May 2021. Clinical doctors face a difcult task because of the
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intricate nature of tumor diagnosis. Since manual detection
cannot transform the image to the required simplifed state,
we provide a platform for automatically diagnosing and
classifying brain tumors from magnetic resonance imaging.
Terefore, early tumor detection and identifcation are
crucial to reducing tumor-related fatalities.Te classifcation
of brain tumors is also crucial to understanding the diferent
forms of tumors that can exist in the brain. Doctors may
watch and forecast the uncontrollable expansion of cancer-
afected areas at diferent levels by using segmentation and
classifcation techniques, enabling appropriate early stage
diagnosis.

Image segmentation from magnetic resonance imaging
is a crucial and challenging undertaking to identify the
tissues of brain tumors. Due to the involute structure and
visual diferences, it becomes a complex process. For the
purpose of segmentation, FCM-based techniques were de-
veloped such as EnFCM [2], FCM_S1, FCM_S2 [2], and
FGFCM [3]. However, these techniques failed due to the low
noise reduction capabilities. An improved fuzzy factor-based
FLICM algorithm is proposed to improve noise reduction
capabilities and segmentation performance. Metaheuristic
algorithms play a vital role in feld optimization problems.
Te metaheuristic algorithm, the improvisational technique
musicians use, is imitated by harmony search (HS) [4],
which has received much attention. In order to achieve
a better harmonic state during the process of musical im-
provisation, musicians constantly modify the pitch of their
instruments. Tis is where the population-based meta-
heuristic technique HS is inspired [5]. Te diferent algo-
rithms based on harmony search, such as piecewise
opposition harmony search (POHS) [6], fuzzy adaptation of
parameters in harmony search (FHS) [7], improved har-
mony search algorithm [8], and “hybrid harmony search and
particle swarm optimization algorithm (HSPSO)” [9], were
developed to improve the optimization capability of the
harmony search algorithm. Te harmony search algorithm
has better optimization capability than the variants of the
algorithm. However, the HS algorithm needs support of
parameter variation, structural adjustment, and hybridiza-
tion with other algorithms to improve the performance. Te
researchers proposed diferent machine learning models but
failed to achieve good classifcation performance regarding
accuracy and computational time. Motivated by the ad-
vantages of machine learning and to improve the perfor-
mance of the machine learning classifers, a novel hybrid
modifed harmony search and sine cosine algorithm (MHS-
SCA) optimization-based extreme learning machine (ELM)
model is proposed for the automatic classifcation of brain
tumors. Considering the parameter adjustment, pitch ad-
justment, and structural adjustment, we are motivated to
propose a novel hybrid modifed harmony search-sine co-
sine algorithm for weight optimization of ELM machine
learning classifer to classify brain tumors from the MRI
images. Te literature review found that the MHS-SCA
weight optimization of the ELM model has just been
reported.

Te following are the research’s contributions:

(i) We have developed the mathematical algorithm of
modifed harmonic search-sine cosine algorithm
(MHS-SCA) hybrid optimization algorithm by
considering the parameters of harmony search and
sine cosine algorithm.

(ii) Five benchmark functions are utilized to validate
the authenticity of the modifed harmonic search-
sine cosine algorithm.Te benchmark functions are
optimized through MHS, SCA, and PSO algorithms
and compared with the proposed MHS-SCA opti-
mization technique.

(iii) We have utilized the proposed MHS-SCA for the
weight optimization of the ELM classifer to im-
prove its performance.

(iv) An improved fuzzy factor-based FLICM segmen-
tation is proposed to detect brain tumors from MRI
images.

Te article is organized as follows: Section 2 presents the
related work, Section 3 presents the research methodology
and hybrid MHS-SCA-based ELM model explanation,
Section 4 presents the benchmark validation, segmentation,
and classifcation results, Section 5 presents a discussion of
the results, and Section 6 presents conclusion followed by
the references. Table 1 shows the abbreviations used in this
article.

2. Related Work

Due to the mathematical complexity, FCM-based ap-
proaches could improve in reducing noise and detecting
tumors in brain MRI images. To reduce the computational
complexity demands caused by the spatial term, Szilagyi
et al. [2] presented the enhanced FCM method (EnFCM),
which uses gray levels with a smaller value than the image
size. Te parameter (adjustable) in EnFCM is crucial for
enhancing segmentation outcomes. Although Cai and
Chen’s fast generalized FCM approach (FGFCM) requires
more parameters than the EnFCM to ensure the segmen-
tation’s fdelity to detail and minimize noise, it increases
FCM’s robustness through a similarity measure factor. Te
membership partition matrix is subjected to median fltering
in FRFCM [10] to lessen noise and increase segmentation
precision. To improve the segmentation performance, we
have developed an improved fuzzy factor-based fuzzy local
information C means (FLICM) segmentation technique for
the detection of brain tumor. Furthermore, the classifcation
of brain tumors is important for medical practitioners.
Lesion enhancement, feature extraction, selection, and
classifcation approaches were all combined into one de-
tection method by Amin et al. [11]. Te input image was
normalized using the N4ITK3 approach during the in-lesion
enhancement step. Features were extracted using the
histogram-oriented gradient (HOG), and their fusion was
carried out using SFTA and LBP (texture-based) features.
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Te fused features were chosen via the Boltzmann entropy
method. Multiple classifers are given the fused feature
vector to compare, which can make predictions with higher
accuracy. Tumor estimate was done using the BraTS data-
sets, which had a mean dice similarity coefcient (DSC) of
0.99. Nazir et al. [12] developed a wavelet transform seg-
mentation method. Te high-energy subband of the image
was separated into blocks in the frst phase of decomposition

into wavelet subbands. Discrete cosine transform is used in
the second step to choose high-variance features from each
block and align them with the neural network for classif-
cation and a 99.7% accuracy was attained. Saba et al. [13]
proposed the region of interest (ROI) of posttraumatic stress
disorder (PTSD) in the brain using resting-state functional
magnetic resonance imaging (rs-fMRI), and machine
learning algorithms were used to distinguish between PTSD

Table 1: Abbreviations used in the article.

Abbreviations Full form
ABTA American Brain Tumor Association
MRI Magnetic resonance imaging
FCM Fuzzy C means
EnFCM Enhanced FCM method
FCM_S1 FCM algorithm with spatial constraints (1st variant)
FCM_S2 FCM algorithm with spatial constraints (2nd variant)
NDFCM Adaptive FCM algorithm based on noise detection
FGFCM Fast generalized FCM
FLICM Fuzzy local information C means
IFF-FLICM Improved fuzzy factor-based fuzzy local information C means
FRFCM Fast and robust FCM
HS Harmony search
HM Harmony memory
SCA Sine cosine algorithm
MHS Modifed harmony search
BHS Binary harmony search
POHS Piecewise opposition harmony search
HSPSO Harmony search and particle swarm optimization algorithm
HHS Hybrid harmony search
PAR Pitch adjusting rate
HMCR Harmony memory consideration rate
AC-DPHS Autonomous clustering dynamic parameter harmony search
SAMOHS Self-adaptive multiobjective harmony search
SCCs Strongly connected components
GLCM Gray-level co-occurrence matrix
LBP Local binary pattern
BPS Bit-plane slicing
LLE Locally linear embedding
LDA Linear discriminant analysis
FAWT Flexible analytical wavelet transform
DT Decision tree
HHOCNN Harris hawks optimized convolution network
PSO Particle swarm optimization
MSCA-APSO Modifed sine cosine algorithm-accelerated particle swarm optimization
ELM Extreme learning machine
SCA-ELM Sine cosine algorithm-extreme learning machine
MHS-ELM Modifed harmony search-extreme learning machine
PSO-ELM Particle swarm optimization-extreme learning machine
MHS-SCA-ELM Modifed harmony search-sine cosine algorithm-extreme learning machine
LLRBFNN Local linear radial basis function neural network
CNN Convolutional neural network
PNN Probabilistic neural network
SVM Support vector machine
DDSM Digital Database for Mammography Screening
Mini-MIAS Mini Mammographic Image Analysis Society
BraTS MICCAI brain tumor segmentation
k-NN k-nearest neighbors
SSIM Structural index similarity
PSNR Peak signal-to-noise ratio
QILV Quality index based on local variance
ELM Extreme learning machine
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and healthy controls. For classifcation, the k-NN and SVM
with radial basis function kernel achieved high accuracies of
(96.6%, 94.8%, 98.5%) and (93.7%, 95.2%, 99.2%), re-
spectively. Te transfer learning AlexNet’s convolutional
neural network (CNN) utilized by Badjie and Deniz Ülker
[14] to classify brain tumor MR images and achieved an
accuracy of 99.62% in classifying the tumors. Kurdi et al. [15]
proposed Harris hawks optimized convolution network
(HHOCNN) with Kaggle dataset and achieved a 98% overall
accuracy. Sarmad et al.[16] proposed a specially designed 17-
layered deep neural network and used the BraTS 2018 and
Figshare datasets and obtained 97.47% accuracy and 98.92%
accuracy, respectively. Rajinikanth et al. [17] employed the
VGG16 and VGG19 convolutional neural network (CNN)
schemes with the SoftMax function and achieved 99% when
used with decision tree (DT). Annepu et al. [18] reviewed
terrestrial anchor node (FTAN) with soft computing opti-
mization of extreme learning machine (ELM). Annepu et al.
[19] uses ELM For node localization in UAV-assistedWSNs.
A two-dimensional fexible analytical wavelet transform
(FAWT) was proposed by Patel and Kashyap [20] for feature
extraction and feature selection by PCA from the SARS-
CoV-CT database. Te extracted features were fed to least
square-SVM (RBF) for classifcation and achieved an ac-
curacy of 93.47% with tenfold cross-validation. Te least
square-support vector machine (SVM), Gabor flter bank,
and linear discriminant analysis (LDA) were used for
classifcation feature extraction and feature selection for the
COVID-19 dataset and achieved a classifcation accuracy of
93.96% [21]. Further, LS-SVM was used and achieved
a classifcation accuracy of 95.48%, a specifcity of 95.37%,
a sensitivity of 95.43%, and an F1 score of 95 [22]. Patel and
Kashyap [23] proposed a novel approach based on bit-plane
slicing (BPS), local binary pattern (LBP), and gray-level co-
occurrence matrix (GLCM) for LBP images and achieved an
accuracy of 95.04%. Singh et al. [24] proposed a novel
computer-aided diagnostic network and Gabor-modulated
convolutional flter-based classifer for brain tumor classi-
fcation of brain tumor with BraTS dataset and achieved
98.68% classifcation accuracy. Te ultra-light brain tumor
detection (UL-BTD) system was proposed by Qureshi et al.
[25] for the diagnosis and surgical resection of brain tumors
using magnetic resonance (MR) images. Te proposed
UL-BTD system introduces a novel ultra-light deep learning
architecture (UL-DLA) that incorporates deep features and
highly distinctive textural features extracted by the gray-level
co-occurrence matrix (GLCM). Tis combination forms
a hybrid feature space (HFS) utilized for tumor detection
through support vector machine (SVM) and achieved an
average detection rate of 99.23% and an F-measure of 0.99
for glioma, meningioma, and pituitary tumors.

Some of the harmony search-based optimization
techniques were applied to diferent engineering prob-
lems. A brand-new binary harmony search (BHS) was put
forth by Shi et al. [26] to choose the best channel sets and
enhance system accuracy. Enikeeva et al. [27] ofered
a gravitational search algorithm and the harmony algo-
rithm to address the issues with chemical kinetics, while

Bala and Safei [9] proposed a hybrid harmony search and
particle swarm optimization algorithm (HSPSO) strategy
to speed up algorithm performance. Te harmony search
algorithm and an artifcial neural network for fraud de-
tection were proposed by Daliri [28]. Zhu et al. [29]
proposed an autonomous clustering approach (AC-
DPHS) based on dynamic parameters of the harmony
search optimization technique. K-means clustering was
used to estimate the ideal number of clusters automati-
cally using the dynamic parameter harmony search
(DPHS). Al-Betar et al. [30] proposed integrating island
mode principles into the algorithm’s core architecture to
enhance the HS algorithm’s convergence capabilities. Te
population’s constituents are divided into distinct sub-
populations known as islands to enhance performance.
Harmony search-based techniques were used by Al-
Shamiri et al. [31] to optimize the weights of ELM. Te
combination of HS algorithms and ELM has produced
efective generalization results. Dai et al. [32] proposed
a self-adaptive multiobjective harmony search
(SAMOHS) algorithm by employing a self-adaptive
bandwidth to solve a practical engineering optimization
problem. Haghshenas et al. [33] applied a harmony search
for slope stability analysis in geotechnical engineering to
avoid the risk associated with the occurrence of a land-
slide. Mansor et al. [34] proposed scheduling and ros-
tering of bus driver problems using a harmony search
algorithm. Utilizing the step function, the harmony
memory consideration rate (HMCR) parameter is ad-
justed to optimize the distribution of shifts and routes
among drivers. An island-based harmony search tech-
nique for economic load dispatch was put forth by Al-
Betar [35]. When tracing the contacts of the coronavirus,
Al-Shaikh et al. [36] introduced the hybrid harmony
search (HHS) approach to locate strongly connected
components (SCCs). Tis method results in a run time
increase of 77.18% and a remarkable average error rate of
1.7%. With more computational time, the aforementioned
research yields a range of accuracy levels. Te sine cosine
algorithm (SCA) was proposed in [37, 38] for the opti-
mization problems. Mishra et al. [39] proposed the
classifcation of brain tumors using the modifed SCA for
local linear radial basis function neural network. Te
MSCA-APSO was employed to optimize weights and
achieved 99% sensitivity, 100% specifcity, and 99.61%
accuracy. Te modifed harmony search-sine cosine al-
gorithm (MHS-SCA) that has been proposed is yet to be
used for optimization.

3. Materials and Methods

Te proposed system architecture is presented in Figure 1.
Te research fow steps are as follows. (1) Te brain tumor
images undergo resizing. (ii) Te images undergo Mexican
hat wavelet transform for feature extraction to make a new
feature dataset. (iii) Te feature dataset is aligned as input to
the proposed MHS-SCA-ELM, SCA-ELM, MHS-ELM, and
PSO-ELM.
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3.1. Proposed Hybrid MHS-SCA Optimization Algorithm

3.1.1. Te Sine Cosine Algorithm (SCA). Te sine cosine
algorithm (SCA) [37, 38] is a metaheuristic optimization
technique that works by simulating the sine and cosine
functions, which are periodic, to create a search process that
explores the solution space. Te SCA begins by randomly
generating a population of candidate solutions, which are
represented as vectors in the solution space. At each iter-
ation, the algorithm evaluates the ftness of a set of candidate
solutions and updates them based on their ftness values and
their positions in the solution space. Te evaluation is ac-
complished by the ftness of each candidate solution by an
objective function that measures the problem constraints.
Te best candidate solutions are selected based on their
ftness values.Te selected solutions are updated by adapting
their positions in the solution space based on the sine and
cosine functions. Te sine and cosine functions played the
role of optimization in the search space to reach the des-
tination. Te sine and cosine functions are used to update
the position of each solution in the search space. Te sine
and cosine functions converge to zero with a bound limit of
[−1, 1]. When the sine and cosine waves tend to move in
search space, they achieve new positions at diferent time
intervals.

Te updated position equation is given by

Z
n+1
i �

Z
n
i + α1 × sin α2(  × α3p

gbest
− Z

n
i



, α4 < 0.5,

Z
n
i + α1 × cos α2(  × α3p

gbest
− Z

n
i



, α4 ≥ 0.5,

⎧⎪⎨

⎪⎩

(1)

where α1, α2, α3, and α4 are the random variables.
Te next position in the search is presented by α1, α2

determines direction, α3 controls the current movement,
and the parameter α4 changes constantly among the sine and
cosine functions. pgbest is the best position obtained during
destination search. α1 is given by

α1 � a 1 −
n

K
 , (2)

where n and K represent current iteration and maximum
iteration, respectively, and a is a constant. Te SCA hy-
bridized favorably with modifed harmonic search meta-
heuristic algorithms to improve optimization capability.

3.1.2. Harmony Search Algorithm. Te harmony search al-
gorithm is proposed to generate a set of random candidate
solutions, called harmonies, and improve them iteratively by
adjusting the values of their components, called pitches, to
mimic the process of improvising music [40]. In order to
attain the best musical note optimization, artists practice,
which is the foundation of harmony search (HS) [31, 40, 41].
HS is acknowledged as a metaheuristic optimization algo-
rithm. Te artists are thought of as algorithmic decision
variables. Te same way musicians can improve their sound
efects by practicing frequently, optimization objective
function results can be improved. Te musicians improvise
harmony while they are composing using the HS approach.
Te musicians mix several musical pitches to create a fne
tune, which they then memorize for later use. Diferent HS
factors were crucial to optimization, including PAR, HMCR,
and PAR. Te randomly generated harmony matrix is given
by

Hsm �

z
1
1 · · · z

1
n

⋮ ⋱ ⋮

z
1
Hsm · · · z

Hs
n



f z
1

 

⋮

f z
Hs

 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3)

Initializing the harmony memory (HM) space con-
taining HMS harmony vectors a probability parameter pitch
adjusting rate(PAR) is required as per the “bw” parameter.
Te BW parameter is the step size tuning parameter. Te
new harmony vector is defned as

z
new
i �

z
old
i + rand × bw, with PAR,

z
old
i , with 1 − PAR,

⎧⎨

⎩ (4)

where bw � z1
i − z2

i .

3.1.3. Modifed Harmony Search-Sine Cosine Algorithm
(MHS-SCA) Optimization Technique. Te original HS al-
gorithm’s slow convergence rate and tendency to become
stuck in local optima were addressed by the modifed
harmony search (MHS) algorithm, which is an enhanced
version of the original HS algorithm.

Mexicanhat Wavelet Feature Extraction 

Malignant

Brain Tumor Classification 

Resizing of images 

Proposed improved fuzzy factor based FLICM
Segmentation 

Benign

MRI Image 

SCA-ELM PSO-ELM

MHS-ELM Proposed MHS-
SCA- ELM Model

Figure 1: Proposed system architecture.
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Now to achieve faster optimization, the harmony vector
is modifed as

z
New
MHMSi(n + 1) � z

Old
MHMSi(n) + z

1
i − z

2
i  ×(rand),with PAR,

z
New
MHMSi(n + 1) � z

Old
MHMSi(n) + z

1
i − z

2
i  × χ ×(rand),with (1 − PAR),

(5)

where MHMS is the modifed harmony search and χ is the
learning parameter.

According to the parameter PAR, a higher PAR prob-
ability during the initial iterations aids in adjusting the
numerical variables through the pitch stages to enhance the
variety of solutions and prevent local optimum.

Te PAR is given by

PAR � exp
It
NI

 , (6)

where It is the maximum iteration and NI is the maximum
number of improvisations. We have to choose the PAR
parameter to a larger value.

Now combining the sine and cosine algorithm position
equation and harmony vector equation, the new position
equation is given by

z
New
MHS−SCA(n + 1) �

z
Old
MHS−SCA(n) + α1 sin z

1
i − z

2
i  × α2(   × α3p

gbest
− z

n
i





z
Old
MHS−SCA(n) + α1 cos z

1
i − z

2
i  × α2(   × α3p

gbest
− z

n
i





⎧⎪⎨

⎪⎩
,with PAR, (7)

z
New
MHS−SCA(n + 1) �

z
Old
MHS−SCA(n) + χ × α1 sin z

1
i − z

2
i  × α2(   × α3p

gbest
− z

n
i





z
Old
MHS−SCA(n) + χ × α1 cos z

1
i − z

2
i  × α2(   × α3p

gbest
− z

n
i





⎧⎪⎨

⎪⎩
,with (1 − PAR). (8)

Te ELM model’s weights will be optimized using the
proposed hybrid MHS-SCA technique. Te proposed
MHS-SCA method selects fve benchmark functions for
optimization to demonstrate its efcacy. Te pseudocode of
MHS-SCA optimization is presented in Table 2. Te fow-
chart for MHS-SCA is presented in Figure 2.

For the MHS algorithm, the initialization of parameters
and estimates has a complexity of O (n2). Te process model
has a complexity of O (n). Te number of calculation points
used is 2n+ 1, so the computational complexity of the SCA
per time step is O (n3). For the MHS-SCA, computation for
the entire calculation is measured as O (n log2 n2).

3.2. Proposed MHS-SCA-Based Extreme Learning Machine

3.2.1. ELMModel. TeELM algorithm is a machine learning
model consisting of a single hidden layer and randomly
generated connection weights between the input and hidden
layers.Te ELMmodel [42] is a feed-forward neural network
in which the output layer weights are computed analytically
to make the convergence process fast and efcient. Te
weights of the extreme learning machine (ELM) [43, 44] are
tuned with the MHS algorithm in accordance with the
robustness and quicker convergence performance of the
improved harmony search method. ELM is a reliable net-
work that performs well in terms of generalization. It is
suggested that the current ELM model combined with MHS
learning be used to achieve better generalization outcomes.
Te model architecture is proposed in Figure 3.

Te output function of ELM [43] withN hidden neurons
is represented:

y � 
N

n�0
βnfn wn; x( , (9)

where f(w; x) � [1, f1(w1; x), ......., fn(wn; x)] is the hid-
den weight and β is the weight which can be expressed as

Fβ � y, (10)

where F is “feature-mapping matrix” given by

F �

1 F1 w1; x1(  · · · FL wn; x1( 

⋮ ⋮ ⋮ ⋮

1 F1 w1; xN(  · · · FL wn; xN( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

And β̂ � F
†

d.

(11)

Ten, equation (7) can be written as

F
†

� F
T
F 

− 1
F

T
, (12)

where F† is the “Moore–Penrose generalized inverse of
matrix” and d is the desired vector.

Te desired vector is given by d �

d1
d2
⋮
dn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and β �

β1
β1
⋮
βn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

According to the extreme learning machine, the output
layer is defned with weights as
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Table 2: Pseudocode: MHS-SCA optimization algorithm implementation.

Pseudocode: MHS-SCA optimization algorithm
(1) Initialize harmony search parameters PAR, It, NI, χ
(2) Initialize the SCA parameters α1, α2, α3, α4
(3) Calculate the harmony vector based on znew

i

(4) Fitness function evaluation based on zNewMHS−SCA
(5) % Loop for optimization
(6) For i� 1 : n
(7) Update SCA parameter to obtain ftness using equation (1)
(8) Update the HS parameter PAR � exp(It/NI)
(9) Update the modifed position equation

(10) zNew
MHS−SCA(n + 1) �

z
Old
MHS−SCA(n) + α1 sin((z

1
i − z

2
i ) × (α2)) × |α3p

gbest
− z

n
i |

z
Old
MHS−SCA(n) + α1 cos((z

1
i − z

2
i ) × (α2)) × |α3p

gbest
− z

n
i |

 , with PAR

(11) zNew
MHS−SCA(n + 1) �

z
Old
MHS−SCA(n) + χ × α1 sin((z

1
i − z

2
i ) × (α2)) × |α3p

gbest
− z

n
i |

z
Old
MHS−SCA(n) + χ × α1 cos((z

1
i − z

2
i ) × (α2)) × |α3p

gbest
− z

n
i |

 with (1-PAR)

(12) Choose the maximum optimized zNewMHS−SCA values between equations (7) and (8)
(13) end for the loop i
(14) Stopping criteria: Converge up to optimal solution, else go to step 6

zNew
MHS–SCA znew

MHMSi

For faster
optimization

With SCA 

znew
MHMSi

zold
MHMSi

+ rand × bw

znew
MHMSi zold

MHMSi
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MHS–SCA zOld

MHS–SCA
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No
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Randomly select values of PAR,
It, NI, χ,α1,α2,α3 

Rand 
>PAR
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Initialization of Parameters 
of HM and SCA
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New Harmony 
vector generation

No

Stopping
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Choose the maximum
of Equations (8) and (9)

Output

New vector

Generation
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MHMSi
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Update the
Equations (8) and

(9)

Harmony vector calculation
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i

Figure 2: Flowchart of MHS-SCA.
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β � F
T
F 

− 1
F

T

d1

d2

⋮

dn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

Now, the weights of the matrix will be optimized by the
MHS-SCA to improve the performance of the ELM model.

3.2.2. Weight Optimization by MHS-SCA. To achieve the
optimization, the weights W � [w1, w2.........wn] are main-
tained in the “harmony memory (HM) matrix,” and the
matrix is taken into account with the “harmonymemory size
(HMS),” and the weight matrix is generated randomly.
WMHMS is the weight matrix, where the subscript MHMS
represents the abbreviation as “modifed harmonic search.”

Now considering the new learning parameter χ for faster
convergence with “PAR (pitch adjusting rate; 0≤PAR≤ 1),”
the new weight is given by

w
New−PAR
MHMSi (n + 1) � w

Old
MHMSi(n) + bw

×(rand − 1),with PAR,
(14)

where “bw” is the “maximum change in pitch adjustment.”
Te new weight updated equation is given by

w
New
MHMSi(n + 1) � w

Old
MHMSi(n) + bw × χ

×(rand),with 1 − PAR.
(15)

Now considering the weight vectors combining with the
sine and cosine algorithm position equation and harmony
vector equation, the updated position equation is given by

w
New−PAR
MHS−SCA(n + 1) �

w
Old
MHS−SCA(n) + α1 sin z

1
i − z

2
i  × α2(   × α3p

gbest
− z

n
i





w
Old
MHS−SCA(n) + α1 cos z

1
i − z

2
i  × α2(   × α3p

gbest
− z

n
i





⎧⎪⎨

⎪⎩
,with PAR,

w
New
MHS−SCA(n + 1) �

w
Old
MHS−SCA(n) + χ × α1 sin z

1
i − z

2
i  × α2(   × α3p

gbest
− z

n
i





w
Old
MHS−SCA(n) + χ × α1 cos z

1
i − z

2
i  × α2(   × α3p

gbest
− z

n
i





⎧⎪⎨

⎪⎩
,with (1 − PAR),

(16)

where χ is the new learning parameter for optimization.

When the values of the weight vector wOld
MHS−SCA >wNew−PAR

MHS−SCA,

choose the new weight vector value as W � wNew
MHS−SCA. If

wNew−PAR
MHS−SCA >wNew

MHS−SCA, choose the weight vector value as

WPAR � wNew−PAR
MHS−SCA. Ten select the maximum of weight

vectors of both as max w([WPAR W]).
Now considering the maximum values of the weights,

the new Moore–Penrose generalized inverse of matrix is
given by

-

e

y
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d
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Figure 3: MHS-SCA-based ELM model.
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F
†
MHS−SCA � F

T
MHS− SCAFMHS− SCA 

− 1
F

T
MHS−SCA, (17)

where

FMHS−SCA �

1 F1 w
New
1MHS−SCA; x1  · · · FL w

New
NMHS−SCA; x1 

⋮ ⋮ ⋮ ⋮

1 F1 w
New
1MHS−SCA; xN  · · · FL w

New
NMHS−SCA; xN 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Then β̂ � FMHS− SCA
†

d.

(18)

Te mean square error is written as

E �
1
n



n

k�1
d − yk( 

2
�
1
n



n

k�1
e
2
k . (19)

By considering the 1000 iterations for the convergence,
the mean square error is calculated by utilizing equation (19)
and presented in Section 4. Table 3 displays the MHS-SCA’s
pseudocode for weight optimization of the ELM model. Te
framework for brain tumor segmentation and classifcation
is shown in Figure 4.

3.3. Proposed Improved Fuzzy Factor-Based FLICM
Segmentation. To improve the efectiveness of FCM-based
segmentation algorithms for the detection of brain cancers,
an improved fuzzy factor-based fuzzy local information C
means (IFF-FLICM) segmentation is presented. Te pro-
posed IFF-FLICM segmentation approach enhances the
accuracy and reliability of tumor segmentation by in-
corporating a fuzzy factor in the clustering process to handle
uncertainties in medical imaging. Additionally, the local
information of each pixel is considered to improve the
clustering performance, resulting in a more precise tumor
segmentation. FCM segmentation techniques are generally
used for noise reduction and detecting tumors from MRI
images.

Enhanced fuzzy C means (EnFCM) [2] method claims
the objective function as

Js � 

N

v�1


c

k�1
u

m
kv xv − vk

����
����
2
. (20)

To improve the noise reduction capability, the fuzzy
factor is introduced in the objective function of EnFCM.Te
fuzzy factor was proposed by Krinidis and Chatzis [45] and
was named as fuzzy local information fuzzy C means
(FLICM).Te objective function with fuzzy factor is given by

JFLICM � 
N

l�1


c

k�1
u

m
kl xl − vk

����
����
2

+ + 
N

l�1


c

k�1
Qkl, (21)

where N is the total number of pixels in image, C denotes the
cluster centre, and “m” determines the fuzziness of the
consequential partition. ukl is the fuzzy partition matrix. Te
fuzzy factor is given by

Qkl � 
r∈Nl

l≠ r

1
dlr + 1

1 − ukl( 
m

xl − vk

����
����
2
,

(22)

where dlr is the Euclidean distance between the pixels.
Te fuzzy factor is boosted to enhance the FLICM

segmentation’s capacity to reduce noise, and the enhanced
fuzzy factor is provided by

Q
iff
kl � 

r∈Nl

l≠ r

1
dlr + 1

log 1 − ukl( 
m

x
c+1
l − vk

�����

�����
2

 ,
(23)

where c is the smoothness parameter of the pixels and the
values are defned in between [0, 1].

ukl �
1


c
p�1 xl − vk

����
����
2

+ Qkl %/ xl − vp

�����

�����
2

+ Qpv 
1/m− 1,

(24)

and

vk �


N
k�1 u

m
klxl


N
l�1 ukl

. (25)

Te new objective function of improved fuzzy factor
FLICM is given by

J
iff
FLICM � 

N

l�1


c

k�1
u

m
kl xl − vk

����
����
2

+ 
N

l�1


c

k�1
Q

iff
kl , (26)

where the superscript iff indicates the improved fuzzy
factor. Te median flter is appled to the fuzzy partiton
matrix to improve the segmentation capability. Te new
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fuzzy partition matrix is given by Umed � median[ukl].
Te parameters used for the simulation are presented in
Table 4.

3.4. Database. Te Medical School of Harvard University
generated Dataset-255, which contains “255 (35 normal and
220 pathological) 256× 256 axial plane brain scans” [39].

Table 3: Pseudocode: MHS-SCA for weight optimization of the ELM model.

Pseudocode
(1) Input: Initializing particles (ELM weights) W � [w1, w2.........wn] randomly
(2) Input: Initialize the MHS parameters μ, bw, rand, χ
(3) Output: Calculation of error
(4) %Program loop
(5) For i� 1 : n

(6) “%” Weight updation with PAR

(7) wNew−PAR
MHS−SCA(n + 1) �

w
Old
MHS−SCA(n) + α1 sin((z

1
i − z

2
i ) × (α2)) × |α3p

gbest
− z

n
i |

w
Old
MHS−SCA(n) + α1 cos((z

1
i − z

2
i ) × (α2)) × |α3p

gbest
− z

n
i |



(8) % Obtain new optimization with 1-PAR

(9) wNew
MHS−SCA(n + 1) �

w
Old
MHS−SCA(n) + χ × α1 sin((z

1
i − z

2
i ) × (α2)) × |α3p

gbest
− z

n
i |

w
Old
MHS−SCA(n) + χ × α1 cos((z

1
i − z

2
i ) × (α2)) × |α3p

gbest
− z

n
i |



(10) If wNew
MHS−SCA >wNew−PAR

MHS−SCA
(11) Choose the weight vector value as W � wNew

MHS−SCA
(12) end
(13) If wNew−PAR

MHS−SCA >wNew
MHS−SCA

(14) Choose the weight vector value as WPAR � wNew−PAR
MHS−SCA

(15) end
(16) Select the maximum weights of both as max w([WPAR W])

(17) Choose the best weight until the convergence criterion is satisfed % calculate mean square error
(18) E(i) � 1/n

n
i�1[e2i ]

(19) End for the loop i
(20) Continue the procedure till convergence is satisfed, else repeat step 4 to step 19

Performance Metric
Evaluation 

Classification of 
Brain Tumor

Input
x1,x2,…..xn 

Extreme
Learning Model 

Image pre-
processing

Median filter

IFF-FLICM
Segmentation

Umed = median [ukl]

Wavelet
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Grouping of data
for training and
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1
nE =

n

k=1

(d – yk )2
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w

Weight optimization by MHS-SCA
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W = [w1, w2.........wn]

weight updation with PAR,weight
updation with 1- PAR, choose

Data Input to the models
MHS-ELM, SCA-ELM,

PSO- ELM

Figure 4: Proposed framework for segmentation and classifcation of brain tumor.
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Dataset-255 contains aberrant brain MR scans from 11
diferent disorders, including Alzheimer’s disease. Four
novel illnesses, including chronic subdural hematoma, ce-
rebral toxoplasmosis, herpes encephalitis, and multiple
sclerosis, are represented by aberrant images in Dataset-255.
Out of 255 images, 204 images were taken for training and 51
images for testing. Te 204 images, 80% out of 255 images,
containing 176 abnormal and 28 normal images, are pre-
sented in Table 5.

3.5. Mexican HatWavelet Transform and Feature Extraction.
Discrete wavelet transform [30] with Mexican hat wavelet
has been utilized to extract features from the segmented
images. Te Mexican hat wavelet function is given by

ψ(x) �
2

���
3σ

√
π1/4 1 −

x

σ
 

2
 e

− x2/2σ2
, (27)

where σ is the standard deviation controlling the smoothness
and ψ is the wavelet function.

Te images are applied to the median flter for pre-
processing at the frst instance. Te images are fltered by
utilizing the median flter to enhance the image quality by
removing the noise. Te wavelet transform acts as flter and is
also applied for feature extraction purpose. A total 204 of
images are considered for training, which is 80% of the total
255 images. 51 images are taken for testing, which is 20% of
the images.Te seven features such as “power spectral density
(PSD),” “Kurtosis,” and “Shannon entropy, energy, mean,
dispersion entropy, and standard deviation” [39] are extracted
from the images and grouped for training and testing dataset.
A total of 1785 features are extracted by utilizing seven
features (255× 7= 1785) and utilized as training and testing
dataset for classifcation purposes. Training and testing data
are separated in the database. Te training data is taken as
80% which is calculated as (204× 7= 1628) and the testing
data taken as 20%, which is calculated as (51× 7= 357) data
from the total dataset. Te training dataset and testing dataset
are aligned to PSO-ELM, SCA-ELM, and MHS-ELM and
proposed MHS-SCA-ELM for classifying the data into can-
cerous and noncancerous categories. Te training and testing
results are presented in Table 6.

3.6. Validation of Modifed Harmony Search-Sine Cosine
Algorithm (MHS-SCA). Te proposed modifed harmony
search algorithm is tested with the fve benchmark functions
(F1–F5) [39] presented in Table 7. Out of fve benchmark

functions, four multimodal functions and one unimodal
function are used for optimization. To show the dominance
of the proposed MHS-SCA optimization algorithm, other
metaheuristic optimization algorithms PSO [39], MHS, and
SCA [38] are considered.

Particle swarm optimization (PSO) techniques are based
on bird focking.Te PSO, HS, and SCA are the optimization
techniques utilized for the weight optimization of several
machine learning models. Te models such as PNN [40],
SVM [31], “local linear radial basis function neural network
(LLRBFNN)” [41], feed-forward neural network [37], ELM
[44], and CNN [46, 47] were proposed for brain tumor
classifcations fromMRI images with diferent metaheuristic
optimization techniques. Te MHS-SCA is the new algo-
rithm proposed for weight optimization of the ELM model
in our research. Te “sine cosine algorithm (SCA)” [38] is
created on sine and cosine function position change due to
the involvement of the random movement directions in the
search space. All fve functions are optimized by employing
PSO [39], SCA [38], MHS, and proposed MHS-SCA opti-
mization algorithms.

3.7. Segmentation Performance Measures. Peak signal-to-
noise ratio (PSNR) [48] is a simpler and more traditional
metric based solely on pixel-wise error; SSIM provides
a more comprehensive assessment by considering structural
information and mimicking aspects of human visual per-
ception. PSNR is calculated based on the mean squared error
between the original image and the distorted image. Te
formula is often expressed as

PSNR � 10 · log10
Max2

MSE
 , (28)

where Max is the maximum possible pixel value and MSE is
the mean squared error. PSNR measures the ratio of the
maximum possible power of a signal to the power of cor-
rupting noise that afects the quality of its representation.
Higher PSNR values indicate better image quality.

Structural similarity index (SSIM) [48] assesses the
structural information and similarity between the reference
and distorted images. SSIM considers aspects such as texture
and structural information in addition to pixel values.

SSIM(x, y) �
2μxμy + C1  2σxy + C2 

μ2x + μ2y + C1  σ2x + σ2y + C2 
, (29)

Table 4: Parameters for simulation.

Algorithms Parameters Value

Harmony search

Iterations 1000
bw 0.6
χ 0.8

rand [0, 1]
SCA α1, α2, α3 [0, 1]

FLICM m 2
c [0, 1]
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where μx and μy are the mean intensities of x and y, σ2x and
σ2y are the variances, σxy is the covariance, and C1 and C2 are
the constants to stabilize the division with weak
denominator.

3.8. Classifcation Performance Measure. MHS-ELM, SCA-
ELM, PSO-ELM, and the proposed MHS-SCA based ELM
model achieve the classifcation of the brain tumor. Te
classifers’ performances are obtained by computing accu-
racy, computational time, specifcity, and sensitivity. For this
experiment, 1000 iterations were considered, and the results
of each category are presented in Table 6.

Sensitivity � TPR �
TP

TP + FN
,

Specificity � TNR �
TN

TN + FP
,

Accuracy �
TP + TN

TP + TN + FP + FN
.

(30)

4. Results

4.1. Modifed Harmony Search Algorithm Validation Result.
Five benchmark functions are optimized by SCA, MHS,
PSO, and the proposed MHS-SCA optimization algorithm,
and results are presented in Figures 5–9.

Te validation of function F1 using the SCA, MHS, PSO,
and proposed MHS-SCA is shown in Figure 5.Te proposed
MHS-SCA method converges more quickly than the men-
tioned PSO, SCA, and MHS algorithms. Te proposed
MHS-SCA needed around 50 iterations to reach conver-
gence. In contrast, SCA, MHS, and PSO required about 100,
190, and 220 iterations, respectively, as can be seen in
Figure 5. Te subfgure shows the clarity about the con-
vergence curves of each algorithm. To diferentiate the it-
erations required for MHS and PSO, the subfgure is
mentioned and marked with an arrow mark. Te iterations
required for the convergence of MHS and PSO are clearly
shown.Te lines in green and black also show theMHS-SCA
and SCA convergence curves. Additionally, the PSO, MHS,
and SCA achieved ideal values of 0.75759, 0.43609, and
0.29418 for function F1, but the proposed MHS acquired an
optimal value of 0.18868. One thousand simulation itera-
tions are used for all benchmark function optimizations.Te
best parameters and iterations for convergence demonstrate
the proposed MHS-SCA’s robustness. Table 7 shows the
optimal values obtained by the diferent algorithms.

Figure 6 presents the validation of function F2. Figure 4
shows that the proposed MHS took nearly 100 iterations,
whereas SCA, MHS, and PSO took nearly 200, 210, and 320
iterations for convergence. To diferentiate the convergence
lines, the subfgure is mentioned in Figure 6. From the
subfgure, we can easily identify the iteration required for
MHS-SCA; other curves can be seen from the main fgure.

Table 5: Details of Dataset-255.

Dataset
Total number of images Training images Testing images

Normal Abnormal Normal Abnormal Normal Abnormal
Dataset-255 35 220 28 176 7 44

Table 6: Classifers’ performance evaluation.

Model No. of
iterations

Training accuracy
(%)

Testing accuracy
(%) Sensitivity (%) Specifcity (%) Computational time

(sec)
PSO-ELM 1000 93.12 91.58 91.65 88.58 79.6528
MHS-ELM 1000 95.23 93.28 94.13 91.78 58.3321
SCA-ELM 1000 97.33 96.54 97.45 98.65 32.2657
MHS-SCA-ELM 1000 99. 2 98.47 98.78 99.23 23.2487

Table 7: Benchmark functions for optimization of the proposed MHS-SCA.

Function Name of the function Details Dimension Bound regions

F1 [39] Multimodal “n
i�1[x2

i − 10 cos(2πxi) + 10]” 20 [−5.12, 5.12]

F2 [39] Multimodal −20 exp − 0.2
���������
1/n

n
i�1x

2
i



 − exp1/n
n
i�1cos(2πxi) + 20 + e 20 [−32, 32]

F3 [39] Multimodal 1/4000
n
i�1x

2
i − 

n
i�1 cos(

xi�
i

√ ) + 1 20 [−600, 600]

F4 [39] Multimodal 
n
i�1 − xi sin(

���
|xi|


) 20 [−500, 500]

F5 [39] Unimodal 
n
i�1|xi| + 

n
i�1|xi| 20 [−10, 10]
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Te proposed MHS-SCA achieved an optimal value of
0.18353 for function F2, whereas PSO, MHS, and SCA
achieved optimal values of 0.71184, 41268, and 0.26211.

Te validation of function F3 is shown in Figure 7.
According to Figure 7, the suggested MHS-SCA required
only around 250 iterations, whereas SCA, MHS, and PSO
required about 300, 310, and 350 iterations, respectively, to
reach convergence. Te convergence iterations are discov-
ered to be distinct from the primary. Te iteration that SCA,
MHS, and PSO took is clearly depicted in the subfgure of
Figure 7. Additionally, the PSO, MHS, and SCA achieved
ideal values of 0.66278, 0.38888, and 0.19526 for function F3,
while the proposed MHS acquired an optimal value of
0.17603 for that function.

Figure 8 presents the validation of function F4. Figure 8
shows that the proposed MHS-SCA took 190 iterations,
whereas SCA, MHS, and PSO took nearly 250, 290, and 450
iterations for convergence. Te subfgure clarifes the iter-
ation needed for MHS-SCA and is marked with an arrow
mark. An optimal value of 0.17423 is obtained by the
proposed MHS-SCA for function F4, whereas PSO, MHS,
and SCA achieved optimal values of 0.66504, 32961, and
0.26617.

Figure 9 shows that the proposed MHS-SCA took nearly
50 iterations, whereas SCA, MHS, and PSO took nearly 130,
220, and 250 iterations for convergence. Te convergence
curves are not clearly shown in Figure 9. Te subfgure
clearly shows the iteration needed for the SCA and MHS
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Figure 5: Validation of function F1 using PSO, MHS, SCA, and MHS-SCA.
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algorithms. Further, the proposed MHS-SCA achieved an
optimal value of 0.16249 for function F5, whereas PSO,
MHS, and SCA achieved optimal values of 0.69023, 32825,
and 0.29454. Te optimal values are presented in Table 8.

Table 8 shows the optimum values for PSO, MHS, SCA,
and MHS-SCA. All the benchmark functions F1–F5
achieved good optimal values in the proposed MHS-SCA,
showing superiority compared to PSO, MHS, and SCA
optimization algorithms. Te comparison bar result is
presented in Figure 10.

4.2. Brain Tumor Segmentation Results. EnFCM, NDFCM,
FLICM, and proposed IFF-FLICM segmentation techniques
accomplished the brain tumor segmentation. Te Rician
noise was reduced, and tumor detection using the proposed
IFF-FLICM segmentation technique obtained 99.37%
accuracy.

Te EnFCM segmentation was employed for the brain
tumor image with noise. Te noise removal capability of the
EnFCM segmentation technique is improper due to the
biased character of the controlling parameter. Te detection
tumor is not obtained correctly, which can be seen from
Figure 11. Te SSIM value obtained is 0.7324, and PSNR is
23.17, and the lower values of PSNR and SSIM indicate the
poor detection capability of the EnFCM algorithm.

Te NDFCM segmentation automatically tunes the
trade-of parameter by calculating the local variance of gray
levels to improve the detection capability. It can be observed
from Figure 12 that, still, the detection needs to be up to the
required levels because NDFCM uses more parameters
during segmentation. Te SSIM and PSNR values were
obtained as 0.8954, and 28.54 db, which are higher than
those of the EnFCM segmentation, but the still values of
SSIM and PSNR are less.

Te FLICM segmentation replaced the controlling
parameter with the fuzzy factor and obtained the SSIM
and PSNR values as 0.9317 and 32.59 db. SSIM and PSNR
are higher than those of the EnFCM and NDFCM pre-
sented in Figure 13, which shows better segmentation
capability. Also, a segmentation accuracy of 98.92% was
obtained, which is also higher than that of the EnFCM and
NDFCM segmentation techniques, which can be observed
in Table 9.
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Figure 8: Validation of function F4 using PSO, MHS, SCA, and
MHS-SCA.
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Further, to improve the segmentation performance of
the FLICM, the fuzzy factor is improved in the fuzzy par-
tition matrix and passed through the median flter. It can be
observed from Figure 14 that the segmentation IFF-FLICM

technique outperformed the other FCM-based segmentation
techniques. Te SSIM and PSNR achieved 0.9823 and 37.24,
higher values than the EnFCM, NDFCM, and FLICM
segmentation techniques.

Te brain tumor segmentation using techniques such as
EnFCM, NDFCM, FLICM, and proposed IFF-FLICM is
presented in Figures 11–14. Te Rician noise is involved in
the MRI images during the acquisition of images from the
patients. Figure 11 shows the segmentation of brain tumor
using the EnFCM technique.Te segmentation accuracy was
calculated when the Rician noise of σn � 10 was present in
the image. It is observed from Figure 11 that the noise
reduction is less and the detected tumor was not accurate.
Te segmentation accuracy obtained by the EnFCM is
96.19%. Figure 12 shows NDFCM segmentation which
achieved an accuracy of 97.84%, and the tumor was not
properly obtained due to the involvement of the noise.
Figure 13 shows the somehow better noise reduction ca-
pability by utilizing the FLICM segmentation. Te FLICM
segmentation provides an accuracy of 98.92%. Te location
of the tumor is nearly appropriate with an accuracy of
99.37% by utilizing the proposed IFF-FLICM segmentation.
Te brain tumor segmentation of the IFF-FLICM is shown
in Figure 14. Te segmentation accuracy of the EnFCM,
NDFCM, FLICM, and proposed IFF-FLICM is shown in
Table 9. Further, to measure the segmentation performance,
two quality measures, “structural similarity index (SSIM)

Table 8: Optimal values of benchmark functions.

Optimal values of objective function

Algorithms No. of
iterations F1 F2 F3 F4 F5

PSO 1000 0.75759 0.71184 0.66278 0.66504 0.69023
MHS 1000 0.43609 0.41268 0.38888 0.32961 0.32825
SCA 1000 0.29418 0.26211 0.19526 0.26617 0.29454
MHS-SCA 1000 0. 8868 0. 8353 0. 7603 0. 7423 0. 6249
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Figure 10: Comparison of optimal values for functions F1–F5
using PSO, HS, SCA, and MHS algorithms.

Input Image Noisy Image Detected Tumor

Figure 11: Segmentation of brain tumor using EnFCM.

Input Image Noisy Image Detected Tumor

Figure 12: Segmentation of brain tumor using NDFCM.

Input Image Noisy Image Detected Tumor

Figure 13: Segmentation of brain tumor using FLICM.

Table 9: Comparison of segmentation accuracy.

Algorithm Rician
noise level σn � 10

EnFCM 96.29
NDFCM 97.84
FLICM 98.92
IFF-FLICM 99.37
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and peak signal-to-noise ratio (PSNR) [37],” are considered.
Te higher value of PSNR and SSIM represents good noise
reduction capability. Te proposed IFF-FLICM segmenta-
tion ofered a PSNR value of 37.24 dB and an SSIM value of
0.9823, showing a good reduction of noise capability
compared to the other mentioned EnFCM, NDFCM, and
FLICM segmentation techniques. Te values of SSIM and
PSNR are presented in Table 10. Te primary goal of seg-
mentation is to identify and delineate regions of interest
within an image. Tese regions correspond to tumor
structures or other clinically relevant features. Te seg-
mentation output may be further annotated with clinically
relevant information. For the purpose of comparison of
segmentation techniques, we have taken the same image.

4.3. Results of IFF-FLICM Segmentation with Breast Cancer,
BraTS, and COVID-19 Database. We have employed the
IFF-FLICM segmentation on the Mini Mammographic
Image Analysis Society (Mini-MIAS) [49], Digital Database
for Mammography Screening (DDSM) [50], BraTS 2018
[46], BraTS 2019 [47], and COVID-19 [37] datasets. Te
performance results for diferent datasets are presented in
Table 11. From Table 11, it is observed that the segmentation
accuracy for breast cancer DDSM, Mini-MIAS, BraTS 2018,
and BraTS 2019 achieved is nearly identical to the Dataset-
255. However, the variations are observed in COVID-19
dataset due to the poor image quality. Also, SSIM and PSNR
are higher, showing better segmentation. So the proposed
IFF-FLICM outperforms the diferent datasets. Figure 15
shows the detection of the DDSM breast cancer dataset with
IFF-FLICM segmentation. Figure 16 shows the Mini-MIAS
breast cancer dataset, Figure 17 shows the COVID-19
dataset, Figure 18 shows BraTS 2018 brain tumor dataset,
and Figure 19 shows the BraTS 2019 brain tumor dataset. It
is observed that the proposed IFF-FLICM segmentation
shows better segmentation results.

4.4. Classifcation Results. Te comparison of training,
testing, sensitivity, specifcity, and computational time for
PSO-ELM, MHS-ELM, SCA-ELM, and MHS-SCA-ELM
models is presented in Table 6.

Table 6 shows the performance measure analysis of
diferent classifers along with the proposed MHS-
SCA-ELM model. Te performance measure analysis
shows the uniqueness of the proposed MHS-SCA-ELM
model. During training, the proposed MHS-SCA-ELM
achieves 99.12% accuracy and 98.47% testing accuracy.Tis

shows the performance improvement of the proposed
model, as we know the model’s authenticity is accepted
based on the testing capability. Further, the sensitivity and
specifcity are 98.78% and 99.23%, respectively.

Input image Noisy Image Detected Tumor

Figure 14: Segmentation of brain tumor using IFF-FLICM.

Table 10: Quality measures with Rician noise.

Algorithm
Rician noise

SSIM PSNR (dB)
EnFCM 0.7324 23.17
NDFCM 0.8954 28.54
FLICM 0.9317 32.59
IFF-FLICM 0.9823 37.24

Table 11: Performance measure of IFF-FLICM segmentation with
diferent datasets.

IFF-FLICM segmentation
Database Accuracy (%) SSIM PSNR
DDSM 99.33 0.9818 37.18
Mini-MIAS 99.34 0.9811 37.13
COVID-19 dataset 98.82 0.9736 36.14
BraTS 2018 99.28 0.9817 37.19
BraTS 2019 99.31 0.9811 37.22
Dataset-255 99.37 0.9823 37.24

Input image Noisy Image Detected Tumor

Figure 15: IFF-FLICM segmentation results of DDSM breast
cancer dataset.

Original Image Noisy Tumor Detected Tumor

Figure 16: IFF-FLICM segmentation results of Mini-MIAS breast
cancer dataset.

Original Image Noisy Image Infected Area

Figure 17: IFF-FLICM segmentation results of COVID-19 dataset.

16 Journal of Engineering



Computational time is important in the classifcation
process for any new development model. Te proposed
MHS-SCA-ELM model took 23.2487 seconds, while the
other mentioned models took more computational time for
convergence.

Te proposed model is tested with the 51 images of
Dataset-255. Out of 51 images, 44 malignant and 7 benign
images are considered for testing. One way to test the
performance of the proposed model is to use cross-
validation. Cross-validation involves partitioning the data-
set into multiple subsets and using each subset as both
training and testing data. We have taken 5× 5 cross-
validation. Te data are partitioned into 5-folds, and each
fold contains 51 images for a single run. Tere are fve runs
taken together, and then the average value of fve runs is the
average accuracy of the classifcation. Further, to test the
performance of a proposed model, we can use metrics such
as accuracy, precision, recall, and F1 score. Tables 12 and 13
show the 5× 5 cross-validation procedure.

Accuracy �
(TP + TN)

(TP + TN + FP + FN)
,

Precision �
TP

(TP + FP)
,

Recall �
TP

(TP + FN)
,

F1 Score �
2∗Precision ∗ Recall
(Precision + Recall)

.

(31)

Te Fold-1 calculation is given by
Performancemetric � [Accuracy Precision RecallF1 Score],

Performancemertic �

[0.9804 1.0000 0.9773 0.9885

1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000

1.0000 1.0000 1.0000 1.0000

0.9804 1.0000 0.9773 0.9885].

(32)

Te average value of column-4 represents the F1-Score,
and the average value is obtained as 99.54%. All the values
are obtained by taking the values of TP, TN, FN, and FP
from Table 12. For each run, the performance metric is
calculated and the average accuracy is achieved as 99.12%.
For run-2, Accuracy (Column-1), Precision (Column-2),
Recall (Column-3), and F1 Score (Column-4), values are
obtained as 99.01%, 100%, 97.67%, and 98.83%, respectively.
Similarly, we can calculate the values for Accuracy, Pre-
cision, Recall, and F1 score for each run.

Te average values can be calculated as
�(0.9804 + 1 + 1 + 1+ 0.9844)/5� 0.9921 or 99.21%.

Te proposed MHS-SCA-based ELM required around
570 iterations, whereas SCA-ELM, MHS-ELM, and
PSO-ELM required about 600, 620, and 900 iterations, re-
spectively, to converge as shown in Figure 20. Te proposed
MHS-SCA-based ELM takes 23.2487 seconds to compute,
which is less than the computational times of theMHS-ELM,
SCA-ELM, and PSO-ELMmachine learning models. For the
experiment, 1000 iterations are considered for each

Original Image Noisy Tumor Detected Tumor

Figure 18: IFF-FLICM segmentation results of BraTS 2018 brain tumor dataset.

Original Image Noisy Tumor Detected Tumor

Figure 19: IFF-FLICM segmentation results of BraTS 2019 brain tumor dataset.
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Table 12: Cross-validation (5× 5-fold Dataset-255) during run-1.

Fold Test images TP FN TN FP Accuracy (%)
1st fold 51 43 1 7 0 98.04
2nd fold 51 44 0 7 0 100
3rd fold 51 44 0 7 0 100
4th fold 51 44 0 7 0 100
5th fold 51 43 1 7 0 98.04
Final average accuracy 99.2 

Table 13: Cross-validation (5× 5-fold Dataset-255) for each run.

1st fold 2nd fold 3rd fold 4th fold 5th fold Total Accuracy (%)
1st run 51 51 50 51 50 253 99.2 
2nd run 51 51 50 50 50 252 98.82
3rd run 51 50 50 51 50 252 98.82
4th run 51 51 51 51 51 255 100
5th run 51 50 51 50 50 252 98.82
Final average accuracy 99. 2
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Figure 20: Mean square error results.

Table 14: Performance evaluation of diferent datasets.

Dataset
MHS-SCA-ELM

No. of iterations Computational time (sec) Accuracy (%)
DDSM 1000 25.1531 99.11
Mini-MIAS 1000 25.6112 99.10
COVID-19 dataset 1000 27.2457 98.86
BraTS 2018 1000 24.8957 99.11
BraTS 2019 1000 24.1245 99.12
Dataset-255 (proposed) 1000 23.2487 99. 2
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mentioned model. Te performance evaluation results are
presented in Table 6. Te classifcation performance of
diferent datasets is presented in Table 14.

Te accuracy of the proposed MHS-SCA-ELMmodel is
99.12% with Dataset-255. Te DDSM and Mini-MIAS
breast cancer datasets achieved 99.11% accuracy and
99.10% accuracy which are nearly identical to the classi-
fcation accuracy with Dataset-255. Also, the BraTS 2018
and BraTS 2019 brain tumor datasets achieved 99.11%
accuracy and 99.12% accuracy. Also, the computational
time is nearly similar in all the datasets except the
COVID-19 dataset. Te COVID-19 dataset achieved
98.86% accuracy due to poor image quality. It is observed
from Table 14 that the proposed MHS-SCA-ELM model
performs well in all the datasets mentioned. So the pro-
posed MHS-SCA-ELM model shows its robustness in the
classifcation of brain tumors.

5. Discussion

Tis study proposes an improved brain tumor detection
and classifcation approach using a combination of fuzzy
factor fuzzy local information C means segmentation and
MHS-SCA optimized extreme learning machine. Te
proposed MHS-SCA optimization algorithm is employed
for the weight optimization of the ELM model. Te
mathematical analysis for MHS-SCA optimization is de-
veloped by hybridizing SCA and harmony search algo-
rithm. Te pseudocode for MHS-SCA is presented in
Table 2. Te research implementation diagram is presented
in Figure 1. MHS, SCA, PSO, and the proposed MHS-SCA
for validating the proposed MHS-SCA optimized four
multimodal functions and one unimodal benchmark
function. Te validation results are presented in Figure 5
for F1 function, Figure 6 for F2 function, Figure 7 for
function F3, Figure 8 for F4 function, and Figure 9 for
function F5. Te clarity of the convergence for F1–F5 was
also shown with a subfgure for distinguishing between the
optimized graphs. Te modifed harmony search took
a lesser number of iterations for convergence. Tere are
1000 iterations considered for the optimization of func-
tions. Table 3 presents the benchmark functions utilized for
the research, whereas Table 4 presents the pseudocode for
MHS-SCA for weight optimization of the ELM model.
Table 5 presents the parameters used for the simulation of
MHS-SCA optimization algorithm.Te Dataset-255 details
are presented in Table 7.Te benchmark functions’ optimal
values for PSO, SCA, MHS, andMHS-SCA are presented in
Table 8. Figure 10 presents the optimal value comparison
for functions F1–F5. Te brain tumor images underwent
IFF-FLICM segmentation and Mexican wavelet transform
feature extraction. Te mathematical analysis for IFF-
FLICM segmentation was developed and presented. Fig-
ure 11 presents the EnFCM segmentation with higher noise
content, and Figure 12 shows the segmentation of tumors
using NDFCM. Te FLICM segmentation is shown in
Figure 13. Te proposed IFF-FLICM segmentation with
noise reduction is shown in Figure 14. Table 9 shows the
segmentation accuracy of the EnFCM, NDFCM, FLICM,

and proposed IFF-FLICM segmentation techniques. Te
quality measures SSIM and PSNR are presented in Table 10.
Te performance measures, accuracy, specifcity, and
sensitivity of the classifers PSO-ELM, MHS-ELM, SCA-
ELM, and MHS-SCA-ELM are presented in Table 11.
Table 6 shows the classifcation performance of the models.
Figure 13 shows the mean square results of PSO-ELM,
MHS-ELM, SCA-ELM, and MHS-SCA-ELM classifer
models. Te proposed model MHS-SCA-ELM is unique in
classifying benign and malignant brain tumors. Te pro-
posed MHS-SCA-ELM model’s accuracy performance is
compared with previous research and presented in Ta-
ble 15. Tables 12 and 13 show the 5 × 5 cross-validation
procedure for each fold and run during training. Table 14
shows the classifcation accuracy of the breast cancer,
BraTS 2018, BraTS 2019, and COVID-19 datasets. We have
consulted the Adama General Hospital, Adama, Ethiopia,
and shown them the results of our model, and they sug-
gested for prototype design. Te prototype development
using embedded platform is our future research work.
Figures 21 and 22 show the Dataset-255 images and IFF-
FLICM segmentation results.

Te MHS-SCA-ELM model is a hybrid algorithm that
combines the optimization capabilities of the modifed
harmony search algorithm and sine cosine algorithm with
the fast learning speed of extreme learning machine (ELM)
for classifcation tasks to avoid overftting. Generally, ELM
models are considered less interpretable than traditional
machine learning models because the weights assigned to
each input feature are randomly generated, and the model
needs to explain how these weights are determined. Fur-
thermore, the lack of insight into the model’s superiority
could indicate that the model needs to be more balanced
with the training data. Overftting occurs when a model is
overly intricate and matches the noise in the training data
instead of the underlying patterns. As a result, the model
may perform well on the training set of data. Te MHS and
SCA algorithms were used separately to optimize the weights
in order to improve the performance of the ELMmodel, and
the results are displayed in Table 6 with classifcation ac-
curacy values that are lower than those of the prior research.
By incorporating MHS-SCA weight optimization process
that aims to minimize the sum of the squared errors between
the predicted and actual outputs, this process helps to
identify the optimal weights for each input feature and al-
lows for greater interpretability of the model. During the
processing of training, the weights are randomly generated
for the purpose of optimization. Te position equations of
the sine cosine algorithm are mapped into the weight
vectors. In the MHS-SCA, the parameters of SCA played an
important role in convergence. Also, the learning parameter
and pitch adjustment of harmonic search improve the
weight optimization process to achieve better classifcation
efciency. According to the controlling parameter variation,
the sine and cosine functions change their position to an
updated position. Along with that, the weights also changed
their values from the old weight values to new weight values.
Tis process will continue till the optimal values of weights
are achieved. From the comparison of data provided in
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Table 8, it is observed that the work proposed by Kang et al.
[49], with 253 images, obtained a 97.05% accuracy for the
ELMmodel. Dı́az-Pernas et al. [50] acquired 97.3% accuracy
in conjunction with the multiscale CNN classifer with
a dataset of 3064 images. We, however, obtain better ac-
curacy of 99.12% for the Dataset-255 using MHS-SCA in
combination with ELM as the classifer. Tis proves that the
proposed MHS-SCA, combined with the ELM classifer,
achieved good performance compared to other algorithms.

5.1. Advantages of Proposed IFF-FLICM Segmentation and
MHS-SCA-ELM Model. Te improved fuzzy factor fuzzy
local information C means (IFF-FLICM) segmentation is
a valuable technique in the feld of medical imaging, par-
ticularly for brain tumor analysis, where accuracy, com-
plexity, and clinical signifcance are important. Te
advantages are mentioned below:

(i) Improved FF-FLICM algorithms can enhance the
accuracy of brain tumor segmentation results
compared to traditional methods. Te IFF-FLICM
algorithm infuences fuzzy logic and local in-
formation to capture subtle variations in tumor
boundaries, which can be challenging for other
segmentation techniques.

(ii) By incorporating local contextual information,
improved FF-FLICM can reduce segmentation er-
rors and enhance image quality, intensity, and
contrast, leading to more reliable and clinically
meaningful results.

(iii) Improved FF-FLICM can reduce the need for
manual segmentation eforts, saving time for radi-
ologists and clinicians while maintaining segmen-
tation quality. It will provide a platform for
researchers to explore novel segmentation

Table 15: Comparison of previous research with proposed model.

Author Classifer Dataset used Accuracy (%)
Varuna Shree and Kumar [51] Probabilistic neural network (PNN) 650MR images 95
Rajan and Sundar [52] Support vector machine (SVM) 41 magnetic resonance (MR) images 98
Ullah et al. [53] Feed-forward neural network 71 magnetic resonance (MR) images 95.8
Kang et al. [54] ELM 253 images 97.05
Dı́az-Pernas et al. [55] Multiscale CNN 3064MR images 97.3
Our proposed method MHS-SCA-ELM 255 images 99.12

Figure 21: Dataset-255 images.

Input image Noisy Image Detected Tumor

(a)

Input image Noisy Image Detected Tumor

(b)

Input image Noisy Image Detected Tumor

(c)

Figure 22: (a–c) IFF-FLICM segmentation results of Dataset-255.
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techniques and incorporate domain-specifc
knowledge to improve brain tumor analysis. It
can be integrated into clinical analysis to facilitate
seamless use by healthcare professionals.

Te hybridization of MHS and SCA ofers a potent
method to optimize ELM weights in the context of classi-
fying images of brain tumors, increasing accuracy, robust-
ness, and efectiveness. However, it is crucial to verify the
signifcance of this hybridization through proper parameter
adjusting. Te following are the advantages:

(i) Te hybrid MHS-SCA-ELM model helps achieve
higher classifcation accuracy and prevents over-
ftting of brain tumor images, which is crucial for
accurate diagnosis and treatment development.

(ii) Combining the strengths of both MHS and SCA, we
obtained optimal solutions more quickly. As the
optimization progresses, the MHS-SCA component
fne-tuned the weights locally, leading to faster
convergence to an optimal solution.

(iii) As brain tumor images have complex and noisy
features, the hybrid approach improves the ro-
bustness of the optimization process by mitigating
the risk of getting stuck in local optima and by
adapting to the diverse characteristics of the
image data.

(iv) Te hybridization of MHS and SCA leads to more
consistent and stable optimization results across
diferent brain tumor and other medical image
datasets, which shows confdence in the model’s
performance.

5.2. Limitations and Future Work Recommendations. Te
improved FF-FLICM algorithm can also be applied to
handle noisy pixels of the brain tumor more efectively by
modifying the membership function further. Adaptively
adjusting the weighting of local information based on the
characteristics of the image can help the algorithm perform
better in regions with varying levels of detail and contrast.
IFF-FLICM algorithm can also be applied in medical im-
aging and other domains where multiple sources of in-
formation need to be fused for segmentation. Te IFF-
FLICM algorithm allows users, such as radiologists or
image analysts, to provide feedback to guide the seg-
mentation process. Tis can improve the accuracy of
segmentation results and make the algorithm more user-
friendly. Te IFF-FLICM technique can be involved as
a preprocessing step in deep learning models such as
convolutional neural networks (CNNs) or recurrent neural
networks (RNNs) to enhance the representational power of
deep neural networks.

Te hybrid MHS-SCA optimization technique can be
used to fne-tune pretrained ELM models on a smaller,
domain-specifc dataset to improve generalization for brain
tumor classifcation tasks. By deploying optimized MHS-
SCA-ELM model inference on hardware platforms in real-
time clinical settings, the mortality rate due to brain tumor

disease can be avoided at an early stage. In collaboration with
medical professionals, the performance of the hybrid ELM
model on diverse and large-scale clinical datasets can meet
the standards required for clinical applications. Te opti-
mized MHS-SCA-ELM models can be taken into decision
support systems for radiologists to ensure user-friendly
interfaces that enable medical practitioners to interact
with the model’s predictions and recommendations efec-
tively. Te hybrid MHS-SCA optimization approach can be
adapted for transfer learning scenarios. Te MHS-SCA
optimization can be integrated with k-NN and SVMmodels
[56]. Te proposed MHS-SCA-ELM model is robust and
unique due to its accuracy and computational time. Te
proposed model is validated for breast cancer, COVID-19
datasets, etc., but not for the larger image datasets.

Tese future directions can signifcantly advance the
application of hybridized optimization techniques for brain
tumor image classifcation using ELM models, ultimately
leading to more accurate, efcient, and clinically valuable
tools for medical practitioners and researchers.

6. Conclusion

In this research, IFF-FLICM segmentation was proposed for
segmenting brain tumors. Te proposed approach enhances
the accuracy and reliability of tumor segmentation by in-
corporating a fuzzy factor in the clustering process to handle
uncertainties in medical imaging. Additionally, the local
information of each pixel is considered to improve the
performance, resulting in a more detailed segmentation of
the tumor. Te proposed IFF-FLICM segmentation shows
good capability in reducing noise and tumor extraction from
the MRI images. Te Mexican hat wavelet was applied for
feature extraction of the segmented images. A hybrid
modifed harmony search-sine cosine algorithm (MHS-
SCA) algorithm was proposed for weight optimization of the
ELM model to enhance the performance of the ELM model.
Five benchmark functions were considered to show the
proposed MHS-SCA optimization algorithm’s efectiveness.
Te proposed MHS-SCA optimized the benchmark func-
tions and was compared with PSO, MHS, and SCA opti-
mization algorithms to show the robustness of the MHS-
SCA. Te optimal values for functions (F1–F5) of the
proposed MHS-SCA show the uniqueness of the algorithm.
Te MHS-SCA optimized extreme learning machine was
then employed to classify the segmented tumor into can-
cerous or noncancerous categories. Te Harvard Medical
School dataset was utilized for the training and testing
process. Te training and testing data were fed to the
proposed MHS-SCA-ELM model for brain tumor classif-
cation. Te other models, such as PSO-ELM, MHS-ELM,
and SCA-ELM, were also considered for the classifcation of
brain tumors, and results from the models were compared
with the proposed MHS-SCA-ELM model. Te proposed
MHS-SCA-based ELM model achieved an accuracy of
99.12% classifcation. Also, a sensitivity, specifcity, and
accuracy of 98.78%, 99.23%, and 99.12% and a computa-
tional time of 23.2478 seconds were achieved. Similarly, the
proposed model achieves precision of 99.29%, recall of
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98.21%, and F1 score of 99.72%. Te segmentation and
classifcation results for breast cancer and COVID-19
datasets are presented in Tables 11 and 14 to show the
authenticity of the IFF-FLICM segmentation and MHS-
SCA-ELM model. Te proposed MHS-SCA can also be
applied for weight optimization of other machine learning
models for diferent medical image classifcations. Te ex-
perimental results demonstrate that the proposed MHS-
SCA-ELM approach outperforms the PSO-ELM, MHS-
ELM, and SCA-ELM methods in terms of accuracy, sensi-
tivity, specifcity, and computational time. Te proposed
MHS-SCA-ELM classifer has the potential to aid radiolo-
gists in accurately detecting and classifying brain tumors,
leading to better diagnosis and treatment planning.
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