
Research Article
Mitigating Software Vulnerabilities through Secure Software
Development with a Policy-Driven Waterfall Model

Shariq Hussain ,1 Haris Anwaar ,2 Kashif Sultan ,3 Umar Mahmud ,1

Sherjeel Farooqui ,1 Tehmina Karamat ,1 and Ibrahima Kalil Toure 4

1Department of Software Engineering, Foundation University Islamabad (FUI), Islamabad, Pakistan
2Department of Electrical, Electronics and Telecommunication Engineering, University of Engineering and Technology,
Lahore, Pakistan
3Department of Software Engineering, Bahria University Islamabad, Islamabad, Pakistan
4Department of Computer Science, Gamal Abdel Nasser University, Conakry, Guinea

Correspondence should be addressed to Ibrahima Kalil Toure; ikalil@msn.com

Received 12 November 2023; Revised 24 January 2024; Accepted 14 February 2024; Published 21 February 2024

Academic Editor: Assed Naked Haddad

Copyright © 2024 ShariqHussain et al.Tis is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For the past few years, software security has become a pressing issue that needs to be addressed during software development. In
practice, software security is considered after the deployment of software rather than considered as an initial requirement. Tis
delayed action leads to security vulnerabilities that can be catered for during the early stages of the software development life cycle
(SDLC). To safeguard a software product from security vulnerabilities, security must be given equal importance with functional
requirements during all phases of SDLC. In this paper, we propose a policy-driven waterfall model (PDWM) for secure software
development describing key points related to security aspects in the software development process. Te security requirements are
the security policies that are considered during all phases of waterfall-based SDLC. A framework of PDWM is presented and
applied to the e-travel scenario to ascertain its efectiveness.Tis scenario is a case of small to medium-sized software development
project. Te results of case study show that PDWM can identify 33% more security vulnerabilities as compared to other secure
software development techniques.

1. Introduction

Since the advent of computers in all aspects of our daily life, we
have become heavily dependent on them to perform various
tasks. Software is the key component to drive a computer to
perform its functions. Like other products, a software product
is developed through several stages called the software de-
velopment life cycle which is starting from the initial re-
quirements acquisition to the retirement of the software.

A few years back, the focus of software development was
on software functionality rather than security due to fewer
risks involved and minimum interaction of the system with
the outside world. Nowadays, the systems are no longer
isolated. Tey have to communicate with other systems or
environments through diferent modes of communication.
Te wide usage of computing environments in today’s

expanding business world resulted in exposure to newer
security risks. Software is becoming more vulnerable due to
the increase in complexity, connectivity, and extensibility.
Tis highlights security as a constraint on software devel-
opment, and it should be addressed properly to mitigate the
security risks. In the case of real-time critical systems, these
vulnerabilities can result in fatal consequences [1].

Software with a bad design having security faws is more
vulnerable and external protection systems, such as frewalls,
intrusion detection, and malware detection, are unable to
protect it from external threats. Security is not a re-
quirement, but rather a constraint that afects the quality of
the software. It can be ensured at later stages of development
in the form of add-ons or some security features. Tese add-
ons and security features do not overcome possible vul-
nerabilities and hence cannot protect the whole software. It

Hindawi
Journal of Engineering
Volume 2024, Article ID 9962691, 15 pages
https://doi.org/10.1155/2024/9962691

https://orcid.org/0000-0003-2093-7274
https://orcid.org/0000-0002-4274-3641
https://orcid.org/0000-0002-6194-9864
https://orcid.org/0000-0001-7580-6357
https://orcid.org/0000-0002-3051-6775
https://orcid.org/0000-0003-0504-7089
https://orcid.org/0000-0001-7557-8702
mailto:ikalil@msn.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/9962691

is pertinent to note that system security is diferent than
software security. Software is a part of a computer system
and should have its own security features. Tese features can
be embedded in software during software development life
cycle (SDLC). By integrating security into SDLC, we may
develop software to proactively defend against potential
security threats [2].

Te security of the software has become more critical due
to the development of smart environments [3]. Te de-
ployment of Internet-of-Tings (IoT) and subsequent de-
velopment of Artifcial Intelligence of Tings (AIoT) in
diverse domains including smart health care, smart trans-
portation, smart homes, smart communities, and smart ed-
ucation has elevated security risks [4, 5]. Software in IoT
environments interacts with remote services using smart
devices [6]. Furthermore, the software running on smart
devices can access sensors, personal information, and use
machine-learning techniques to learn situations [7, 8]. Tese
IoT and AIoT software constantly monitor sensor in-
formation, location, health information, and system in-
formation that can be subject to both active and passive
security attacks [9, 10]. Te information is represented and
stored in a common open standard to achieve interoperability
among diferent types of systems [11]. Te smart devices not
only contain personal information but also keep on moni-
toring system data including sensor information, power in-
formation, location information, and activity information
[12]. While smart devices can be made secure and personal
and system data can be protected, the software that needs to
run on these devices should be developed securely. From
information gathering to storage, the data should be kept
confdential and shared with trusted parties only [13, 14]. Te
information storage can also be used as history information
which is useful for facilitating a user but is also a security risk
[13]. Many researchers have proposed usingmachine learning
for anomaly detection which is only efective once the soft-
ware is deployed [15]. It is necessary to use secure practices in
software development life cycle (SDLC) to ensure better
protection once the software is deployed. Microsoft promotes
Data Science as the game changer in secure SDLC [16].

It is necessary to secure a system against security risks.
However, developing secure software can mitigate such
risks. Te contributions of this paper are as follows:

(i) Tis paper aims to highlight the signifcance of se-
curity throughout the SDLC and present a security
policy framework PDWM for secure software de-
velopment using the waterfall method.

(ii) Furthermore, the authors establish how secure de-
velopment can lead to software that can detect
malware and anomalies. Such software can be de-
veloped for smart environments where security risks
are high.

Tis paper is organized as follows. Section 2 presents the
related work, Section 3 outlines the security policies, and in
Section 4, a policy-driven waterfall model for secure software
development is proposed. Section 5 describes a case study,
and Section 6 summarizes the paper.

2. Related Works

Te related works have been searched in major research
databases by using terms including SDLC, SSDLC, Secure
Software, and Secure Software Development. Te primary
search sources have been searched using Google Scholar,
Institute of Electrical and Electronics Engineers, ACM,
Hindawi, Wiley, MDPI, and others. Te results have been
sifted to check the relevancy for secure software develop-
ment processes. Relevancy has been established to compare
the efectiveness of PDWN with other techniques in
literature.

Tere are two high-profle processes available for the
development of secure software, namely, Microsoft’s SDL
and McGraw’s Touchpoints [17, 18]. SDL is rigorous and
heavyweight and is more suitable for large organizations.
Te Touchpoints approach is based on industrial experience.
Both processes have defned activities for diferent phases of
secure software development. Some activities are similar,
and some difer in both methodologies due to the priority
given to certain activities in each process and are more
extensive and heavyweight.

Tariq et al. have listed challenges for mission-critical
systems that interact with multiple data sources in real-time,
remotely [19]. Such systems utilize the concepts of IoT,
AIoT, and Industrial IoT (IIoT). Te challenges highlighted
by the authors can be mitigated by using secure software
development frameworks. Tis concept is enhanced by the
authors by utilizing a code-driven trust mechanism for the
detection of internal attacks in IoT [20]. Butt et al. have
demonstrated the efect of unsecured development practices
in IoT-based mobile health (mHealth) environments [21].
Te authors have proposed an algorithm to mitigate the
efects; however, they have not improved the development
process of mHealth applications.

Ahmad and Rana have developed a secure architecture
for developing e-commerce websites as a software product
[22]. Tese websites are developed as a Service-Oriented
Architecture (SOA) which needs to be made secure as it uses
the Internet for communication. Te authors propose em-
bedding the existing techniques to mitigate security threats
including unauthorized access, phishing, and interference
with key data, within the design of the software. However,
the authors have not developed a secure software devel-
opment model for developing e-commerce applications.

Khan et al. have carried out an extensive survey for
secure software development and identifed that the security
risks must be identifed and addressed for successful secure
software production [23]. Henry argues that organizations
should establish secure coding principles to ensure a secure
software development life cycle (SSDLC) [24].

Dissanayake et al. have conducted a survey of secure
software patch management techniques and tools [25]. Each
software goes through a maintenance and upgrade phase
during its life cycle. To improve the performance, including
security measures, patches are developed and applied to
diferent copies of the software deployed across networks. It
is much like the patches of Operating Systems as well as

2 Journal of Engineering

Software Suites and apps. All these patches need to be
managed efectively to secure deployment and upgrade.

Te emergence of Development and Operations
(DevOps) as a SDLC method has led to faster delivery of
complex software products focusing on higher quality
[26, 27]. Rajapaske et al. enhanced the concept and in-
tegrated concepts of Security in DevOps [28]. Te new
concept is called Development, Security, and Operations
(DevSecOps) and comes with new security challenges for
complex software development. DevSecOps is suitable for
complex software development and requires a strong de-
velopment and engineering team. Tis can be underutilized
for in-house simple software development, where traditional
[29] modeling is suitable.

Jøsang et al. proposed strengthening of security cur-
riculum in education sectors so that it leads to secure
software development [30]. Tis area receives less attention
and a focus on security education can broaden the horizon of
software developers, engineers, and architects. Angulo et al.
have also emphasized the integration of secure practices
including secure programming, threat modeling, and risk
assessment in Computer Science and Software Engineering
(CS/SE) curricula [29].

Almufareh and Humayun have established a concept of
mediating Security and Performance (SAP) verifcation to
improve the safety as well as the security of software [31].
Te authors have identifed several mediating factors that
infuence SAP verifcation.

Mbaaka has identifed human as a critical security risk
and used STRIDE to identify human factors, including
gender, age, and education, to assess the security
threats [32].

Te related works show that there is a requirement for
establishing security policies and a framework to implement
these policies for software development using traditional
methods. Tis is evident from Table 1 that compares the
related works with PDWM.

PDWM presents a lightweight approach that is more
suitable for small and medium organizations that develop
medium-sized software products and have higher experience
in developing similar products. PDWM outlines the security
requirements in depth and describes the existing practices
that are limited to specifc phases of development.Temodel
provides important insights into the security aspects in
diferent phases of SDLC and adhering to these practices can
lead to the development of a secure software system. By
adopting PDWM, an organization can reduce the number of
vulnerabilities in its software and hence make it more re-
liable and increase its security.

Like the traditional waterfall model, the PDWM em-
phasizes documentation which is a critical part of a software
project. Besides documentation, a knowledge base can be
built to record all facts that will be useful in other devel-
opment projects, and with time as the knowledge base be-
comes more mature, the quality, efciency, reliability, and
security of products will improve.

Tis paper provides a new perspective for the integration
of security in SDLC by suggesting a policy-driven waterfall
model for secure software development. Te work

contributes to the understanding of secure software devel-
opment. For software engineers and practitioners, this will
be a more useful source for understanding security
throughout the software life cycle, and software developers
will be aided with some useful practices to prevent errors
during the implementation phase.

3. Security Policy Framework

A policy can be defned as a defnite plan or course of action
adopted for the sake of expediency, facility, etc. [33]. From
a business point of view, a security policy defnes how
a company plans to protect its physical and information
technology assets from potential threats. Tis policy docu-
ment is continuously updated to refect new requirements
stemming from the environment. A company’s security
policy may include an adequate use policy, a training plan to
educate employees about how to protect the company’s
assets, how to enforce the security measures and an auditing
mechanism to evaluate the efectiveness of the security
policy [34, 35].

In the context of a secure software development ap-
proach, the security policy can be defned as a guideline to
aid system designers and developers in analyzing and
implementing security features throughout the development
process. We propose a security policy framework as shown
in Figure 1. Te security policy framework is developed to
address the issue of software security. Its main purpose is to
outline the main security requirements that should be taken
into account and present a policy-driven waterfall model
that addresses these requirements. Organizations that lack
security policy will require a lot of efort to introduce the
same into their environments as it is difcult to change the
habits of employees, especially development staf.

Te policy is written in a general way because it is not
amended frequently and is reviewed after a certain period.
For example, the security policy provides instructions to
check bufer overfow vulnerability but does not mention
any specifc tools for that. As for each project, there might be
a diferent requirement for tools, so developers should select
appropriate tools for that purpose.

Activities in the security policy framework defne roles
and responsibilities for administrators and developers,
managing secure software development, rules, and regula-
tions, training guidelines, etc. Audits can be conducted to
ensure that policy guidelines are properly followed. Te
teams should be educated well to implement the security
policy framework in true letter and spirit. Designers should
have a deep understanding of the security policy framework
in order to achieve the goals and for the better trans-
formation of security requirements into features. Developers
will get beneft from the security policy, and it will be easy for
them to integrate security policy into the system [36]. Te
security policy framework should cover the following areas
[37–39]:

(i) System architecture
(ii) Roles and responsibilities
(iii) Risk management

Journal of Engineering 3

Table 1: Comparison of related works.

Related works Secure practices during
the development process Lightweight approach In-depth

security requirements
[17, 18] ✓ 7 7

[20] ✓ 7 7

[21] 7 7 ✓
[22] 7 7 ✓
[26–29] ✓ 7 ✓
[31] ✓ 7 7

PDWM ✓ ✓ ✓

SECURITY POLICY

Build Security Team

Auditing

Tracking Fixing

Testing
Information

Policy

Data
classification

Authentication Authorization

Encryption

User roles Least privileges

Training

Development team's
training

Secure design
principles

Training end-
user

Standard coding
practices

Error Handling and
Exception Management

Handling all errors
securely

User friendly
error messages

Error stack and details

Security Testing

Risk-based
security
testing

Code reviews

Penetration testing Unit testing

Unit testing

Security reviews

Configuration Management

Securing configuration data
and commands

Define configuration
management activities

Feedback and Support

Vulnerability
reporting

Create, deploy, and
monitor fix Learning security issues

Analyzing vulnerability
reports

Monitoring and
control

Logging and
reviews

Documentation

Developer
documentation

Security guides Security
manuals

Traceability

Risk Management

Attack trees

Risk assessment of 3rd-party
components

Cost-benefit
analysis

Threat mitigation
strategies

Risk analysis

Threat modelling,
assessment, reviews, and

revisions

Security Requirements Analysis

Security and safety
requirements

Prioritize Reviews

Regulatory
constraints

System
architecture

Malicious use-
cases

Figure 1: A security policy framework.

4 Journal of Engineering

(iv) Security control mechanism
(v) Regulatory requirements
(vi) Information privacy
(vii) Security-related measures in development

procedures
(viii) Testing and documentation
(ix) Auditing mechanism for assurance of policy

implementation
(x) Training of developers to adopt best coding

practices and usage of various tools
(xi) End user training regarding security features of the

system
(xii) Logging and monitoring mechanisms
(xiii) Change management

Te main requirements that the security policy frame-
work should take into account are stated.

3.1. Build Security Team. A central security team comprised
of security professionals will be an asset to the organization.
Tis team helps the development people by defning process
requirements, educating them to adhere to best coding
practices, and performing design and code reviews [40].
Clearly defne the roles and responsibilities of each team
member to have a well-structured approach. An additional
task of auditing may be assigned to a small group within the
security team. Tis group will ensure that the security policy
framework is implemented within the organization and is
followed accordingly.

Provide suitable training to the employees regarding the
security policy framework. Surprise checks are helpful to
verify that employees have a well understanding of the se-
curity policy framework and are performing their roles
following the guidelines provided to them. A major con-
tribution of the security team is security testing. Test plans
based on threat models and attack patterns provide the basis
for security testing. Defects found are analyzed, prioritized,
and fxed with the help of design and development teams.

3.2. Security Requirements. Security requirements covering
all possible aspects of software’s security is a key to the
development of secure software. Treat modeling is used to
further elaborate the security requirements for better
understating and to transform them into implementation
details. Functional security requirements should also be
defned.Treats should be prioritized to address the highest-
rated threat. Security requirements may impose some
constraints to comply with regulatory standards. For ex-
ample, in the health care system, patient information should
not be disclosed without taking the consent of the patient.
So, it is a major security concern and many agencies have
devised rules and regulations for that. A fnal review may be
conducted to assure that there is no uncaptured security
requirement.

3.3. Risk Management. Risk management is an important
factor in the design of secure software. After evaluating the
security requirements, an analysis of anticipated risks is
carried out. Treat modeling is used to uncover the threats.
Treats are rated so that high-rated threats are given pref-
erence. Attack trees are helpful in modeling security threats
in a graphical form. In attack trees, the attacker’s goal is
shown as nodes and branches represent diferent paths to
achieve that goal. Once threats are identifed, provide
possible solutions to mitigate the threats. Also, carry out
a cost-beneft analysis during the risk management phase.
Risk management also includes security risks and uses threat
modeling to assess the vulnerabilities [41, 42].

3.4. Documentation. Documentation is very essential in
every project. All artifacts related to the project are recorded
that are used as guidelines during the project life cycle. Apart
from the design documents, other documents, such as the
administrator manual, user manual, and security, guide for
the user should also be developed. Tis will ease the work of
the administrator of the system and will help users to better
understand the system and its features.

3.5. Information Privacy. Te next component of the se-
curity policy framework is information privacy. Te com-
pany’s information policy can be used to draw data
classifcation schema. It should clearly state which user has
access to which part of the data. User roles must be defned
according to the information privacy policy. Security fea-
tures like authentication and authorization for user access
control should be used. Sensitive data should be processed
and transmitted in encrypted form. Users should be granted
minimum privileges that are necessary to execute a task.

3.6. Training. Another important aspect of the security
policy framework is training. Training is the process to
educate people to improve their performance by enhancing
their skills. It is also useful for the adoption of new tech-
nologies or learning about new developments. Many security
vulnerabilities arise from bad coding practices. To overcome
this problem, the development team should be given training
about standard coding practices and writing secure code
[43]. Training material should include case studies and
examples that will beneft the development teams in better
understanding of learning material and its impact will last
longer. Furthermore, some exercises may be included to
evaluate the result of the training session. Training of system
users is also essential in order to use the system in an efcient
and secure manner.

3.7. Error Handling and Exception Management. Error
handling is a way to detect system errors and handle them in
such a way that system’s normal behavior is not afected. By
performing validation of data elements during input, output,
or processing, errors can be minimized. Use suitable and

Journal of Engineering 5

user-friendly error messages that can help the user to un-
derstand the cause of the error. Moreover, use exception
handling mechanisms to capture exceptions that can disrupt
the normal operation of the system.

3.8. Security Testing. Te security testing component of the
security policy framework describes certain techniques that
are employed in the security testing phase. Tis includes
risk-based security testing, security features testing, unit
testing, penetration testing, code reviews, and security
review.

3.9. Confguration Management. Software in its life goes
through several changes that are stemmed from its envi-
ronment with the growing business needs. Confguration
management is the process to control and track changes
[44, 45]. A confguration mechanism is necessary to keep
a history of changes, review, and impact of changes in-
corporated. Security in confguration management deals
with access control, confdentiality, accountability, and
auditing. It ensures that only authorized persons have access
to confguration items. All actions are logged in a way to
track who made what changes at any given time. It also
provides a way to review developer actions.

3.10. Feedback and Support. After the deployment of the
software, the feedback mechanism can provide us with in-
formation regarding the operation of the software. Tis
feedback mechanism can base on monitoring and logging.
Te analysis of logging information can reveal vulnerabil-
ities, information about attacks, and any unexpected error
that occurred during operation. Periodic visits are also
helpful to monitor the behavior of the system. Any vul-
nerability noted is to be analyzed and adopt measures to fx
the same.

4. A Policy-Driven Waterfall Model for Secure
Software Development

A policy-driven waterfall model (PDWM) is derived from
the traditional waterfall model as shown in Figure 2. Te
PDWM is based on the security policy framework. Its
purpose is to integrate security in all phases of software
development in order to develop secure software.

Te method is linear and sequential and each phase has
distinct goals. Before moving to the next phase, it is ensured
that the earlier phases are correct. Each phase proceeds in
strict order without overlapping. Tere are feedback loops
present between each phase to accommodate changes. Upon
discovering new artifacts or some defects, we can go back to
the previous phase and incorporate the change. Like the
traditional waterfall model, the PDWM emphasizes docu-
mentation which is an essential part of a project.

Te mechanism starts by identifying and analysing se-
curity issues including SQL Injection, outdated software,
patch requirements, security risks, data encryption re-
quirements, DDoS awareness, unsecure coding practices,

and insecure testing. Tese and other issues are then in-
cluded in each phase for which it is appropriate and security
requirements are addressed. PDWM is designed in a way
that addresses security issues in each phase of SDLC.

After developing the security policy framework, it would
be easier to transform security features into a development
process. PDWM exhibits security aspects throughout the
whole software development process. Te output of each
phase is provided to the input of the next phase. Every phase
may produce new artifacts that will be incorporated into the
security policy framework. A knowledge base can also be
developed to record the security policy framework which
will be useful in other development projects.

4.1. SecurityAnalysis. During the security analysis phase, the
operational environment of software is analyzed in detail
concerning security aspects. Te most important is the se-
curity of information. Further study may include intended
users of the system, operating system, and underlying
hardware. In addition, network infrastructure, communi-
cation channels, frewalls, intrusion detection systems, and
software including antivirus, antispam, and antispyware
should be analyzed in terms of strengths and weaknesses.

A detailed study of the software’s operational environ-
mental factors will help to avoid any vulnerability that, if left
unattended, may be propagated in the next phases. Brain-
storming sessions conducted with all stakeholders, including
decision-makers, security policymakers, and information
security specialists, are productive in the evaluation of po-
tential threats. It is necessary to perform a threat analysis to
identify assets, potential risks to those assets, possible at-
tackers, and how to safeguard those assets from attacks.
Furthermore, assets are prioritized based on confdentiality,
integrity, and availability to safeguard more valued assets.
Treats are rated and prioritized to take countermeasures
against high-rated threats.

Te possible system’s security environment should be
carefully analyzed which may include the type of security
protection available in the underlying operating system,
memory management in the operating system, user policies,
the organization’s information security policy, user privi-
leges to access information, and what type of information
a user can access?Te cost-beneft analysis should be carried
out keeping in mind the time, budget, and resource
constraints.

4.2. Security Requirements. Te most overlooked part of
security engineering is the security requirement. Tese are
often considered technical issues and are taken into con-
sideration at the implementation stage. Security re-
quirements must be stated in detail in this phase because any
uncaptured requirement will be propagated into the next
phases of development, consequently leaving faws in the
system that could be exploited as vulnerabilities. Collecting
and analyzing the right set of security requirements and
performing threat analysis is helpful in the identifcation of
suitable security requirements and mitigating vital threats
[46]. A lightweight approach consisting of well-balanced

6 Journal of Engineering

security requirements right from the beginning is very useful
to elicit critical security requirements [47].

One best technique is to defne misuse cases for possible
threats [48]. Peterson and Steven have presented an ap-
proach to defning misuse cases [49]. Brainstorming sessions
of information security professionals and developers may be
productive to discover misuse cases [50]. Usingmisuse cases,
one can defne the attacker’s goal or ways to exploit the
system. Misuse cases may lead to additional nonfunctional
and quality requirements that should be documented and
included in existing requirements. Knowledge of security
analysts is of great value while performing business risk
analysis and architectural risk analysis.

Treat modeling helps identify risks and subsequently
takes decisions to mitigate those risks in the design, coding,
and testing phases [51]. To further elaborate the threat
models, attack trees are used. Attack trees allow us to model
security threats in a graphical form. It has been observed that
attack trees are more efective for fnding threats in the
absence of use-case diagrams [52]. Te graphical repre-
sentation of the attack tree provides a better understanding
of how attacks can be successful and the probability of at-
tacks that are most likely to succeed [53, 54]. Te meth-
odology can also reveal the vulnerability of a system, under
specifed constraints. If we understand the ways in which
a system can be attacked, we can develop countermeasures to
prevent those attacks.

4.3. Security Design. At the design level, the security
framework outlined in the requirements phase must be
evaluated in terms of technology and the system must
present a unifed structure that can be implemented. Te
designers must review the design keeping in view the

security requirements which will help to identify additional
risks or threats. Software security is categorized into four
areas, namely, input, output, data, and algorithm.Tey must
be made secure [55]. Evaluation of underlying technologies
in terms of implementation of the design is crucial. Alternate
solutions may be considered to pick the best one that is more
secure, efcient, and cost-efective. If the system under
development is of classifed nature, there may be a re-
quirement to secure the design of the system.

By following the secure design principles, the secure
development process can be improved. Sometimes, there is
a requirement that some portion of the application’s code
may be open to the Internet. In this case, the potential risks
and what has been vulnerable must be analyzed. If the
application consumes untrusted data, enforce a validation
mechanism that must be robust in data handling [56]. Te
design of software can be made more secure by the use of
attack patterns that can identify security vulnerabilities at an
initial stage. UMLsec can be used to model the security
aspects of the system [57]. Once security faws are identifed,
designers should adopt appropriate measures to mitigate
those vulnerabilities and strengthen the defense mechanism
of the system [58]. Designers should keep the design as
simple as possible and enforce defense mechanisms in depth.

Tere are commercial of-the-shelf (COTS) components
available that are used in the development of software to
reduce cost and development time. As the software is de-
veloped and deployed on some operating systems, we have to
use someAPIs of the operating system for communications or
other services. A detailed study of these APIs will help in
a better understanding of their structures and implementa-
tion. Bad implementation of APIs can lead to vulnerabilities
that may pose a risk to the system. Furthermore, if third-party
components have been used in the development of the system,

Security Analysis

Security
Requirements

Security Design

Security
Implementation

Security Testing

Operations and
Maintenance

Security
Policy

Figure 2: A policy-driven waterfall model for secure software development.

Journal of Engineering 7

obtain complete documentation to get complete knowledge of
software components. Developing own encryption algorithm
is not an easy job because it requires deep knowledge of
encryption techniques. Te use of standard encryption al-
gorithms is a good approach to a secure design. Encryption of
passwords or sensitive data is essential to make it secure
before transmitting over the network. Te principle of least
privilege must be used for a user to perform a task.Te design
needs to be consistent and race conditions should not exist.
Data objects need to be defned with a lower bound and upper
bound limit.

4.4. Security Implementation. Implementation begins with
the selection of the appropriate programming language.
Various programming languages are available today with
diferent features. C/C++ are quite popular and fexible
languages but are criticized due to security vulnerabilities.
However, secure coding can be achieved by proper handling
of data holders. To overcome common errors regarding
string and integer manipulation in C/C++, alternate solu-
tions are available [59]. Te most common vulnerabilities
arising from coding problems in C language are bufer
overfow, format string vulnerabilities, and integer
vulnerabilities [60].

Static analysis tools can be used to detect faws in code.
Although these tools provide help to developers to discover
coding errors, their scopes are limited and do not guarantee
defect-free software. Code review can be done with the help
of tools, but it is recommended that one should not fully
depend on these tools. A manual review should also be
performed, which is quite productive. Source code review
checklists provide a good way to minimize errors.

Common security faws can be removed by cryptography
and with improved quality procedures [61]. Programmers
should defne passwords with alphanumeric combinations
to make them strong enough, with suitable length and ex-
piration periods. All inputs and outputs are to be analyzed
and validated. Te length and type of input felds must be
clearly defned. It is necessary to implement typecasting
carefully and properly and destroy memory objects after use
for better memory management. Validation of function calls
and parameter passing like pass-by-value or pass-by-
reference needs to be performed. Sensitive data including
user authentication should be transmitted in encrypted
form. By following best coding practices, errors like bufer
overfow, stack overfow, type mismatch, and divide by zero
can be avoided. All exceptions must be handled with a try-
catch block and use suitable error messages for user in-
formation. For debugging and auditing purposes, logs can be
generated. Te security of the logging mechanism has to be
handled properly.

4.5. Security Testing. Testing is a crucial part of the software
development life cycle. Security testing is the process to
determine that the application is securing data and per-
forming its intended functionality. Parameters including
authentication, authorization, confdentiality, integrity, and
nonrepudiation should be kept in mind for security testing.

Te security team performs various tests to check the be-
havior of the system under possible attacks. Dynamic
software security testing is useful for the system developed
using multisource components [62]. Although it would be
quite hard to develop such a security testing system at the
initial stages, later on, it will be more helpful for the de-
velopment of secure systems. A security test plan comprising
security functionality and risk-based security testing is useful
in the validation of security aspects and identifcation of
security defects [63].

Code review is a time-consuming process but produces
good results. Te quality of the review depends upon the
reviewer’s competency and professionalism. Code review
can produce better results for security testing [64]. Another
technique in security testing is the use of checklists.
Checklists are used to verify specifc measures needed for
software security [65]. Test cases can be generated from
misuse cases to validate the defense mechanism against an
attack. A test team plays a vital role in the testing phase.
Penetration testing is very useful to identify potential vul-
nerabilities. Penetration testing applied at the unit and
system level can improve the software development life cycle
[66]. Fuzz testing is also very helpful to discover software
defects. Testers should employ themselves as hackers of the
system to perform testing to evaluate the system for potential
vulnerabilities, bugs, or faws.

4.6. Operation and Maintenance. Mostly operation and
maintenance phases are not considered in the security
framework. However, it is as important as other phases of
the software development life cycle. Proper deployment and
confguration of the system can ease the work of system
administrators. Furthermore, to keep the system updated
against security threats, constant updating and monitoring
are required. During the operation of software, monitoring
the software for security breach attempts is helpful to analyze
and remove the defects. A response process may be adopted
to evaluate vulnerabilities and respond to these by releasing
an update and removing other defects.

Deploying the application safely in its intended envi-
ronment and running it accordingly will have a positive
efect on information security, and monitoring mechanisms
help in incident response operations. Other techniques, such
as code isolation, protection of executables, and monitoring
programs for executables, can be used to safeguard the
system from environmental threats. Te introduction of
a feedback mechanism is very helpful for continuous im-
provements and updating of the system. For tracking ac-
tivities, logging must be used to analyze the attacks or
vulnerabilities so that a countermeasure action can be taken
and implemented into the system.

5. Case Study

We use an e-travel system, an online fight ticketing ap-
plication, to exemplify PDWM. Figure 3 shows the scenario
of e-travel that includes inquiries about fights and makes
online bookings.

8 Journal of Engineering

Flight inquiries can be made by any customer as there is
no need for the provision of personal data. However, in the
case of a complete transaction, that is from reservation to
printing of e-ticket, customer information is required which
should be kept confdential and hence raises the requirement
tomake the process secure.We will focus on this scenario for
the applicability of the PDWM.

For the e-travel application, we must analyze the envi-
ronment to identify threats because the environment of the
application is also a major factor that infuences possible
threats. As e-travel is a client-server application commu-
nicating over the Internet, attackers canmisuse the system to
collect customers’ data like the credit card number. So, the
main security requirements are to secure the customer’s
information as well as data transmission over the Internet.
Tese two requirements are the security policies that must be
adhered to when developing this application. e-travel is
exposed to eavesdropping (information disclosure) threats
as well [67].

Now, we can defne the security requirements for e-
travel application. Tere are two security requirements that
are to be addressed: one is transmitting customer in-
formation in a secure way and the other is the e-travel’s
database privacy as it contains valuable data on customer
bookings.

Te attack tree for obtaining customer information is
depicted in Figure 4. “Obtain customer’s information” is the
root node of the attack tree. Branches represent diferent
paths that an attacker can follow to achieve that goal. OR-
nodes represent alternative paths while AND-nodes are
subgoals that must be satisfed to accomplish an attack.

“Looking over the shoulder” and “Treaten” attacks were
deleted from the attack tree as they are related to physical
security.

When a customer is interested in buying a ticket, then
the customer’s credentials will be transmitted in an
encrypted form. 256-bit AES can be used to encrypt the
information on the client side and then transmit it over the
communication channel. In addition to this, auto-generated
session keys with expiration duration can be generated to
enhance the security features of the communication. On the
server side, information will be decrypted and processed
accordingly.

Several programming languages can be used for the
implementation of e-travel. For e-travel, we selected PHP as
it is open source and suitable for our sample application and
for the database MySQL (CE).

256-bit AES is used to encrypt the customer’s in-
formation on the client side using JavaScript before trans-
mitting it over the Internet to the server. Tis will ensure the
confdentiality of data over a public network. Validation of
all inputs will be done for type and length. Typecasting if not
implemented properly can produce errors. To avoid bufer
overfow errors, the bufer size will be fxed, so that it can be
checked before usage.

Here are two PHP coding examples for reference. One is
the validation of input for alphanumeric and the other is
relevant to limiting the length of the text string.

//Check if string contains characters other than
alphanumeric
$alphaNum� “1234567teststring@#&-]”;

Make
Reservation

1.0 Prepare Ticket
2.0

Make Payment
3.0

Bookings and Flight Records

Accounting fle

Customer

1. Date, time,
destination, personal data

10. Status

2. Access 3. Records

4. Reserve

5. Generate bill

Credit Card
Company

6. Bill

7. Payment status8. Record9. Record status

Figure 3: e-travel scenario.

Journal of Engineering 9

if (ereg(‘[̂A-Za-z0-9]’, $alphaNum))
{

echo “Text contains characters other than
alphanumeric”;
}
else
{

echo “Text contains only letters and numbers”;
}
//Limit the length of string to 20 characters
if (strlen($sample)> “20”)
{

exit(“Text is too long, maximum length is 20.”).
}

We can protect our scripts from SQL injection by using
a built-in PHP function. Tis function removes special
characters from the string. An example is shown.

//Clean the string before passing to SQL query
$userName�mysql_real_escape_string($_POST
[‘user_name’], $mydb).
$queryResult�mysql_query(“INSERT INTO User
(name) VALUE (‘{$userName}’)”).
if ($queryResult)
{

echo “User name stored successfully.”;
}

else
{

echo “User name cannot be stored, please try again.”;
}

Security testing of e-travel can be performed through
web application security testing tools. Various commercial
and open-source tools are available for web security testing
that can be used to track vulnerabilities. Two web security
testing tools,Websecurify and skipfsh, are used for the testing
of e-travel [68, 69]. Both tools are open source, support
multiplatform, are easy to use, have cutting-edge web tech-
nologies, andwith low false positive rate. Any detected bugs in
this stage should be rated so that bugs with a higher priority
should be removed in the frst place. A port scanner tool can
be used to scan ports on a web server. Any unused open ports
should immediately be closed or disabled to avoid any vul-
nerability or attack. e-travel system generates logs for thrown
exceptions.Tese logs will be analyzed for errors and potential
attacks and remedial measures will be taken to secure the
system. Table 2 shows the security vulnerabilities and their
potential risks for the e-travel scenario based on STRIDE.

Table 1 shows that the critical areas of focus are the
boundary processes and databases. It is necessary for the
development team to explore security requirements for these
areas in all phases of SDLC. It would be necessary to write
functional requirements as well as quantify nonfunctional
requirements during the requirements phase of develop-
ment. Te requirements should be modifable and traceable
as new requirements emerge. During the design phase, the
security aspects should be included in the design, such
as encryption, session identifers, authentication, authori-
zation, lease, and checksums. Furthermore, access lists could

Obtain Customer's
Information

Buy e-ticket Gain access via TCP/IP

Retrieve customer
information Eavesdrop Get information from

customer

Root shell access
on server

Sniff communication

Looking over shoulder

Threaten Steal

Get keyloggerInstall keylogger

Exploit vulnerability

Port open for general
traffic Access subnet

AND

AND

Figure 4: Attack tree for obtaining customer information.

10 Journal of Engineering

Ta
bl

e
2:

Se
cu
ri
ty

vu
ln
er
ab
ili
tie
s
an
d
ri
sk
s
fo
r
e-
tr
av
el
.

S.
N
o.

C
om

po
ne
nt

Ty
pe

Se
cu
ri
ty

vu
ln
er
ab
ili
ty

Ri
sk

1
M
ak
e
re
se
rv
at
io
n

Pr
oc
es
s

Ta
m
pe
ri
ng

,s
po

of
ng

,r
ep
ud

ia
tio

n,
in
fo
rm

at
io
n
di
sc
lo
su
re
,D

oS
,e
le
va
te
d
ac
ce
ss

H
ig
h

2
Pr
ep
ar
e
tic
ke
t

Pr
oc
es
s

Lo
w

3
M
ak
e
pa
ym

en
t

Pr
oc
es
s

Sp
oo

fn
g,

re
pu

di
at
io
n

M
od

er
at
e

4
Bo

ok
in
gs

an
d
fi
gh

tr
ec
or
ds

D
at
ab
as
e

In
fo
rm

at
io
n
di
sc
lo
su
re
,e
le
va
te
d
ac
ce
ss

M
od

er
at
e

5
A
cc
ou

nt
in
g
fl
e

D
at
as
to
re

In
fo
rm

at
io
n
di
sc
lo
su
re
,e
le
va
te
d
ac
ce
ss

M
od

er
at
e

Journal of Engineering 11

ensure that there is no unnecessary elevation of privileges.
Logs should be maintained to ensure security audits. Based
on the requirements and the design, suitable test cases
should be developed to ensure the efectiveness of the se-
curity countermeasures.

When compared with the traditional waterfall model, the
security aspects would emerge once the product is deployed,
causing errors, and exceptions, which could potentially
destroy a business by increasing the cost of the fx. Using
PDWM could ensure that security policies are embedded in
all phases so that appropriate countermeasures could be
included in the design and implementation.

We have further compared the efectiveness of PDWM
by developing security test cases.Tese security test cases are
developed for the case given in Figure 3. Tere are a total of
12 security test cases for each security vulnerability of the
components of the e-travel scenario as shown in Table 2.
Compared with the techniques for secure software

development listed in Section 2, Table 3 shows that PDWM
can identify security vulnerabilities at an earlier stage of
development. It can be seen that PDWM can identify 33%
more security vulnerabilities when using SOA.

 . Conclusions

Tis paper presents PDWM, which uses security policies in
software development.Te security policies are embedded in
each phase of waterfall-based software development. Te
security policies include the security-related requirements
that must be considered during SDLC. A framework that
supports the security policies is given in this paper. Tis
framework is applied to an e-travel case study to ascertain its
efectiveness.

PDWM embodies best practices in each phase of soft-
ware development starting from requirements up to
maintenance. Tese best practices help system analysts and

Table 3: Comparison of security test cases between PDWM and other techniques.

S. No. Component Number of security test
cases

Number of security test cases identifed during software development

PDWM Secure software patch
management Using SOA Traditional

waterfall development
1 Make reservation 6 6 — 6 —
2 Prepare ticket — — — — —
3 Make payment 2 2 — 2 —
4 Bookings and fight records 2 2 — — —
5 Accounting fle 2 2 — — —

Total 12 12 — 8 —
Tis signifes the total number of security text cases.

Table 4: Limitations and their responses in PDWM.

Limitation Response in PDWM

Serial execution
PDWM is developed much more on the lines of the waterfall method of SDLC with

a serial execution. Tis ensures a stable development model useful for an
experienced team

Rigidity

Since PDWM is developed sequentially, there is little room for error. However, the
inclusion of security vulnerabilities and their solution in each phase reduces the
risks. However, a risk management phase can further reduce the need for change

once a phase is completed

Change handling

A change that occurs after a phase is completed can be handled as there are feedback
loops in PDWM; however, the cost is higher than agile techniques. PDWM sufers
from cost vs security tradeof; while the security handling is enhanced, the cost of

change handling cannot be reduced. Tis is also true for late discovery of
requirements that could lead to newer security vulnerabilities

Flexibility

PDWM is not a fexible model like agile techniques. However, when considering
security vulnerabilities, fexibility is a desired feature. PDWM addresses fexibility
by employing experienced team and enlisting all security requirements for all stages

of SDLC exhaustively

Delayed feedback PDWM prioritizes security over all other requirements. It is envisaged that the user
involvement should increase in each phase to reduce delayed feedback by the user

Exhaustive requirement gathering
Since the team is composed of experiencedmembers, it is impossible to exhaustively
gather all requirements during the requirements phase. However, change is still

possible that can be handled using feedback loop at a higher cost

Large projects While PDWM is not suitable for large projects, a component-based approach can be
utilized in which multiple teams develop components using PDWM

Risk management
Tere is no risk management phase explicitly embedded in the model; however,
risks of each security vulnerability are considered, and security requirements are

generated for each phase

12 Journal of Engineering

developers to develop secure software products. Adhering to
these practices can result in a secure, reliable, and efcient
system that can proactively defend against security threats,
especially when it comes to developing software for smart
environments. PDWM is limited to the secure development
of medium-sized and low-risk software products having
stable requirements. Tere is a need to explore the efec-
tiveness of PDWN for developing high-risk software
products that have dynamically changing requirements,
using agile methods. Te authors list some limitations and
how PDWM addresses them in Table 4.

Te limitations presented in Table 4 can be used as future
work. While PDWM lacks the advantages of the iterative
development model, a search for a policy driven agile de-
velopment goes on.

Data Availability

Te authors confrm that the data generated or analyzed and
supporting the fndings of this study are available within the
article.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] M. Zhivich and R. K. Cunningham, “Te real cost of software
errors,” Institute of Electrical and Electronics Engineers Se-
curity and Privacy Magazine, vol. 7, no. 2, pp. 87–90, 2009.

[2] G. McGraw, “Building secure software: better than protecting
bad software,” Institute of Electrical and Electronics Engineers
Software, vol. 19, no. 6, pp. 57-58, 2002.

[3] U. Mahmud, S. Hussain, A. J. Malik, S. Farooqui, and
N. A. Malik, “Realizing IoE for smart service delivery: case of
museum tour guide,” in Smart Systems Design, Applications,
and Challenges, IGI Global, Hershey, PA, USA, 2020.

[4] U. Mahmud, S. Hussain, A. Sarwar, and I. K. Toure, “A
distributed emergency vehicle transit system using artifcial
intelligence of Tings (DEVeTS-AIoT),” Wireless Commu-
nications and Mobile Computing, vol. 2022, Article ID
9654858, 12 pages, 2022.

[5] S. Hussain, U. Mahmud, and S. Yang, “Car e-talk: an IoT-
enabled cloud-assisted smart feet maintenance system,” In-
stitute of Electrical and Electronics Engineers Internet of Tings
Journal, vol. 8, no. 12, pp. 9484–9494, 2020.

[6] U. Mahmud, S. Hussain, and I. K. Toure, “Gathering con-
textual data with power information using smartphones in
internet of everything,”Wireless Communications and Mobile
Computing, vol. 2022, Article ID 4445751, 14 pages, 2022.

[7] U. Mahmud and M. Y. Javed, “Context inference engine
(CiE): inferring context,” International Journal of Advanced
Pervasive and Ubiquitous Computing, vol. 4, no. 3, pp. 13–41,
2012.

[8] U. Mahmud and M. Y. Javed, “Context inference engine
(CiE): classifying activity of context using minkowski distance
and standard deviation-based ranks,” in Systems and Software
Development, Modeling, and Analysis: New Perspectives and
Methodologies, pp. 65–112, IGI Global, Hershey, PA, USA,
2014.

[9] U. Mahmud, N. Iltaf, A. Rehman, and F. Kamran, “Context-
Aware paradigm for a pervasive computing environment
(CAPP),” in WWW\Internet 2007, Lambert Academic Pub-
lisher (LAP), Villa Real, Portugal, 2007.

[10] Y. Li and Q. Liu, “A comprehensive review study of cyber-
attacks and cyber security; Emerging trends and recent de-
velopments,” Energy Reports, vol. 7, pp. 8176–8186, 2021.

[11] U. Mahmud, U. Farooq, M. Y. Javed, and N. A. Malik,
“Representing and organizing ContextualData in context
aware environments,” Journal of Computing, vol. 4, no. 3,
pp. 61–67, 2012.

[12] U. Mahmud, S. Hussain, and S. Yang, “Power profling of
context aware systems: a contemporary analysis and frame-
work for power conservation,”Wireless Communications and
Mobile Computing, vol. 2018, Article ID 1347967, 15 pages,
2018.

[13] N. A. Malik, M. Y. Javed, and U. Mahmud, “Estimating user
preferences by managing contextual history in context aware
systems,” Journal of Software, vol. 4, no. 6, pp. 571–576, 2009.

[14] U. Mahmud, N. Iltaf, and F. Kamran, “Context congregator:
gathering contextual information in CAPP,” in Proceedings of
the Frontiers of Information Technology, Islamabad, Pakistan,
December 2007.

[15] D. Kim and T.-Y. Heo, “Anomaly detection with feature
extraction based on machine learning using hydraulic system
IoT sensor data,” Sensors, vol. 22, no. 7, pp. 1–24, 2022.

[16] Microsoft, “Secure the software development,” 2020, https://
www.microsoft.com/security/blog/2020/04/16/secure-software-
development-lifecycle-machine-learning/.

[17] M. Howard and S. Lipner, Te Security Development Lifecycle
(SDL): A Process for Developing Demonstrably More Secure
Software, Microsoft Press, New York, NY, USA, 2006.

[18] G. McGraw, Software Security: Building Security in, Addison
Wesley, New York, NY, USA, 2006.

[19] N. Tariq, M. Asim, and F. A. Khan, “Securing SCADA-based
critical infrastructures: challenges and open issues,” Procedia
Computer Science, vol. 155, pp. 612–617, 2019.

[20] N. Tariq, M. Asim, F. A. Khan, T. Baker, U. Khalid, and
A. Derhab, “A blockchain-based multi-mobile code-driven
trust mechanism for detecting internal attacks in internet of
Tings,” Sensors, vol. 21, no. 1, pp. 1–27, 2020.

[21] S. A. Butt, T. Jamal, M. A. Azad, A. Ali, and N. S. Safa, “A
multivariant secure framework for smart mobile health ap-
plication,” Transactions on Emerging Telecommunications
Technologies, vol. 33, no. 8, pp. 1–18, 2019.

[22] T. Ahmed and T. Rana, “Secure architecture for E-commerce
websites,” Sir Syed University Research Journal of Engineering
and Technology, vol. 9, no. 1, pp. 13–17, 2019.

[23] R. A. Khan, S. U. Khan, H. U. Khan, and M. Ilyas, “Systematic
literature review on security risks and its practices in secure
software development,” Institute of Electrical and Electronics
Engineers Access, vol. 10, pp. 5456–5481, 2022.

[24] O. N. Henry, “Secure software development: industrial
practice- a review,” I-manager’s Journal on Software Engi-
neering, vol. 16, no. 3, pp. 60–71, 2022.

[25] N. Dissanayake, A. Jayatilaka, M. Zahedi, and M. A. Babar,
“Software security patch management- A systematic literature
review of challenges, approaches, tools and practices,” In-
formation and Software Technology, vol. 144, Article ID
106771, 2022.

[26] A. Mishra and Z. Otaiwi, “DevOps and software quality:
a systematic mapping,” Computer Science Review, vol. 38,
pp. 1–18, 2020.

Journal of Engineering 13

https://www.microsoft.com/security/blog/2020/04/16/secure-software-development-lifecycle-machine-learning/
https://www.microsoft.com/security/blog/2020/04/16/secure-software-development-lifecycle-machine-learning/
https://www.microsoft.com/security/blog/2020/04/16/secure-software-development-lifecycle-machine-learning/

[27] N. M. Noorani, A. T. Zamani, M. Alenezi, M. Shameem, and
P. Singh, “Factor prioritization for efectively implementing
DevOps in software development organizations: a SWO-
T-AHP approach,” Axioms, vol. 11, no. 10, pp. 1–29, 2022.

[28] R. N. Rajapakse, M. Zahedi, M. A. Babar, and H. Shen,
“Challenges and solutions when adopting DevSecOps: a sys-
tematic review,” Information and Software Technology,
vol. 141, Article ID 106700, 2022.

[29] A. A. Reyes Angulo, X. Yang, Q. Niyaz, S. Paheding, and
A. Y. Javaid, “A secure software engineering design frame-
work for educational purpose,” in Proceedings of the 2022
Institute Of Electrical And Electronics Engineers International
Conference on Electro Information Technology (eIT), Mankato,
MN, USA, May 2022.

[30] A. Jøsang, M. Ødegaard, and E. Oftedal, “Cybersecurity
through secure software development,” in Proceedings of the
IFIP World Conference on Information Security Education
(WISE 2015), Hamburg, Germany, February 2015.

[31] M. F. Almufareh andM. Humayun, “Improving the safety and
security of software systems by mediating SAP verifcation,”
Applied Sciences, vol. 13, no. 1, p. 647, 2023.

[32] W. Mbaka, “Towards unveiling efects of human factors
within security risk assessment,” Association for Computing
Machinery Special Interest Group on Software Engineering-
Software Engineering Notes, vol. 48, no. 1, pp. 70–75, 2023.

[33] Dictionary.com, “Policy,” 2022, http://dictionary.reference.
com/browse/policy.

[34] B. Lutkevich, “What is security policy,” 2022, http://
searchsecurity.techtarget.com.

[35] R. Grimmick, “What is a security policy?” 2022, https://www.
varonis.com/blog/what-is-a-security-policy.

[36] J. Steer, “Security policies in the application development
process,” 2011, http://technet.microsoft.com/en-us/library.

[37] Fordham University, “Web applicataion security,” 2019, https://
www.fordham.edu/information-technology/it-security--assurance
/it-policies-procedures-and-guidelines/web-application-security-
policy/.

[38] CertMike, “Security policy framework,” 2018, https://www.
certmike.com/security-policy-framework/.

[39] gov uk, “Security policy framework: protecting government
assets,” 2022, https://www.gov.uk/government/publications/
security-policy-framework.

[40] M. Howard, “Building more secure software with improved
development processes,” Institute of Electrical and Electronics
Engineers Security and Privacy Magazine, vol. 2, no. 6,
pp. 63–65, 2004.

[41] N. A. Malik, Y. M. Javed, and U. Mahmud, “Treat modeling
in pervasive computing paradigm,” in Proceedings of the 2008
New Technologies, Mobility and Security, Marrakesh, Mo-
rocco, November 2008.

[42] U. Mahmud and N. A. Malik, “Flow and threat modelling of
a context aware system,” International Journal of Advanced
Pervasive and Ubiquitous Computing, vol. 6, no. 2, pp. 58–70,
2014.

[43] J. N. Kotey, A Functioning Code May Not Be a Secure Code: A
Preliminary Study on the Students’ Complacency with Secure
Coding, Montclair State University, Montclair, NJ, USA, 2023.

[44] S. S. Fauzi, P. L. Bannerman, and M. Staples, “Software con-
fguration management in global software development:
a systematic map,” in Proceedings of the 2010 Asia Pacifc
Software Engineering Conference, Sydney, Australia, November
2010.

[45] N. Fareghzadeh, “Integrated approach of software confgu-
ration management,” Quarterly Journal of Information and
Communication Technology, vol. 2, no. 4, pp. 41–48, 2021.

[46] K. Beznosov and B. Chess, “Security for the rest of us: an
industry perspective on the secure-software challenge,” In-
stitute of Electrical and Electronics Engineers Software, vol. 25,
no. 1, pp. 10–12, 2008.

[47] I. A. Tondel, M. G. Jaatun, and P. H. Meland, “Security re-
quirements for the rest of us: a survey,” Institute of Electrical
and Electronics Engineers Software, vol. 25, no. 1, pp. 20–27,
2008.

[48] G. McGraw, “Software security,” Institute of Electrical and
Electronics Engineers Security and Privacy Magazine, vol. 2,
no. 2, pp. 80–83, 2004.

[49] G. Peterson and J. Steven, “Defning misuse within the de-
velopment process,” Institute of Electrical and Electronics
Engineers Security and Privacy Magazine, vol. 4, no. 6,
pp. 81–84, 2006.

[50] K. van Wyk and G. McGraw, “Bridging the gap between
software development and information security,” Institute of
Electrical and Electronics Engineers Security and Privacy
Magazine, vol. 3, no. 5, pp. 75–79, 2005.

[51] N. Davis, W. Humphrey, S. T. Redwine Jr., G. Zibulski, and
G. McGraw, “Processes for producing secure software,” In-
stitute of Electrical and Electronics Engineers Security and
Privacy Magazine, vol. 2, no. 3, pp. 18–25, 2004.

[52] A. L. Opdahl and G. Sindre, “Experimental comparison of
attack trees and misuse cases for security threat identifca-
tion,” Information and Software Technology, vol. 51, no. 5,
pp. 916–932, 2009.

[53] P. A. Wortman and J. Chandy, “Translation of AADL model
to security attack tree (TAMSAT) to SMART evaluation of
monetary security risk,” Information Security Journal: A
Global Perspective, vol. 32, no. 4, pp. 297–313, 2022.

[54] N. M. Scala, P. L. Goethals, J. Dehlinger, Y. Mezgebe, B. Jilcha,
and I. Bloomquist, “Evaluating mail-based security for elec-
toral processes using attack trees,” Risk Analysis, vol. 42,
no. 10, pp. 2327–2343, 2022.

[55] J. Whittaker, “Why secure applications are difcult to write?”
Institute of Electrical and Electronics Engineers Security and
Privacy, vol. 1, no. 2, pp. 81–83, 2003.

[56] M. Howard, “Becoming a security expert,” Institute of Elec-
trical and Electronics Engineers Security and Privacy Maga-
zine, vol. 6, no. 1, pp. 71–73, 2008.

[57] J. Jurgens, “UMLsec: extending UML for secure systems
development,” in Proceedings of the 5th International Con-
ference on Te Unifed Modeling Language (UML 2002),
Dresden, Germany, September 2002.

[58] M. Gegick and L. Williams, “On the design of more secure
software-intensive systems by use of attack patterns,” In-
formation and Software Technology, vol. 49, no. 4, pp. 381–397,
2007.

[59] R. Seacord, “Secure coding in C and C++ of strings and
integers,” Institute of Electrical and Electronics Engineers
Security and Privacy Magazine, vol. 4, no. 1, pp. 74–76, 2006.

[60] S. Mancoridis, “Software analysis for security,” in Proceedings
of the Frontiers of Software Maintenance (FoSM 2008),
NewYork, NY, USA, October 2008.

[61] B. Snow, “Four ways to improve security,” Institute of Elec-
trical and Electronics Engineers Security and Privacy Maga-
zine, vol. 3, no. 3, pp. 65–67, 2005.

[62] M. R. Stytz and S. B. Banks, “Dynamic software security
testing,” Institute of Electrical and Electronics Engineers Se-
curity and Privacy Magazine, vol. 4, no. 3, pp. 77–79, 2006.

14 Journal of Engineering

http://dictionary.reference.com/browse/policy
http://dictionary.reference.com/browse/policy
http://searchsecurity.techtarget.com
http://searchsecurity.techtarget.com
https://www.varonis.com/blog/what-is-a-security-policy
https://www.varonis.com/blog/what-is-a-security-policy
http://technet.microsoft.com/en-us/library
https://www.fordham.edu/information-technology/it-security--assurance/it-policies-procedures-and-guidelines/web-application-security-policy/
https://www.fordham.edu/information-technology/it-security--assurance/it-policies-procedures-and-guidelines/web-application-security-policy/
https://www.fordham.edu/information-technology/it-security--assurance/it-policies-procedures-and-guidelines/web-application-security-policy/
https://www.fordham.edu/information-technology/it-security--assurance/it-policies-procedures-and-guidelines/web-application-security-policy/
https://www.certmike.com/security-policy-framework/
https://www.certmike.com/security-policy-framework/
https://www.gov.uk/government/publications/security-policy-framework
https://www.gov.uk/government/publications/security-policy-framework

[63] B. Potter and G.McGraw, “Software security testing,” Institute
of Electrical and Electronics Engineers Security and Privacy
Magazine, vol. 2, no. 5, pp. 81–85, 2004.

[64] A. Apvrille and M. Pourzandi, “Secure software development
by example,” Institute of Electrical and Electronics Engineers
Security and Privacy Magazine, vol. 3, no. 4, pp. 10–17, 2005.

[65] M. Bishop and D. A. Frincke, “Teaching secure pro-
gramming,” Institute of Electrical and Electronics Engineers
Security and Privacy Magazine, vol. 3, no. 5, pp. 54–56, 2005.

[66] B. Arkin, S. Stender, and G. McGraw, “Software penetration
testing,” Institute of Electrical and Electronics Engineers Se-
curity and Privacy Magazine, vol. 3, no. 1, pp. 84–87, 2005.

[67] Microsoft, “Microsoft threatmodeling tool threats,” 2022, https://
learn.microsoft.com/en-us/azure/security/develop/threat-modeli
ng-tool-threats.

[68] websecurify, “Websecurify-web application security scanner
and manual penetration testing tool,” 2022, https://
websecurify.com/.

[69] Kali, “skipfsh,” 2022, https://www.kali.org/tools/skipfsh/.

Journal of Engineering 15

https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://learn.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats
https://websecurify.com/
https://websecurify.com/
https://www.kali.org/tools/skipfish/

