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Psychoacoustical computational models are necessary for the perceptual processing of acoustic signals and have contributed signif-
icantly in the development of highly efficient audio analysis and coding. In this paper, we present an approach for the psychoacous-
tic analysis of musical signals based on the discrete wavelet packet transform. The proposed method mimics the multiresolution
properties of the human ear closer than other techniques and it includes simultaneous and temporal auditory masking. Experi-
mental results show that this method provides better masking capabilities and it reduces the signal-to-masking ratio substantially
more than other approaches, without introducing audible distortion. This model can lead to greater audio compression by per-
mitting further bit rate reduction and more secure watermarking by providing greater signal space for information hiding.

Copyright © 2008 X. He and M. S. Scordilis. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

The development of high-quality audio compression meth-
ods [1, 2] and effective audio watermarking [3, 4] have bene-
fited greatly from the successful integration of psychoacous-
tic models. Audio compression methods try to represent the
original audio with as low bit rate as possible. High audio
quality is achieved by rendering quantization noise inaudi-
ble. Audio watermarking techniques, on the other hand, hide
the information into the host signal by utilizing auditory
masking effects which make possible to keep the embedded
watermarks inaudible. Short-time Fourier transform (STFT)
has typically been used to obtain a time-varying spectral rep-
resentation of the signal in the derivation of most psychoa-
coustic models [2, 5, 6]. Due to the fixed length of analysis
windows, the STFT can only provide averaged frequency in-
formation of the signal and it lacks the flexibility of arbitrary
time-frequency localization [2], which is in striking contrast
with the unpredictably dynamic spectral-temporal profile
of information-carrying audio signals. Wavelet analysis, on
the other hand, presents an attractive alternative by provid-
ing multiresolution capability. Specifically, its long windows
analyze low frequency components and achieve high fre-

quency resolution while progressively shorter windows ana-
lyze higher frequency components to achieve better time res-
olution.

There have been several attempts using wavelet-based
psychoacoustic models in audio. In [7], Sinha and Tewfik
proposed a wavelet audio coding scheme by first calculating
the masking thresholds in the frequency domain via the fast
Fourier transform (FFT). Those thresholds were translated
into the wavelet domain and used to ensure transparent au-
dio coding by keeping the error caused either by quantization
or by the approximation of the wavelet coefficients below the
threshold.

In [8], Zurera et al. proposed a method to effectively rep-
resent the psychoacoustic model information in the wavelet
domain when low-selectivity filters were used to implement
the wavelet transform. Masking thresholds were first cal-
culated in the frequency domain by using the FFT. Those
thresholds were partitioned by the equivalent filter magni-
tude frequency response of the corresponding filter bank
branch. Assuming orthogonality of subband signals and
quantization noise with white noise-like properties in each
subband, the overall masking threshold was represented in
the wavelet domain and used tohide the quantization noise.
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In [9], Carnero and Drygajlo used a frame-synchronized
fast wavelet packet transform algorithm to construct a
wavelet domain psychoacoustic model representation. Si-
multaneous masking thresholds were estimated in a manner
similar to transform coding proposed by Johnston [5]. Tem-
poral masking was included by considering the energy within
each subband. Final masking thresholds were obtained by
considering both simultaneous and temporal masking as well
as the band thresholds in absolute quiet. Since this model
was tailored specifically for speech signals, its effectiveness
on wideband music signals is untested.

The above psychoacoustic modeling methods are ei-
ther computationally expensive [7, 8], have limited time-
frequency representation capabilities by relying on the
Fourier transform for the computation of the psychoacoustic
model, or approximate the critical bands suboptimally [9],
which may often result in objectionable audible distortion
in the reconstructed signal. In this paper, we present a new
psychoacoustic model computed entirely in the wavelet do-
main. The STFT is avoided by having wavelet analysis results
incorporated in effective simultaneous and temporal mask-
ing. Furthermore, the proposed model introduces a wavelet
packet-based decomposition that better approximates criti-
cal bands distribution. The proposed model maintains per-
ceptual transparency and provides an attractive alternative
appropriate for audio compression and watermarking.

The rest of the paper is organized as follows: in Section 2,
we introduce the enhanced psychoacoustic model based on
the discrete wavelet packet transform (DWPT). Experimen-
tal evaluation results are shown in Section 3, followed by the
conclusion in Section 4.

2. DWPT-BASED PSYCHOACOUSTIC MODEL

While related analysis techniques [7–9] share a similar gen-
eral structure, the proposed psychoacoustic model achieves
an improved decomposition of the signal into 25 critical
bands using the discrete wavelet packet transform (DWPT).
This results in a spectral partition which approximates the
critical band distribution much closer than before. Further-
more, the masking thresholds are computed entirely in the
wavelet domain.

2.1. Signal decomposition with the discrete wavelet
packet transform (DWPT)

The discrete wavelet packet transform can conveniently de-
compose the signal into an auditory critical band-like par-
tition [7–9]. In this work, we divided the input audio sig-
nal into 25 standard subbands using DWPT in the manner
shown in Figure 1, where the band index is enumerated from
1 to 25 to cover the entire audible spectrum.

A signal decomposition into critical bands resulting from
wavelet analysis needs to satisfy the spectral resolution re-
quirements of the human auditory system. On the other
hand, the selection of the wavelet basis also is critical for
meeting the required auditory temporal resolution, which
ranges from less than 10 ms at high frequencies to up to
100 ms at low frequencies [6]. Those constraints make the
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Figure 1: DWPT-based signal decomposition.

wavelet base of order 8 (length L = 16 samples) a good choice,
with specific properties as follows.

The frame length (in samples) at level j ( j = 2, 3, . . . , 8)

is given by Fj = 2 j and the duration of the analysis window
(in samples) at level j is [4, 9]

DWj = (L− 1)
(
Fj − 1

)
+ 1, (1)

where L is the length of Daubechies filter coefficients (L = 16
in this case). The Daubechies wavelet was selected because
it is the most compactly supported wavelet (finer frequency
resolution) compared to other wavelet bases with the same
number of vanishing moments [10].

For signal bandwidth of 22 kHz, the maximum frame
length is 256 samples (j = 8) which provides frequency res-
olution of 22 kHz/256 = 86 Hz. The minimum frame length
is 4 samples (j = 2) with frequency resolution 22 kHz/4 =
5.5 kHz. The maximum duration of the analysis window is
Wmax = 15∗(256 − 1) + 1 = 3826 samples, which at sam-
pling rate of 44.1 kHz corresponds to 87 ms and it applies to
the low frequency end, while the minimum duration of the
analysis window is Wmin = 15∗(4− 1) + 1 = 46 samples, or
about 1 ms, which applies to the high frequency end.

2.2. Wavelet decomposition evaluation

Wavelet-based approaches to psychoacoustic model imple-
mentation are relatively new. In [9], a frame-synchronized
fast wavelet packet transform was used to decompose wide-
band speech into 21 subbands which approximate the critical
bands. The spreading function was optimized to speech lis-
tening. For wideband audio, [4] has extended that work. 26
critical bands were used and the spreading function was ap-
propriately altered to ensure transparency and inaudibility in
audio watermarking applications.
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Figure 2: Starting frequencies (lower edge) of each critical band.

The critical bands partition obtained by the proposed
model is compared to other critical bands approximations
introduced and used elsewhere [4, 9]. The degree to which
those approaches and the one proposed in this work approx-
imate the standard critical bands partition [5] can be ex-
amined by plotting the critical bands starting frequencies,
as shown in Figure 2. When the differences in starting fre-
quency are plotted, as shown in Figure 3, it is readily ob-
served that the proposed band partition is substantially closer
to the standard, particularly beyond the 16th critical band
(frequencies of 2800 Hz and higher). The differences between
the two approaches are more striking when critical bands
center frequency differences are examined, as depicted on
Figure 4, where it can be seen that the proposed approach is
considerably closer to the standard. A better approximation
to the standard critical bands can provide a more accurate
computation of the psychoacoustic model. While this wavelet
approach yields a spectral partition that is much closer to the
standard critical bands frequencies, the inherent continuous
subdivision of the spectrum by a factor of 2 prevents an exact
match. However, the overall analysis features of this approach
outlined elsewhere in this discussion uphold its overall ap-
peal over competing techniques.

Window size switching similar to [7] is introduced in
the proposed psychoacoustic model to mitigate the preecho
problem.

Temporal masking is also considered using the method
mentioned in [11]. However, compared to other techniques,
in this model the entire algorithm operates in the wavelet do-
main.

3. EXPERIMENTAL PROCEDURES AND RESULTS

The proposed method was evaluated and compared against
the standard analysis methods from two useful perspectives:
(i) the extent to which portions of the signal power spectrum
can be rendered inaudible and therefore removed or altered
without any audibly perceived impact, and (ii) the amount
of reduction in the sum of signal-to-mask ratio (SSMR) that
can be achieved, which is a direct indication that the degree
quantization constraints can be relaxed and the coding bit
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Figure 3: Starting frequency differences for each critical band.
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Figure 4: Center frequency differences for each critical band.

rate can be lowered in signal compression applications, with-
out further loss in perceived quality.

3.1. Masking of the power spectrum

The proposed technique was compared against a standard
DFT-based approach both quantitatively, in terms of the
amount of simultaneous masking provided, as well as quali-
tatively via listening tests using a variety of musical signals.

In a typical example, the power spectrum of an audio
frame (46 ms of audio at 44.1 kHz sampling rate) is depicted
in Figure 5, obtained by the square of the magnitude of the
DFT coefficients, together with the resulting masking thresh-
old, denoted by the solid line, which was derived according to
the perceptual entropy (PE) model used in the MPEG-1 psy-
choacoustical model 2 [1, 5]. The wavelet power spectrum,
or scalogram, was obtained by squaring the magnitude of the
wavelet coefficients of the same audio frame and it is shown
in Figure 6, together with the associated masking threshold
denoted by the solid line, derived by the proposed model.

If the power spectrum length is L and the number of the
components below the masking threshold is R (the frequency
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Figure 5: Analysis of a signal frame using the PE model [1, 5].
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Figure 6: Analysis of a signal frame using the proposed model.

width of B area), then the portion of the removable spectrum
is given by

Wmc = R

L
× 100%. (2)

From Figures 5 and 6, it can be seen that for this particu-
lar example, the DWPT analysis has substantially more spec-
tral components falling under the masking threshold, and are
therefore inaudible, than in the Fourier-based analysis.

Five types of musical signals were used in experiments to
estimate the percentage of the removable power spectrum for
both models. They contained varying musical pieces of CD-
quality, which included jazz, classical, pop, country, and rock
music. From the results shown in Table 1, it can be seen that
an overall gain of about 20% in the extent of masked regions
provided by the proposed wavelet method is achieved.

Subjective listening tests were conducted as well, and
confirmed that by removing the masked spectral compo-
nents in each approach and resynthesizing the signal, the
processed audio signals are indistinguishable from the origi-
nal for both the MPEG-based and the proposed technique.

Table 1: Power spectrum portion under masking threshold [5].

Audio type PE model (%)
Proposed
DWPT-based
model (%)

Gain (%)

Country 54 73 19

Jazz 50 74 24

Pop 58 74 16

Rock 72 77 5

Classic 44 78 34

AVERAGE 55 75 20

Table 2: Sum of signal-to-masking ratio comparison.

Audio type PE model (dB)
Proposed
DWPT-based
model (dB)

Gain (%)

Country 17178 7129 59

Jazz 16108 5447 66

Pop 20061 12156 40

Rock 21266 14411 32

Classic 14756 2075 86

AVERAGE 17874 8244 57

3.2. Signal-to-masking ratio reduction

The ability to facilitate lower bit rates in music compression
schemes is another useful consideration in comparing the
effectiveness of the two methods. The signal-to-mask ratio
(SMR) plays an important role in this process because it is
a measure of how high the quantization noise floor can be
allowed to raise in the audible signal components. A small
SMR indicates that a relatively high noise floor is permissible
and therefore fewer bits may be used for coding. The perfor-
mance metric that captures this effect for the entire spectrum
of a particular analysis frame is defined as the average sum of
the signal-to-mask ratio (SSMR).

Specifically, if S is the power spectrum of the signal, M is
the masking threshold, all in dB and functions of frequency,
L is the number of samples in the audio file, then perceptual
entropy (PE), which is a lower bound estimate for the per-
ceptual coding of audio signals based on the psychoacoustic
model, is defined as [6]

PE = 1
L

L∑

i=1

max
{

0,
1
2

log 2

(
10(Si/10)

10(Mi/10)

)}

= 1
L

L∑

i=1

max
{

0,
1
2

log 2

(
10(SMRi/10)

)}
.

(3)

From (3), it can be seen that the reduction of SMR (as
long as SMR is positive) will lead to the reduction in PE and
consequently a lower bit rate for audio coding by allowing
larger quantization noise to be tolerated.

Examining the analysis of the previous example depicted
in Figures 5 and 6, areas A and B can be defined in terms of
SMR as A = {S | SMR ≥ 0} and B = {S | SMR < 0}. In
audio compression applications, in area A, which consumes
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all allocated bits, the encoded signal must be close enough to
the original signal to maintain the quantization noise below
the masking threshold.

Let SMRi, j denote the SMR of the ith sample of area A
in the jth signal frame, L j denote the length of A area in that
frame, and G be the number of total frames in the signal ana-
lyzed. Then, the sum of SMR (SSMR) in dB for the duration
of the signal is given by

SSMR =
G∑

j=1

Lj∑

i=1

SMRi, j . (4)

The two models, proposed and standard, were compared
using the same audio material as in the previous test. The
results are summarized in Table 2.

As it can be seen from Table 2, in the proposed wavelet-
based technique, the SSMR was reduced by as much as 86%
(for country music), while the average reduction rate reaches
57%, indicating that a significant decrease in coding bit rate
is possible.

4. CONCLUSION

The proposed psychoacoustic model uses the discrete wavelet
packet transform to provide multiresolution analysis that
closely mimics auditory processing and it is superior to
Fourier transform-based techniques both from the compu-
tational as well as the resolution perspectives. The auditory
critical bands distribution is implemented more accurately
than in previous techniques. The model includes simulta-
neous and temporal masking effects, all computed in the
wavelet domain. Experiments conducted on a variety of mu-
sic signals demonstrate that the proposed method provides
broader masking capabilities thus revealing that larger signal
regions are in fact inaudible and therefore removable without
noticeable effect, a fact that was confirmed in listening tests.
The masked regions may be ignored in audio compression
thus resulting in lower information rates, or may be used for
hiding more information in audio watermarking. Further-
more, the signal-to-masking ratio is further reduced indicat-
ing that in coding applications, this approach can lead to fur-
ther bit rate reduction without quality degradation.

APPENDIX

SHORT INTRODUCTION TO CWT, DWT, AND DWPT

The continuous wavelet transform, CWT, of signal s(t) is de-
fined as

CWT(α, τ) = 1√
α

∫

s(t)ψ∗
(

(t − τ)
α

)
dt, (A.1)

[10] where ∗ is the complex conjugate operation, t is time, τ
is the temporal translation parameter, α is the scaling param-
eter, and ψ(t) is the transforming function, called mother
wavelet. Parameter τ provides the time location of the anal-
ysis window, and it varies as the window is shifted through
the signal, while α controls the amount of stretching or com-
pressing of the mother wavelet ψ(τ), which controls the
shape of the wavelet.

In discrete time, signal s(n) can be equivalently trans-
formed by the discrete wavelet transform (DWT), which is
discrete both in the time and the wavelet domains, and it is
defined as [10]

DWT(m,n) = 2(−m/2)
∑

k

s(k)ψ∗
(
2−mk − n). (A.2)

This is the discrete version of (A.1), with τ = 2mn and α =
2m, where m, n, and k are integers.

The DWT is often implemented by a group of filter banks
consisting of half-band high (π/2 to π) and low pass filters
(0 to π/2). The signal is first divided into high- and low-
frequency parts by the high- and low-pass filters, respectively,
and the low frequency part is further decomposed into high-
and low-frequency parts. The process continues on the low-
frequency part until the desired decomposition is achieved.
If both the high- and low-frequency parts are recursively de-
composed, the DWT turns into the discrete wavelet packet
transform (DWPT), which is a more flexible computational
structure and it can be incorporated in audio analysis to
closely approximate auditory critical bands.
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