
Hindawi Publishing Corporation
Research Letters in Communications
Volume 2009, Article ID 939840, 5 pages
doi:10.1155/2009/939840

Research Letter

The Measurement Paradox in Valiant Network Design

Matthew Roughan

School of Mathematical Sciences, University of Adelaide, Adelaide 5005, Australia

Correspondence should be addressed to Matthew Roughan, matthew.roughan@adelaide.edu.au

Received 27 April 2009; Accepted 1 July 2009

Recommended by Adnan Kavak

Valiant network design was proposed, at least in part, to counter the difficulties in measuring network traffic matrices. However,
in this paper we show that in a Valiant network design, the traffic matrix is in fact easy to measure, leading to a subtle paradox in
the design strategy.
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1. Introduction

In recent years the difficulties in measurement and predic-
tion of Internet traffic matrices have prompted a number
of routing and network design strategies broadly termed
“oblivious” [1–3]. They are oblivious in the sense that they
guarantee performance under any possible traffic matrix. This
appealing property has a cost: extra capacity is needed to
ensure that performance is maintained under all possible
inputs, though several papers have shown reasonable bounds
to this additional cost.

In this paper we examine Valiant network design (some-
times called load balancing) a strategy extended from switch
design to the design of a whole network [2, 3]. The basic
principle is to build a completely connected network—a
clique—and use load balancing to share all traffic across all
two hop paths. The remarkable property of this network is
that with only twice the capacity of an optimal network, it
can carry any allowable traffic matrix, without congestion!

The irony of Valiant network design is that it is predicated
on the assumption that traffic matrices are hard to measure,
and yet in this paper we show that such a design creates
a network in which it is actually possible to measure the
traffic matrix. However, this fact is of little use, because if we
redesign the network based on this improved information,
we then lose the ability to make ongoing measurements,
leading to a paradoxical situation.

It is a classic case where “you cannot have your cake,
and eat it too!” Where we have the capability to make good
measurements (courtesy of Valiant design) we cannot make

use of them, and where we do not have such a design,
the measurements are much harder to obtain. As a result,
we suggest an alternative, which takes advantage of the
properties of Valiant network design in addition to the ability
to measure traffic matrices.

We should note that there are other reasons for using
Valiant network design, for instance resilience to network
failures, or errors in traffic predictions, and these may
outweigh the issue of difficulties in traffic matrix estimation.
However, the problem of measuring traffic matrices has been
found interesting in a number of contexts, and so here we
examine the measurement aspect of a Valiant network.

2. Background

A Traffic Matrix (TM) describes the amount of traffic (the
number of packets or more commonly bytes) transmitted
from one point in a network to another during some time
interval, and they are thus naturally represented by Tt(i, j)
which represents the traffic volume (in bytes or packets) from
i to j during a time interval [t, t + Δt). The locations i and j
may be physical geographic locations making i and j spatial
variables, or logical variables such as a group of IP addresses,
but in this paper we will associate locations with PoPs (Points
of Presence). Often, for convenience, TMs are written as
column vectors by stacking the columns of the matrix. This
allows us to write a series of such matrices into a new matrix
X , whose columns each represents a single snapshot of a
TM. In this paper we need only single snapshots, and so our
notation will refer to TMs as column vectors x.
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TMs are the basic input into many network engineering
problems. Of particular relevance here is the network design
problem (the problem of determining where links will appear
in the network, and what capacity they should have, along
with the subsidiary problem of determining the routing
of traffic in this network). However, TMs are not easy to
measure directly due to problems with data collection, and
the scale of data required [4].

On the other hand SNMP (the Simple Network Manage-
ment Protocol) data is easy to collect and almost ubiquitous.
However, SNMP data only provides link load measurements,
not TM measurements [5]. The link measurements y are
related to the TM, which is written as a column vector x, by
the linear relationship

y = Ax, (1)

where A is called the routing matrix [6]. If A is invertible
the solution to this system of equations is obvious, but in
general, A is not even square. A network with N nodes has
N(N − 1) traffic demands, so the length of x is O(N2),
but in a typical network design the number of links and
hence the length of y are O(N). As N becomes large, the
system of equations above becomes underconstrained. In
most real networks, the problem is highly underconstrained.
The resulting problem of inferring the TM from link
measurements is a classic underconstrained, linear-inverse
problem. There are a number of good techniques for solving
such problems (see, for instance, [5, 7]), but the ill-posed
nature of the problem means that there are likely to be some
errors in the estimates.

In response to these difficulties, an alternative set of ideas
have developed: oblivious routing [1] and Valiant network
design [2, 3], which seek to design a network and its routing
such that it will work well for any arbitrary traffic matrix.
That is they try to design the network in the absence of
standard input information. The cost is a loss of efficiency.
The network must be overengineered by at least a factor of
two in most cases.

In this paper we consider Valiant Network Design
(VND), sometimes also called Valiant load balancing after
its central idea. We will consider the simplest example of
such design, for clarity (though the concepts presented here
extend to the more complicated case). We haveN PoPs which
must be connected, but we do not know the TM. The only
information we do possess is the total access capacity at
each PoP. For simplicity, assume this capacity is C for all
PoPs. The access capacity determines the maximum amount
of traffic that can come in or depart from a PoP. Hence
it limits the traffic matrix, because the row and column
sums of this matrix cannot exceed C, so in the absence of
additional information, our job is to design the network
which minimizes our cost subject to the constraints

N∑

i=1

T
(
i, j
) ≤ C,

N∑

j=1

T
(
i, j
) ≤ C. (2)

The basic principle of VND is that the network should be
a clique (a completely connected network) and that traffic
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Figure 1: Valiant network design: each PoP has access capacity C,
and traffic between p and q is shared over all two hop paths through
each possible intermediate node i.

should be shared in even proportions across all two hop
paths. Figure 1 illustrates the network design for a 6-node
network and shows one of the N paths from p to q through
node i.

The key result of VND is that almost all traffic goes
on two hop paths so in order to carry a maximal traffic
matrix, the network requires approximately 2NC capacity,
which when shared amongst the links results in a required
link capacity of 2C/N . (Note that traffic is evenly split across
all N possible intermediate nodes, including the end points,
i.e., we include paths p − p − q and p − q − q in the
set of load-balanced paths.) Capacity estimates exist for the
more complicated case with unequal access capacities, as well
as extensions of VND to networks requiring resilience to
failures [2, 3], but these are not germain to the question
under consideration here, that is, how much information can
we obtain about the TM of a VND?

2.1. Valiant Network Design Routing Matrix. The important
thing to notice in the above is that VND needs a completely
connected network. This may be implemented as a VPN on
top of some other physical network, but even in this case, we
can obtain link traffic measurements with ease using SNMP.
Note that in a completely connected network there areN(N−
1) links and N(N − 1) elements in the TM, so the routing
matrix is square. We may hope that in this case the routing
matrix is invertible, and if this were the case, then we could
solve the TM measurement problem by the simple expedient
of taking

x = A−1y. (3)

So we need to consider the routing matrix that results
from VND. Formally, A = {Air} is the matrix defined by

Air =
⎧
⎨
⎩
Fir , if traffic for r traverses link i,

0, otherwise,
(4)

where Fir is the fraction of traffic from source/destination
pair r = (p, q) that traverses link i. A network with N nodes
and L links will have a L × N(N − 1) routing matrix (as the
i → i TM elements are inconsequential here). In VND Fir
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can only take the values 0, 1/N , or 2/N . As the properties of
A are not determined by the constant denominator N , we
will instead look at the matrix R = NA, which has the values
0, 1, and 2.

We give a simple example for a 3-node network below in
which both the origin-destination pairs (p, q) and the links
(i, j) are ordered in the following order:

(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2). (5)

To derive the matrix we separate it into two components: in
terms of the traffic between origin/destination pair (p, q),

R1 shows the routing of traffic on its first hop after
entering the network at node p, and

R2 shows the routing of traffic on its second hop before
it reaches its destination q.

It is simple to derive R1 as it specifies that traffic from node p
will be split evenly over all links p → m, so R1 has a simple
block diagonal structure:

R1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

For instance, the second column of R2 says that 1/N of the
traffic from 1 → 3 goes along each of the links 1 → 2 and
1 → 3. R2 is just the dual of R1, that is, traffic arriving at
a node follows the same pattern as traffic departing a node,
so the matrix would have the same block diagonal structure
if the links and origin/destination pairs were ordered by
destination. Permuted to give the same ordering as above we
get

R2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1
0 1 0 1 0 0
0 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 0
1 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Then

R = R1 + R2. (8)

Note that the “2” entries of R lie along the diagonal and that
R is symmetric.

The question of interest is “is the matrix R invertible?”
In this simple example the answer is a resounding no. In
fact, all of the examples we tried (up to N = 30) resulted
in singular matrices. For N nodes, the routing matrices were
of sizeN(N−1)×N(N−1), but as shown in Figure 2(a), their
rank was approximately N/2. The trend in rank suggests that
the matrix will never be invertible for any N . So although A
is square, it is not invertible. The underconstrained nature of
the problem remains.

However, there is a fix.
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(a) Rank of the routing matrix for VND
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Figure 2: Functions of the routing matrix in VND.

3. Routing Jitter

As noted above, the routing matrix for the VND is not
invertible. However, with a very small change, we can make
it so. The change we introduce is to vary the traffic spread
by a small amount that we will call routing jitter. Rather than
spreading the traffic perfectly evenly we introduce a random
vector r of lengthN−2 with sum zero, spread uniformly over
the range [−ε/2, ε/2]. We keep the same amount of traffic on
the direct (one hop) path between two nodes, but use r to
modify the proportions of traffic on each of the (N − 2) 2-
hop paths. The effect is to create a new matrix S = R + E,
from which we can derive our new routing matrix A′ = S/N .
The key result is that, forN > 4, this new A′ will be invertible
with high probability, and the TM estimation problem now
has a unique solution. Note that the possibility thatA′ is close
to singular can be easily avoided by testing for this condition
prior to its use, and applying a different jitter if the matrix is
close to singular.

Note that the even load balancing in the simple VND is
an artifact of the simple example we have considered with
all nodes having equal capacity. In more realistic settings,
VND load balancing is already uneven, so small additional
changes to this routing, such as we perform above, are not
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a big problem, but they do have a cost. The total traffic
on link (i, j) can be calculated by adding the traffic on this
link arising from traffic with destination k, following path
i → j → k for some k /= i and traffic with destination j
following path m → i → j for some m /= j. The traffic on
link (i, j) is therefore given by

yi, j = 1
N

∑

k /= i
T(i, k)

(
1 + εi, j,k

)
+

1
N

∑

m /= j

T
(
m, j

)(
1 + εm,i, j

)
,

(9)

where εi, j,k is the extra traffic from i to k steered onto
intermediate node j. Note that by construction we limit
|εi, j,k| < ε/2, so that we can write

yi, j ≤ 1 + ε/2
N

⎡
⎣
∑

k /= i
T(i, k) +

∑

m /= j

T
(
m, j

)
⎤
⎦ ≤ (2 + ε)C

N
,

(10)

using (2). The standard VND (without consideration for
link/node failures) requires capacity 2C/N , so the additional
cost of our rerouting is (in the worst case) εC/N capacity
on each link. So clearly, we should aim to choose ε to be
reasonably small.

The invertibility of A′ for all but pathological cases of r
should be obvious, but it is not the only issue. Numerical
matrix inversion can be highly inaccurate if the condition
number of the matrix (the ratio of the largest and smallest
singular values) is too high. Figure 2(b) shows simulated
condition numbers for A′ for several values of N and a
range of values of ε. We can see that the condition number
increases as ε decreases. The smaller epsilon is, the closer to
ill-conditioned the matrix becomes. However, we found that
for moderately sized problems (say N = 30) that ε < 10−6

posed no problem (for Matlab’s standard matrix inversion
function), resulting in errors in the inverse on the order of
10−7. As N increases, condition numbers appear to increase,
so larger problems may be more difficult, but the magnitude
of this effect is inconsequential compared to the following.

Real traffic consists of packets, and load balancing
mechanisms can only divide traffic at this granularity.
Also, in order to avoid reordering of packets in a flow,
one often performs load balancing on a source/destination
basis. This introduces additional granularity into the traffic
flows, preventing perfect load balancing. Errors in the load
balancing shares are, in effect, errors in A′ the routing
matrix. We need our value of ε to be larger than the
typical values of these errors in order to be able to obtain
meaningful traffic estimates, so we suggest a value of the
order of 0.01–0.05, requiring an additional 1%–5% capacity,
which will in addition easily result in reasonably conditioned
routing matrices.

4. Discussion

The above shows that minor modification of VND’s load bal-
ancing mechanism results in an identifiable TM estimation
problem in the sense that the problem now has a unique
solution, and in the absence of measurement errors, we can

obtain the actual TM. This is ironic, considering that VND
was at least in part predicated on the inability to measure this
matrix.

However, we cannot just throw away the VND, because
without it, we would no longer be able to make these
measurements. So in the case that we have the measurements,
we do not need them, and where we do need measurements,
we cannot get them. This paradox is more annoying than
intriguing.

In addition, VND also allows resilience to unexpected
networks demands, either due to temporary surges or
attacks, or due to long-term errors in traffic predictions.
Surely there is some happy middle ground?

The obvious solution is to continue to use a Valiant-like
network design, that is, one which uses load balancing over
a clique. However, we can use the fact that we can measure
the matrix to improve the design. Valiant design has a cost,
roughly twice the capacity of an optimal network, which is
needed in a VND. If we instead steered a percentage X of
the traffic along the direct path between two nodes, then we
could trade off between flexibility with respect to unexpected
changes in traffic, against a reduced cost of the network
design. The choice of X allows us to interpolate between the
two extreme cases:

(i) X = 1: we get a direct routing, and given the
input TM we can determine the minimum capacity
network required.

(ii) X = 2/N : we get VND, with its resilience to
unexpected traffic.

In either case, the TM is measurable.
The total capacity requirements for such a network

consist of NC times the direct component plus 2NC times
the VND component, noting that in the simple version of
VND X = 2/N . So, the total capacity requirement is

P = NC +
(

1− X
1− 2/N

)
NC, (11)

for X ∈ [2/N , 1]. Of course, in reducing the capacity of the
network, we lose some ability to deal with random variations
in traffic matrices. The factor of 2 in capacity is the cost for
being oblivious, so if we use the above methodology, we will
no longer be able to carry any traffic matrix, but we will be
able to carry the most likely traffic.

5. Conclusion

The conclusion of this paper is that there in an inherent
paradox in the nature of Valiant network design. The choice
to create a clique (as the underlying network structure)
creates the possibility of making the traffic matrix problem
identifiable. Hence, for a Valiant network design, we have
(with a minor modification) enough information to measure
the traffic matrix, and from this we could build some
other design. Of course, if we actually change the network
design (to a nonclique-based design), then we lose our
measurement capability, but there is a possible alternative in
choosing a design between the two possible extremes.
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It should be noted that VND is also robust to prediction
errors. Hence, VND can alleviate problems that may have
occurred as the result of poor planning, not just because
traffic matrices are hard to measure. VND can also be used
to create networks that are highly resilient to node and link
failures, and this is another reason we may wish to use this
design methodology.
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