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Accurate estimation of the prostate location and volume from in vivo images plays a crucial role in various clinical applications.
Recently, magnetic resonance imaging (MRI) is proposed as a promising modality to detect and monitor prostate-related diseases.
In this paper, we propose an unsupervised algorithm to segment prostate with 3D apparent diffusion coefficient (ADC) images
derived from diffusion-weighted imaging (DWI) MRI without the need of a training dataset, whereas previous methods for this
purpose require training datasets. We first apply a coarse segmentation to extract the shape information. Then, the shape prior is
incorporated into the active contour model. Finally, morphological operations are applied to refine the segmentation results. We
apply our method to an MR dataset obtained from three patients and provide segmentation results obtained by our method and
an expert. Our experimental results show that the performance of the proposed method is quite successful.

1. Introduction

Prostate cancer is the second leading cause of cancer-relat-
ed deaths and most frequently diagnosed cancer in American
men [1]. Therefore, there is a significant interest in improve-
ments of prostate cancer diagnosis and treatment. Imaging
methods that could provide reliable information about the
location, size, and shape of prostate gland would greatly use-
ful to localize cancer foci, guide biopsies, and radiotherapy.
To this date, the most widely used modality for prostate
cancer diagnosis is trans rectal ultrasound (TRUS) because
of its low cost and short acquisition time. However, its false
negative rate is high [2], and prostate cancer visualization
is poor. As an alternative, high-resolution MRI allows phy-
sicians to better evaluate the prostate diseases that may not
be assessed adequately with other imaging methods such
as X-ray, TRUS, and computed tomography (CT). Recent
studies have shown that MRI has higher accuracy in the de-
tection of prostate cancer [3]. Because of the advances in
MRI technology, diffusion-weighted (DWI) MRI is also now

commonly applied to the prostate along with other MRI
techniques. Prostate volume is routinely asked as part of im-
aging evaluation, as it helps in clinical decision making when
combined with serum prostate-specific antigen (PSA) to
derive PSA density. Knowledge of prostate boundaries is use-
ful in the planning of conformal radiation therapy and com-
puter-aided prostate cancer localization. Although the iden-
tification of prostate boundary is a crucial step in these clinic
applications, manual segmentation prostate boundaries on
3D MR images slice by slice is a tedious and laborious
job. Moreover, the manual segmentation is subjective and
produces different results among different observers. There-
fore, accurate automated prostate segmentation based on 3D
MR images is extremely useful. However, this task is very
challenging, because of the noise and inhomogeneity of MR
images and the complex anatomical structures of the prostate
and surrounding organs.

In the literature, previous work on automated prostate
segmentation is primarily focused on TRUS images. Pathak
et al. proposed an edge-based boundary delineation scheme
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to detect prostate edges as a visual guide to the observer doing
manual editing in [4]. Because of the visual guide, the accu-
racy of the detected prostate edges was as good as those of
the human observers. Shape information of the prostate were
also incorporated in the literature to improve the segmenta-
tion performance. In [5, 6], ellipses were used to model the
prostate shape. In [5], the prostate shape was modeled by
parametric deformable superellipses, and Bayesian segmen-
tation algorithm was then applied to 2D TRUS images. In
[6], an elliptical level set algorithm was proposed to segment
prostate with TRUS images. Due to the shape informa-
tion, accurate and consistent segmentation results could be
obtained in 2D without any manual intervention. Statistical
shape information extracted by Gabor filter from training
dataset was employed in [7]. Besides the global population-
based shape statistics, Yan et al. proposed to combine patient-
specific local shape information to segment prostate with
TRUS video in [8] and further improved the results proposed
in [5, 7]. The shape-based prostate segmentation method
was also applied to CT images. Freedman et al. presented
a method based on matching probability distributions of
photometric variables that incorporates learned shape and
appearance models for the prostate and applied it to 3D CT
images in [9].

Compared with research in automated prostate segmen-
tation using TRUS images, attempts on MR images are limit-
ed. For most of the literature available algorithms developed
for prostate segmentation with MRI, the shape information
were widely considered. One way to incorporate the shape
information is to learn the shape statistics from training da-
taset. Tsai et al. derived a model-based, implicit representa-
tion of the segmentation curve evolution by applying prin-
ciple component analysis (PCA) to a set of signed distance
representations of the training data. This method is applied
for the segmentation of medical images containing known
object types [10] and could obtain satisfactory visual results
of prostate volume. In [11], authors did not only extract the
shape information, but also the texture information of the
prostate region by PCA to further improve the segmentation
performance. Statistical atlas was also used to incorporate the
shape information. Klein et al. developed an atlas match-
ing method to segment prostate from MR images based
on prelabeled and registered atlas images [12]. In [13, 14],
two semiautomatic prostate segmentation methods were
proposed. In [13], a method using wavelet multiscale pro-
ducts to detect the prostate boundaries were developed. This
method requires the user to specify four reference points
around the prostate. In [14], the prostate contour of one slice
was manually refined and used as initial estimation in the
neighboring slices. The contour was propagated in 3D
through steps of refinement in each slice. Template matching
was also used to fuse the prostate shape information. Based
on reasonable initials, these two algorithms could success-
fully segment the prostate. Although majority of the litera-
ture available methods for prostate segmentation with MRI
are based on T2 MRI which provides details of the prostate
structures, there are a few attempts to consider other MR
techniques to perform prostate segmentation. In [15], T2
MRI and MR spectroscopy were combined, and an active

shape model segmentation scheme was developed. An appro-
priate initialization is essential to the accurate segmentation
for this method. In [16], a framework based on maximum
aposterior (MAP) estimation was proposed to segment pros-
tate from dynamic contrast enhanced MRI (DCE MRI) by
fusing appearance and spatial and shape information of the
prostate learned from training data.

To this date, all these available prostate segmentation
methods with MRI are either supervised or semiautomatic,
and the supervised methods have difficulties to handle the
large variety of the prostate size, shape, and texture of dif-
ferent patients. Since the prostate appearance varies signif-
icantly between patients, we develop an unsupervised seg-
mentation algorithm in this work based on level set frame-
work introducing a shape prior to region-based active con-
tour model. The proposed method is fully automatic, and it
segments prostate from apparent diffusion efficient (ADC)
images derived from diffusion-weighted imaging (DWI)
MRI. The major contribution of this paper is the devel-
opment of a 3D automated prostate segmentation method
which does not need training data and is the first attempt
to make use of DWI MRI to differentiate the prostate region
with other tissues.

Implicit level set-based representations of a contour have
become a popular framework for medical image segmenta-
tion. The question of how to fuse higher-level shape prior
information into level set-based contour evolutions has been
addressed by a number of researchers. In many of the
previous study, either the shape prior is extracted from
training data [5, 7, 8, 10, 11, 16–18], or the exact shape of
the object is assumed to be known [19, 20]. In this paper, we
propose a novel approach to obtain the shape information
from the 3D MR images. The proposed method is a level
set-based active contour model which incorporates shape
information by adding a shape penalty term. The idea of
adding a shape penalty term is given in [19]. However,
instead of having the exact shape of the object as in [19,
20], or learning the shape from training data, we use a
three-step strategy [21]: (i) coarsely segment the prostate
volume, (ii) then based on the coarse segmentation result, the
prostate shape is modeled by a series of deformable ellipses
slice by slice to constrain the level set evolution as close to
an ellipsoid as possible, (iii) estimate the prostate volume
by region-based contour model and shape prior defined by
the previous step. To incorporate the shape prior into active
contour model, we introduce a shape penalty term to the
energy functional and propose a method to automatically
select the shape penalty weight. Finally, a series of morpho-
logical operations are applied to further refine the prostate
boundary. The proposed method is based on our previous
study [21], where the prostate was segmented from ADC
images in 2D. In this paper, we improve that method in the
following aspects: (i) we extend it to 3D from 2D, (ii) we
propose a coarse segmentation step and use a stack of para-
metric deformable ellipses to extract the shape information,
(iii) we develop a method to automatically select the
weighting parameter of the shape term, and (iv) we apply
morphological operations to refine the segmentation results.
In our experiment, ADC images were calculated from
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Figure 1: Prostate segmentation method diagram.

diffusion-weighted data on a pixel-wise basis, according to
ADC = −1/b ln S/S0, where S0 is the signal intensity with-
out the diffusion weighting (b value of 0 sec/mm2) and
S is the signal intensity with the gradient (b value of
600 sec/mm2). ADC images measure the diffusion coefficient
and use diffusion as contrast.

This paper is organized as follows. In Section 2, the pro-
posed prostate segmentation scheme for 3D MR images is
explained in detail, including the basic concepts of region-
based active contour model, the parametric deformable el-
lipsoid model, the proposed segmentation algorithm with
shape information, and the automated shape penalty weight
selection method. Section 3 provides the experimental
results of applying the proposed method to 3D prostate
MR images and comparison with the manual segmentation
results. A summary and conclusion of our prostate segmen-
tation method is given in Section 4.

2. Segmentation Method

In this section, we explain the proposed segmentation
method in detail. The proposed method is based on a level
set formulation of the Mumford-Shah functional developed
by Chan and Vese. We extend this framework by introducing
a shape penalty term to constrain the level set evolution.
Our input data is a 3-D apparent diffusion coefficient (ADC)

maps calculated from diffusion-weighted (DWI) MR pros-
tate dataset. As shown in Figure 1, our method consists of
four main steps: (i) a coarse segmentation step to roughly
obtain the prostate shape; (ii) a shape information extraction
step to estimate the shape of the prostate, (iii) segmentation
step to estimate the prostate volume by region-based active
contour model combining the shape prior, and (iv) a refining
step to smooth the prostate surface and remove the isolated
components in the segmentation result. Each of these steps is
described in detail next.

2.1. Coarse Segmentation by Region-Based Active Contour
Model. In the first step, we use a region-based active contour
model to 3D ADC images to obtain a coarse prostate shape
to further extract the shape information in the next step. For
medical images, including prostate MR images, the tissue of
interest may not have complete boundaries, or have complex
anatomical structures. The edge-based segmentation meth-
od, including active contour with edges model [22], also
named geodesic active contours, largely depends on the
nearby edges, is sensitive to local minimum and noise and
cannot deal with topological changes. Because of these short-
ages, we consider region-based active contour model in our
application. Compared with edge-based models, region-
based models consider the pixel intensities within the entire
image dataset [10, 23, 24]. The image dataset is segmented
into a certain number of regions based on the regional statis-
tics (sample mean and variance) of the corresponding region.
Therefore, region-based active models are more robust to
noise and can handle topological changes. In [23], Chan and
Vese proposed a pure region-based model to segment image

ECV(C, c1, c2) =
∫

inside(C)
(u− c1)2dxdydz

+
∫

outside(C)
(u− c2)2dxdydz,

(1)

where u is the segmentation image and c1 and c2 are the
average intensities of the two regions partitioned by the curve
C. During the minimization of (1), the image is divided
into two regions: inside and outside of the curve. Level set
framework is combined to minimize the energy function
shown in (1). Level set method first introduced in [23] is
a numerical technique that can follow the evolution of in-
terfaces. It has been applied to various image processing
applications including image segmentation, reconstruction,
and denoising. Chan and Vese’s region-based active contour
model combines the Mumford-Shan functional and level set
framework. The level set formulation of variational active
contour model is based on a higher-dimensional level set
function ϕ, whose zero level set segments the image into sev-
eral intensity homogeneous regions. The energy function of
Chan-Vese model in level set framework in 3D is:

ECV
(
ϕ, c1, c2

)

=
∫
Ω

{
(u− c1)2H

(
ϕ
)

+ (u− c2)2[1−H(ϕ)]}dxdydz,

(2)
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(a) near base (b) in mid-gland (c) in mid-gland (d) near apex

Figure 2: Coarse segmentation results by active contour model overlaid on the ADC images. The prostate was removed after surgery, and
the specimen weighs 45 g and measures 4.5 cm SI × 4.0 cm ML × 3.2 cm AP, part(a) is 3 mm to the actual base, and part(d) is 3 mm to the
actual apex.

where u is the segmentation image, H(·) is the Heaviside
function, and c1 and c2 is the average intensities (sample
means) of the two regions segmented by zeros level set
ϕ(x, y, z, 0)

c1 =
∫
Ω u
(
x, y, z

)
H
(
ϕ
(
x, y, z

))
dxdydz∫

ΩH
(
ϕ
(
x, y, z

))
dxdydz

,

c2 =
∫
Ω u
(
x, y, z

)(
1−H(ϕ(x, y, z

)))
dxdydz∫

Ω

(
1−H(ϕ(x, y, z

)))
dxdydz

.

(3)

Figure 2 shows the coarse segmentation results obtained by
the region-based active contour model for one patient with
different slices in mid-gland, near apex, and base. These
results are very poor and not acceptable. We can also see
that the intensity information is not sufficient to distinguish
the prostate gland from surrounding organs and tissues.
Therefore, it is necessary to combine the shape information
of the prostate to improve the performance of automated
segmentation method.

2.2. Shape Information Extraction. Medical image segmen-
tation in general faces difficulties because of noise, missing
boundaries, and complex anatomical structures. Under such
conditions, introducing some prior information, such as the
general shape, location, intensity, and curvature profile of
the tissue of interest could help the segmentation algorithm
perform better. In prostate MR images, the prostate gland
and surrounding tissues, such as the bladder, rectum, and
muscles, have overlapping intensity and texture. For some
patients, at certain slices, the prostate boundaries may be
missing or blended with those surrounding tissues. However,
the prostate has a walnut-like shape in general. Combining
this shape information that the prostate is close to an
ellipsoid in 3D could constrain the segmentation algorithm
evolution and help it extract the prostate more accurately.

2.2.1. Parametric Deformable Ellipsoid Model. After the
coarse segmentation step, we model the prostate shape by a
stack of parametric ellipses. In the literature, several methods
have been proposed for fitting superellipses [25]. In this

study, to obtain the prostate shape information, we use a two-
step scheme. First, we roughly model the prostate volume by
a parametric ellipsoid. Then, we model the apex as a stack of
parametric ellipses. Since the prostate volume is not an ideal
ellipsoid, we use a stack of parametric ellipses to model the
apex to fit the prostate more accurately. In the first step, the
prostate volume is fitted by a parametric ellipsoid roughly as
follows:

[cos θ · (x − a)− sin θ · (z − c)]2

r2
1

+

(
y − b)2

r2
2

+
[sin θ · (x − a) + cos θ · (z − c)]2

r2
3

= 1,

(4)

where (a, b, c) is the center of the ellipsoid, (r1, r2, r3)
the lengths of the semiaxes, and θ the orientation. Shape
parameters �v = (a, b, c, r1, r2, r3, θ) define an ellipsoid. In (4),
only one rotation is considered. By observing the axial MR
images, we can see that the rotation of the prostate in the axial
plane is ignorable, so we assume there is no rotation in x-y
plane in (4). To obtain an ellipsoid which best fit the prostate
shape, we borrow the idea of least-square minimization
and superquadric inside-outside function presented in [26].
Based on the implicit representation of the parametric
ellipsoid, we define the function

F
(
x, y, z;�v

)

= √r1r2r3 ·
{

1− [cos θ · (x − a)− sin θ · (z − c)]2

r2
1

−
(
y − b)2

r2
2

− [sin θ · (x − a) + cos θ · (z − c)]2

r2
3

}
,

(5)

called the inside-outside function. When F(x, y, z) = 0,
the corresponding voxels are on the surface of the ellipsoid.
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When F(x, y, z) > 0, the corresponding voxels are inside
of the ellipsoid, and vice versa. To find a function with a
minimum corresponding to the ellipsoid that best fits the
given prostate shape, we define a shape fitting function:

Eshape
(
F,ϕ

) =
∫
Ω

{
H
[
F
(
x, y, z

)]−H[ϕ(x, y, z
)]2
}
dxdydz,

(6)

where Ω is the image domain and H(ϕ) is the prostate
region obtained by the coarse segmentation step. For voxels
inside of the ellipsoid, we have H[F(x, y, z)] = 1; for voxels
outside of the ellipsoid, we haveH[F(x, y, z)] = 0. The shape
parameters are obtained as

�̂v = arg min
�v
Eshape

= arg min
�v

∫
Ω

{
H
[
F
(
x, y, z

)]−H[ϕ(x, y, z
)]}2

dxdydz.

(7)

If the prostate is perfectly segmented, H(ϕ) is the ideal
prostate mask, the deformable ellipse converges to the
smallest ellipsoid which best fits the prostate volume. In
practice, we simplify the estimation of the ellipsoid by
estimating c ≈ r3 = N/2, where N is the number of slices
containing prostate region and is predefined by a radiologist.
That means, a radiologist first selects the slices which belong
to the prostate region. If 18 slices are selected, then we have
c = r3 = 9. In this way, the shape parameters of the ellipsoid
which best fits the prostate shape in 3D can be approximately
estimated in 2D by finding an ellipse which best fit the
prostate shape in the central slice, where zct = c = r3 ≈ N/2.
That is for the ellipse �vct = (a, b,N/2, r1, r2,N/2, θ), we have

�̂vct = arg min
�vct

Eshape

= arg min
�vct

∫
Ω

{
H
[
F
(
x, y,

N

2

)]

−H
[
ϕ
(
x, y,

N

2

)]}2

dxdy.

(8)

The cost function is minimized by iterative gradient descent
method, and the gradient descent with respect to the un-
known shape parameters �vct = (a, b, r1, r2) is

∂a

∂t
=
∫
Ω

[
H
(
ϕ
)−H(F)

]

·
√
r2

r1
· Fx

(
x∗, y∗, zct

) · δ(F)dxdydz,

∂b

∂t
=
∫
Ω

[
H
(
ϕ
)−H(F)

]

·
√
r1

r2
· Fy

(
x∗, y∗, zct

) · δ(F)dxdydz,

∂r1

∂t
=
∫
Ω

[
H
(
ϕ
)−H(F)

] ·
√
r2

r1

·
[
−F

(
x∗, y∗, zct

)
2

+ x∗Fx
(
x∗, y∗, zct

)]

· δ(F)dxdydz,

∂r2

∂t
=
∫
Ω

[
H
(
ϕ
)−H(F)

] ·
√
r1

r2

·
[
−F

(
x∗, y∗, zct

)
2

+ y∗Fy
(
x∗, y∗, zct

)]

· δ(F)dxdydz,

(9)

where

⎡
⎢⎢⎢⎣
x∗

y∗

1

⎤
⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎜⎜⎝

1
r1

0 0

0
1
r2

0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

1 0 −a
0 1 −b
0 0 1

⎞
⎟⎟⎠

⎡
⎢⎢⎢⎣
x

y

1

⎤
⎥⎥⎥⎦,

Fx = ∂F

∂x
,

Fy = ∂F

∂y
.

(10)

By observing the ellipsoid fitting results, we can see that
the ellipsoid as shown in Figure 3 (corresponding to the same
prostate images in Figure 2) is able to roughly model the
prostate shape in 3D. To further improve the shape result, we
apply this ellipse fitting method to the slices of the apex again
to obtain a stack of ellipses fitting the prostate shape more
accurately as shown in Figure 4 (corresponding to the same
prostate images in Figure 2). That is, we update the shape
information by finding an ellipse that best fits each slice, and
for each slice, we obtain a set of shape parameters defining an
ellipse as follows:

�̂vs = arg min
�vs
Eshape

= arg min
�vs

∫
Ω

{
H
[
F
(
x, y, zs

)]−H[ϕ(x, y, zs
)]}2

dxdy,

(11)

and those ellipses are combined with the active contour
model. It is worth to mention that at this step, the apex
slices need to be predefined. Although the identification of
the apex is difficult, it is not crucial in this step. If the slices
of the mid-gland are misidentified as apex, the results of the
deformable ellipses will not change, because for the mid-
gland slices, the shape has already been fitted by the ellipsoid
very well.

2.2.2. Initial Estimates of the Shape Parameters. It is worth
to mention that the gradient descent minimization may
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(a) near base (b) mid-gland (c) mid-gland (d) near apex

Figure 3: The prostate shape can be roughly fitted by an ellipsoid.

(a) near base (b) mid-gland (c) mid-gland (d) near apex

Figure 4: The prostate shape is fitted by a stack of ellipses. The first row are the ellipses, and the second row is the prostate outlined by a
radiologist.

converge to a local minimum instead of a global minimum.
Therefore, initial estimates of the set of shape parameters
�v determines to which local minimum the minimization
procedure will converge. In the proposed method, we use
a rough estimation of the prostate’s true position, orienta-
tion and size obtained based on the profile (the intensity
values) across the centroid of the coarse segmentation
result along vertical and horizontal direction of the ADC
images. These initial estimates suffice to assure convergence
to the minimum that corresponds to the actual shape of
the prostate. After the coarse segmentation step described
in Section 2.1, we calculate the number of pixels of the
coarse segmentation result of the central slice along the
horizontal and vertical direction. We can see that the
profile image has roughly a rectangular shape, and we can
detect the rectangular edges which corresponding to the
prostate boundary by calculating the first derivative of the
profile image. By detecting the left, right, top, and bottom
boundary of the prostate in the central slice, we can calculate
the center and radius of the prostate as initial estimates

of the shape parameters to assure a more robust shape
extraction.

2.3. Prostate Segmentation with Shape Information

2.3.1. Active Contour Model with Shape Prior. There are sev-
eral ways to incorporate the shape information into level set-
based variational approaches. In [10], a number of train-
ing shapes are implicitly represented in the segmentation
curve using signed distance functions. In [19, 20], authors
proposed two models to introduce shape priors into Chan-
Vese models, but their models are both based on the exact
shape of the object is known and segment the known shape
or object from the background, where there are several
objects. However, in our application, the exact shape of the
prostate is unknown and considering the large variety of the
prostate shapes and sizes, we propose an unsupervised shape-
based segmentation algorithm. We assume the prostate shape
is close to an ellipsoid which is estimated by the method
discussed in Section 2.2. To combine the shape prior and
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constrain the level set evolution, we add the shape fitting
function (6) to the level set energy function (2) as a penalty
term as follows:

E
(
φ, c
) = ECV + Eshape

=
∫
Ω

(u− c1)2H
(
φ
)
dxdydz

+
∫
Ω

(u− c2)2[1−H(φ)]dxdydz

+ β
∫
Ω

[
H
(
φ
)−H(F)

]2
dxdydz,

(12)

where β is a weighting parameter of the shape fitting term.
The shape penalty term forces the segmented region H(φ)
close to the shape prior H(F). We update the level set
function by gradient descent method, and the gradient
descent with respect to the segmentation function φ is

∂φ

∂t
= δ

(
φ
){−[(u− c1)2 − (u− c2)2

]
+ 2β

[
H
(
φ
)−H(F)

]}
.

(13)

2.3.2. Shape Weighting Parameter Selection. Usually, the
shape weighting parameter is selected manually based on
previous experience. In this paper, we present a method
to select the shape weight β automatically based on the
correlation between the segmentation result and shape prior.
The correlation R between the segmentation result and shape
prior is defined as

R
(
β
) =

∑
i Wi

(
β
) · Fi√∑

i W
2
i

(
β
) ·
√∑

i F
2
i

, (14)

where W is the segmentation result with shape weight β, F is
the shape prior, and i represents the ith voxel. By varying the
shape weighting parameter β, we plot the curve correlation
R versus shape weight β shown as Figure 5. An appropriate β
should be small enough so that the segmentation result will
be able to capture the prostate real boundary. Meanwhile,
the appropriate β should be large enough so that the shape
prior could constrain the level set function evolution, and
segmentation result will close to the shape prior. Considering
these two points, we compare all the correlation values, and

select the one closest to the upper left corner in the plot.
That β corresponds to the smallest shape weight with high
correlation between the segmentation result and shape prior.

β̂ = min
βκ

d
{

[0, 1],
[
βκ,R

(
βκ
)]}

= min
βκ

√√√√
(

βκ
βmax

)2

+

[
R
(
βκ
)− 1

R
(
βmax

)− R(β = 0
)
]2

,

(15)

where d is the Euclidean distance, βmax is the smallest shape
weight for the correlation R ≥ 0.98.

Figure 6 (corresponding to the same prostate images in
Figure 2) shows the different segmentation results obtained
by the active contour model with different weight of shape
prior. This figure demonstrates the efficacy of our method of
selecting appropriate shape parameter β automatically.

2.4. Prostate Volume Refinement. After the segmentation
with shape prior, the prostate volume is obtained. However,
certain surrounding tissues are also labeled as prostate and
appear as some isolated components in the image data. To
remove those tissues, a morphological opening operation is
firstly applied, and then, only the largest component in the
image domain which corresponds to the prostate volume is
selected. Finally, a morphological closing is used to restore
the prostate boundaries detected. The results are shown as
in Figure 7 (corresponding to the same prostate images in
Figure 2), which is our final segmentation result.

The main steps of the presented approach can be sum-
marized as

(1) Apply a region based active contour model to the 3D
ADC image data to obtain a coarse estimation of the
prostate mid-gland and apex.

(2) Estimate the prostate shape by using a parametric
deformable ellipse model based on the coarse seg-
mentation of the prostate mid-gland and apex.

(3) Apply region-based active contour model again with
shape prior obtained in the previous step to further
segment the prostate volume in 3D with an automat-
ically selected weighting term.

(4) Apply morphological processing step to refine the
prostate volume result.

3. Experimental Results

In this study, MR image data obtained from ten patients
with biopsy-confirmed prostate cancer are used. After the
prostatectomy, the prostate was removed and weighted by a
pathologist. Because ADC maps provide better anatomical
shape and contrast between the prostate gland and other
tissue, we apply our method to 3D ADC images. The
segmentation typically takes about 7 minutes for each patient
(about 256× 256× 18) on an Intel Core2 Quad PC running
at 2.4 GHz. We use edge-based and volume-based metrics
measurements for quantitative analysis of segmentation
results: Hausdorff distance, mean absolute distance (MAD)
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Figure 6: Segmentation results comparison with different shape weight. The first row is the segmentation results obtained without shape
prior (β = 0), the second row is the segmentation results obtained with a very large shape weight (β = 106), the third row is the segmentation
results obtained with an automatic selected shape weight. The last column shows the segmentation results in 3D.
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Figure 7: Segmentation results after refinement. First four figures are various slices and the fifth figure is the 3D segmentation result.

Table 1: DSC, MAD, and Hausdorff distance values of ten patients.

Patient no. Pt.01 Pt.02 Pt.03 Pt.04 Pt.05 Pt.06 Pt.07 Pt.08 Pt.09 Pt.10

Weight (g) 45 72 56 48 31 28 33 43 60 30

DSC 0.866 0.826 0.871 0.795 0.766 0.746 0.742 0.784 0.866 0.835

MAD (mm) 2.30 2.75 1.87 2.52 3.06 3.29 3.95 2.83 2.26 1.89

Hausdorff (mm) 10.0 9.27 11.2 9.48 8.46 11.04 10.14 7.92 6.70 6.54

Table 2: The mean and standard deviation values of DSC, MAD, and Hausdorff distance of the whole prostate and at the base, mid-gland
and apex of ten patients.

Whole prostate Base Mid-gland Apex

DSC 0.810± 0.050 0.612± 0.118 0.856± 0.049 0.668± 0.161

MAD (mm) 2.67± 0.650 3.34± 1.22 2.54± 0.734 3.81± 2.05

Hausdorff (mm) 9.07± 1.64 8.41± 3.10 7.77± 1.34 7.88± 2.15
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Figure 8: 3D segmentation results of three patients. The first row is the manual segmentation by an expert human reader, and the second
row is the automated segmentation by proposed method. The prostate specimen corresponding to the first column weighs 45 g and measures
4.5 cm superior to inferior (SI) × 4.0 cm medial to left (ML) × 3.2 cm anterior to posterior (AP), the prostate specimen corresponding to
the second column weighs 72.1 g and measures 5.5 cm SI × 5.0 cm ML × 3.6 cm AP, the third column’s prostate specimen weighs 56.3 g and
measures 4.5 cm SI × 5.0 cm ML × 3.2 cm AP.

[27], and dice measure (DSC) to evaluate our segmentation
scheme. We denote the manual delineated boundary as Q =
{q1, q2, . . . , qη} and automated segmentation results as W =
{w1,w2, . . . ,w(ι)}, where each element of W and Q is a point
on the corresponding contour. We find the distance of every
point inW from all points inQ. We define the distance to the
closest point for wj to the contour Q as

∀Wj ∈W , we find d
(
wj ,Q

)
= min

∥∥∥wj − qi
∥∥∥, (16)

where ‖ · ‖ is the 3D Euclidean distance between any two
points. The Hausdorff distance is defined as the maximum
d(wj ,Q) over all j. The MAD is the average of d(wj ,Q) over
all j. The Hausdorff distance measures the worst possible
disagreement between the two boundaries, while the MAD
estimates the disagreement averaged over the two outlines.
On the other hand, the DSC value is defined as

DSC(W ,Q) = 2 · |W ∩Q|
|W| + |Q| , (17)

whereW is the automatic segmentation result,Q the manual
segmentation by an expert radiologist, and | · | denotes the
number of voxels contained in the set.

Figure 8 provides a comparison between the proposed
method and the manual segmentation results and Table 1
shows the DSC, MAD and Hausdorff distance values of ten
patients. The weights of the prostates are also provided in
Table 1, and we can see that the size of the prostate varies
significantly among patients. In Table 2, the segmentation
results of the base, mid-gland and apex are provided
separately. We can see that the majority of mis-segmentation

occurs at the base and apex where the surface between
prostate and surrounding tissues are very weak. Comparison
of segmentation results with other prostate segmentation
schemes in the literature show that our system performs at
least as well as, or better than other systems. Klein et al. [12]
have reported a mean DSC value of 0.82, Zhu et al. [28] have
DSC values ranging from about 0.15 to about 0.85, and Toth
et al. [15] have DSC values ranging from 0.746 to 0.826, while
our DSC values range from 0.738 to 0.871. Note that our
method does not need a training dataset.

4. Conclusions

In this study, we have developed and applied an unsu-
pervised automated segmentation method to the problem
of prostate segmentation with 3D DWI MR image data.
Accurate segmentation of prostate from MR datasets is
useful in many applications. Although many researchers have
proposed algorithms for prostate segmentation, attempts
on MR prostate segmentation are very limited with only
supervised techniques that require a training dataset. Cur-
rently, the level set framework is a popular approach for
medical image segmentation, and shape information is also
considered in most prostate segmentation method presented
in the literature. To this date, in most shape-based prostate
segmentation methods, either for TRUS or MR images, the
shape information is obtained from training data or by
compared with atlas images, but the prostate shape, size,
and texture vary widely between patients. Besides, in the
literature, the majority of MR-based prostate segmentation
algorithms are based on T2 MRI. In this paper, we present
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an unsupervised and automated method to segment prostate
volume based on DWI MRI by a shape-based active contour
model with level set framework without the need of a train-
ing dataset.

We extend the region-based active contour model pro-
posed by Chan and Vese and apply it to MR images by fusing
a shape penalty term to the cost function. We firstly apply a
coarse segmentation step to the 3D ADC image data, and we
model the prostate shape by a stack of parametric deformable
ellipses to extract the shape prior information. Then, we
introduce a shape fitting function to force the active contour
evolution close to the shape prior for further segmentation,
and we select the shape weighting parameter automatically,
as explained in Section 2. The experimental results on 3D
MR prostate images show the effectiveness of the proposed
method.

Because of the high variability of the prostate appearance
between patients, future work will include applying our
method to a larger MR dataset. Because of the nonuniformity
of the texture and the lack of clear edge of the prostate apex
and base, our method performs poor at certain slice for
certain patients, future work will also attempt to overcome
these limitations.
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