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This paper presents an algorithm for camera localization using trajectory estimation (CLUTE) in a distributed network of
nonoverlapping cameras. The algorithm recovers the extrinsic calibration parameters, namely, the relative position and orientation
of the camera network on a common ground plane coordinate system. We first model the observed trajectories in each camera’s
field of view using Kalman filtering, then we use this information to estimate the missing trajectory information in the unobserved
areas by fusing the results of a forward and backward linear regression estimation from adjacent cameras. These estimated
trajectories are then filtered and used to recover the relative position and orientation of the cameras by analyzing the estimated
and observed exit and entry points of an object in each camera’s field of view. The final configuration of the network is established
by considering one camera as a reference and by adjusting the remaining cameras with respect to this reference. We demonstrate
the algorithm on both simulated and real data and compare the results with state-of-the-art approaches. The experimental results
show that the proposed algorithm is more robust to noisy and missing data and in case of camera failure.

1. Introduction

Over the last few decades, ubiquitous use of large-scale
camera networks has been ramping up in a wide range
of applications such as visual surveillance of mass trans-
portation sites, calamity watching, and traffic control. These
camera networks essentially enable monitoring of extensively
large areas and hence detection of interesting activities on
a larger scale, which is impossible with the use of single
cameras (see [1, 2]). Existing activity detection systems pri-
marily perform manual analysis of the data collected by such
networks, which is an extremely tedious job; therefore, the
development of automated data analysis and summarization
tools are essential to accomplish maximum from these
camera networks [3].

Calibration of camera networks is the first and foremost
important step in the development of such an automated
activity summarization system. The calibration defines the
correspondence between points in the image plane and
points in the 3D space and can be divided into intrinsic
and extrinsic calibration (also labeled as localization). The

intrinsic calibration establishes the relationship between
camera-centric coordinates and images coordinates and can
be performed by acquiring an object with known Euclidean
structure, while extrinsic calibration defines relationship
between scene-centric coordinate system and camera-centric
coordinate system. For overlapping camera networks, the
estimation of epipolar geometry is a popular choice for
extrinsic calibration, where candidate corresponding points
are initially extracted from the scene and then a model
is learnt that minimizes the images and their reprojects
[4]. However, in many real scenarios, cameras do not have
overlapping views (Figure 1). Examples of such scenarios
are wide area surveillance of underground train stations
and/or subways, and mobile ad-hoc networks of low-cost
surveillance cameras. The large number of cameras makes it
difficult or expensive to record cameras’ locations manually
or to equip each camera with a GPS unit [5]. One way
of addressing this issue is through the novel paradigm of
automated nonoverlapping camera calibration algorithms,
which enable cameras to determine their positions and
orientations after the placement.
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Figure 1: Example of camera network with nonoverlapping fields
of view.

In this paper, we present a camera localization algo-
rithm using trajectory estimation (CLUTE) for a network
of nonoverlapping cameras. The algorithm addresses the
problem of recovering the relative position and orientation
of multiple cameras whose intrinsic parameters are known.
CLUTE uses temporal and geometric constraints derived
from the available trajectory information to estimate the
unobserved trajectory segments, which are then used to
position the cameras on the common ground plane. The
object motion information also helps in estimating the
relative orientation of the cameras. The registration process
aligns the cameras with respect to each other in a single
camera frame (that of the reference camera). The algorithm
is demonstrated on both simulated and real data, and its
results are compared with state-of-the-art approaches.

This paper is organized as follows. Section 2 reviews
state-of-the-art approaches for camera localization.
Section 3 formalizes the problem under consideration.
Section 4 provides detailed description of CLUTE. Section 5
demonstrates the results and analysis of CLUTE on real and
simulated data and also compares its performance with two
existing techniques. Lastly, Section 6 draws the conclusions.

2. Related Work

Localization is a well-established problem in sensor (cam-
era, audio, RFID, etc.) networks ([6–8]). Algorithms for
localization can be categorized into two main classes,
namely, fine-grained algorithms (see [9, 10]) and coarse-
grained algorithms ([11, 12]). Fine-grained methods use
timing and/or signal strength for localization. In this class
of localization methods, only a few sensors positions are
known. These sensors are called beacons or anchors (see [13–
15]). The knowledge of beacons is then propagated across the
entire network to find the position of the remaining sensors.
The nodes measure the distance to their neighbors whenever
possible using hardware ranging techniques such as received
signal strength (RSS) and time difference of arrival (TDoA).
However, the selection of the anchor nodes is a significant
problem and using all anchor nodes does not give the most
precise position. Moreover, there is the need to identify

criteria for selecting the optimal number of anchor nodes to
achieve a more accurate position estimation.

Economic factors and hardware limitations are key moti-
vations for the use of coarse-grained localization methods.
These methods estimate the proximity of the sensors in a
network to an arbitrary reference sensor. Coarse-grained
algorithms can further be divided into nonstatistical and
statistical approaches. The first nonstatistical approach is
multidimensional scaling (MDS) for localization ([16–18]).
MDS arranges the sensors in a lower-dimensional space,
whose size depends on the application data. MDS is very
accurate in recovering the sensor network configuration
when precise distances are available between all sensor pairs.
To compute the locations of N cameras on a 2D space using
MDS [19], an affinity matrix is constructed based upon
pairwise Euclidean distances. Then, the inner product matrix
I using the double centering matrix and the affinity matrix is
calculated, followed by the computation of the eigenvalues
and the eigenvectors of I . After sorting the eigenvalues in
descending order, the sensors’ locations are calculated using
the top p eigenvalues and their corresponding vectors. The
major shortcoming of this approach is its dependency on
the affinity matrix and the unavailability of a few distances
degrades the overall performance significantly.

Another nonstatistical approach is used to calibrate a
network of randomly placed cameras with nonoverlapping
fields of view using moving scene features in the near and
far fields [20]. A strong assumption is made that object
motions are deterministic. Distant objects (e.g., stars) enable
the recovery of the orientation (rotation) of the cameras,
while close objects (e.g., people or cars) enable the recovery
of the translation of the cameras up to a scalar multiple.
In this approach, the camera parameters are recovered by
solving a complex geometry problem, without imposing a
probabilistic framework.

Statistical approaches include numerical, motion-based,
maximum a posterior (MAP), and velocity extrapolation
based approaches. Numerical solutions are iterative methods
for network localization, and each iteration contributes to
the reduction of the residual errors. Existing approaches
are generally variations of the gradient descent or the
Gauss-Newton methods. As an example, Taylor et al. [21]
use the Newton Raphson method to estimate the network
configuration. Although the simplicity of such approaches
is a key advantage, they heavily depend on the proper
initialization and increment (or decrement) rate to find the
global (or local) minimum.

In structure from motion (SFM), the trajectory of a
moving camera, and the 3D coordinates of a stationary target
are recovered simultaneously from a series of 2D images of
a scene. In [22], the focus is on real-time processing of the
image data using an extended Kalman filter, whereas the
concept of recursive or sequential SFM can be found in [23,
24]. Similar to SFM, simultaneous localization and mapping
(SLAM) localizes a moving sensor (robot) and estimates its
trajectory using its egomotion and the stationary objects
in the scene (see [25, 26]). The performance of SLAM
algorithms is affected by noise, as the robots rely on their
camera to compute the distance traveled and therefore noisy
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Table 1: Summary of the state-of-the-art approaches for sensor
localization.

Classes Approaches References

Fine-grained
localization

Maximum likelihood,
trigonometric,

[13, 14, 30],

Received signal strength, time
difference of arrival

[9, 11]

Coarse-grained
(nonstatistical
localization)

Multidimensional scaling [16–19]

Moving scene features [20]

Active badge location [12]

Coarse-grained
(statistical
localization)

Linear regression and Kalman
filter

[31]

Maximum a posterior
probability estimation

[21, 27, 32]

Simultaneous localization and
mapping

[25, 26]

Structure from motion [22–24]

Tracking and camera field of
view information

[28]

Vanishing points and known
position

[29]

measurements add up quickly. Environment maps can be
helpful in these situations.

Rahimi et al. [27] used the maximum a posterior (MAP)
framework for simultaneous calibration and tracking. A
network of nonoverlapping cameras is localized by using the
motion of a target. The MAP estimates for the calibration
parameters are calculated using the trajectory prior (i.e.,
the motion model) and the likelihood function, which
are constructed from the available observations. The MAP
approach is highly computationally complex. Furthermore,
it is also possible that the solution may place the target inside
the field of view of another sensor for which no observations
are available at that particular time instance.

Javed et al. [28] use the concept of velocity extrapolation
to project the field of view of one camera onto the other.
The projection is then used as a tool to find the calibration
parameters. However, the approach assumes that people walk
in a straight line in the unobserved regions. Finally, Junejo
et al. [29] propose an approach in which vanishing points
are used to find the relative orientation of the cameras whose
positions are already known.

A summary of the state-of-the-art approaches for sensor
localization is presented in Table 1.

3. Problem Formulation

Suppose we have a network of N non-overlapping cameras
ψ = {C1,C2, . . . ,CN}, similar to [33]. Let a trajectory ℘i
within Ci be represented as ℘i = {(xi( j), yi( j)) : 0 < j <
Mi; i = 1, . . . ,N}, where (xi, yi) is the estimated position of
the target in the image plane and Mi is the number of target
observations from camera Ci.

Table 2: Performance comparison between CLUTE, MAP, and
MDS on the three datasets (4-camera network).

ID
CLUTE MAP MDS

εt εr εt εr εt εr

Exp 1

2 0.26 2.36 0.31 5.94 0.57 11.56

3 0.33 1.60 0.39 2.04 0.41 8.41

4 0.12 1.18 0.11 2.59 0.27 3.72

Average 0.18 1.29 0.20 2.64 0.31 5.92

Exp 2

2 0.15 4.36 0.19 1.52 0.23 0.96

3 0.23 5.36 0.34 6.38 0.72 8.76

4 0.15 4.65 0.17 8.08 0.23 15.99

Average 0.13 3.59 0.18 4.00 0.30 6.43

Exp 3

2 0.20 6.42 0.28 11.94 0.39 21.26

3 0.56 13.06 0.78 18.24 0.89 23.42

4 0.19 1.98 0.23 4.00 0.57 10.19

Average 0.24 5.37 0.32 8.55 0.46 13.72

Furthermore, let each observation be generated by a
motion model as⎡
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where (xiν, yiν) is the velocity of the object. In addi-
tion, (ax, ay) may change over period of time. Moreover,
v j(N (0,Σv( j))) is modeling additive noise with covariance
Σv( j) = diag([1e−3, 1e−3, 1e−3, 1e−3]).

Let each camera Ci provides a vertical top-down view
of the scene (i.e., its optical axis is perpendicular to the
ground plane or the trajectories are preprocessed using a
homography transformation [34]). Under this assumption,
the number of parameters for the localization of each
camera Ci is reduced to two, namely, the camera position,
Pi = (pix, piy), and the rotation angle, φi, expressed as the
relative angle between the camera Ci and the horizontal axis
(Figure 2). To summarize, the unknown parameters Θi for
camera Ci are

Θi =
[
pix, piy ,φ

i
]
. (2)

If Ci observes the object at a particular time instant t and
after t + τ time intervals the object enters into Ci+η with
Ci /=Ci+η, then it can be visualized as Ci+η is viewing the
object from the φi,i+η℘i,i+η position, where φi,i+η and ℘i,i+η
are the rotation matrix and the translation vector.

The camera localization process estimates (℘i,i+η,φi,i+η)
such that the configuration estimation error ε becomes min-
imum, that is,

(
φi,i+η + ℘i,i+η

)(
xi+η(t + τ), yi+η(t + τ)

)

−
(
x̂(i,i+η)(t + τ), ŷ(i,i+η)(t + τ)

)
= ε −→ 0,

(3)

where (x̂(i,i+η), ŷ(i,i+η)) is the projected estimate of the object’s
position from Ci at t to Ci+η at t + τ.
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Figure 2: Schematic representation of a scene observed with
nonoverlapping cameras (Ci). (pix, p

i
y ,φ

i) represent the unknown
camera location and rotation to be estimated.
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Figure 3: Trajectory estimation process for the unobserved region
between camera Ci and Ci+η.

4. Proposed Approach

Let an object move in the environment and be tracked
by each camera in the network. To find the rotation
matrix, φi,i+η, and the translation vector, ℘i,i+η, between
adjacent cameras, we propose a two-step iterative process.
Two consecutive batches of measurements from two adjacent
cameras form one iteration and the adjacency between
cameras are defined by the motion of the object itself. The
first step calculates ℘i,i+η by estimating the missing trajectory
between pairs of adjacent cameras. In the second step, φi,i+η

is calculated by utilizing the trajectory information and the

Figure 4: Example of sharp turns modeled with smooth curves in
the unobserved regions (gray: original trajectory, green: estimated
trajectory, gray square: original camera location (field of view), and
yellow square: estimated camera location (field of view)).

object’s exit and entry points of the fields of view of adjacent
cameras. The details of each step are given below.

4.1. Trajectory Estimation in Unobserved Areas. Figure 3
shows the flow diagram of the trajectory estimation process.
Unlike [31], each trajectory segment ℘is from each camera Ci

is smoothed for intercamera trajectory estimation:

℘is = S
(
℘i
)

, (4)

where S is a smoothing function and i = 1, . . . ,N . If Ci and
Ci+η are the two adjacent cameras, then ℘̂i,i+η is the estimated
trajectory between the camera pair:

℘̂i,i+η = H
(
G
(
℘is,℘

i+η
s

))
, (5)

where G and H are nonparametric and a parametric func-
tions, respectively, which extrapolate a smoothed trajectory
in the unobserved region.

We use the Kalman filter (see [35, 36]) as a parametric
function (H). The approach is inspired by speech recog-
nition, where the Kalman filter [37] has extensively been
used to estimate intervals with missing observations [38].
However, the Kalman filter’s innovation signal distorts sig-
nificantly in the absence of target information. To overcome
this problem, we employ linear regression estimation as a non-
parametric function, as, in the unobserved regions, Kalman
filter and the linear regression models exhibit a similar
behavior (see the appendix).

Within each camera’s field of view, the Kalman filtering
is applied to obtain the initialization of the parameters.
When the target enters an unobserved region, the linear
regression model replaces the Kalman filter to estimate the
target position. In order to improve the estimation, we use
both forward and backward motion models. The process
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Figure 5: An example of localization of a camera network: (a) a network of cameras along with the original object trajectory (dash-line);
(a–d) few nonlinear turns that object take in unobserved regions, (b) estimated trajectory and final localization results with the proposed
algorithm, and (c) outputs at intermediate iterations.

consists of trajectory estimation in both the forward (℘i,i+ηf )

and the backward (℘i,i+ηb ) direction between Ci and Ci+η.

The final estimation℘i,i+η is obtained as weighted average

over ℘i,i+ηf and ℘i,i+ηb , for each segment k:

℘i,i+η(k) = (1− α(k))℘i,i+ηf + α(k)℘i,i+ηb , (6)

where α(k) = k/J and k = 1, . . . , J are J segments of the
estimated trajectory. The forward estimation results are given
weights that are decreasing with the distance from the border
of the camera’s fields. The backward estimation results are
given higher weights when the object gets closer to the
next camera’s field of view. The underlying assumption for
this approach is that both trajectories contribute to the
construction of the estimated trajectory [39]. The linear
regression model expands over the uncertainty volume of
the region so that when the target is once again visible in
a camera, it can immediately reinitialize the Kalman filter.
For simplicity, sharp turns are modeled as smooth curves
(Figure 4). The process terminates if the difference between
five consecutive iterations is smaller than a threshold or when
all the available data are utilized.

4.2. Orientation Estimation. The relative angle φi,i+η between
two adjacent cameras Ci and Ci+η is computed by calculating
the angle between the observed object position (xi+η, yi+η) in

cameraCi+η and the corresponding estimated object position
(x̂(i,i+η), ŷ(i,i+η)) in the same camera by extrapolating the
trajectory from Ci:

φi,i+η = cos−1

⎛
⎝
(
xi+η, yi+η

) ·
(
x̂(i,i+η), ŷ(i,i+η)

)
∣∣(xi+η, yi+η

)∣∣∣∣(x̂(i,i+η), ŷ(i,i+η)
)∣∣

⎞
⎠. (7)

Once φi,i+η is computed for all pairs of adjacent cameras,
the final configuration is obtained by rearranging all the
cameras Ci (i = 2, . . . ,N) with respect to the reference
sensor C1. An example of the complete localization process
of the proposed algorithm in shown is Figure 5. The figure
shows the original trajectory segments (linear and nonlinear)
as well as reconstructed trajectory segments in unobserved
regions. Furthermore, intermediate and final localization
results of the proposed algorithm are also provided in the
same figure to demonstrate the process of localization over
iterations.

5. Experimental Results and Analysis

In this section, we compare the proposed approach (CLUTE)
with the MDS (see [16, 17]) and the MAP approaches (see
[27, 32]) on both simulated and real data. A 4-camera and
a 8-camera network, are tested with simulated data, and a
4-camera network is tested with real data. The performance
of the algorithms is evaluated based on the translation
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(a) (b) (c)

Figure 6: Three trajectory datasets from a nonoverlapping 4-camera network. Shaded squares indicate the field of view of each camera, circles
denotes the observed object locations, and lines show the portions of the trajectories unobserved by the cameras.

and rotation errors in the localization using ground-truth
information. The translation error is calculated as Euclidean
distance between the true camera position and the estimated
camera position. The rotation error is calculated as absolute
difference between the true camera orientation (the angle
with respect to the reference camera) and the estimated
camera orientation. The details about the dataset used and
the experimental results are given below.

5.1. 4-Camera Network. In this setup, we first simulate a
network of 4 cameras and then test the algorithms on a
real camera network. Let an object travel across the network
and generate the trajectory. Each camera observes the object
within its field of view (in Figure 6, the observations within
each field of view are shown with circles). The lines outside
the squares are the unobserved track points of the object.
We analyze the results of three experiments using the same
network configuration, but with three different moving
objects. The CLUTE results are shown in Figure 8. The
translational error at each iteration is shown in Figure 9.
The performance of CLUTE is evaluated and compared with
MAP and MDS on the original, noisy, and subsampled data.
Also, the algorithms are compared in the case of camera
failure.

Figure 10 compares the results of CLUTE, MAP, and
MDS along with the true positions of the cameras. The visual
inspection of the results show that in all three experiments,
the performance of the statistical approaches is better than
that of nonstatistical approaches (especially for C2 in the
experiment 1 dataset, for C3 in the experiment 2 dataset,
and for C3 and C4 in the experiment 3 dataset). The
detailed experimental results are shown in Table 2. In the
first experiment, the average translation error for CLUTE is
0.18 units or 4.5% of the environment area. Furthermore,
the average rotation error for CLUTE is 1.29◦. In comparison
with the other two approaches, on average CLUTE is more
accurate in locating the network. The average translation
error for MAP and MDS is poorer by 0.50% and 3.25%,
respectively. Likewise, the average rotation errors for MAP
and MDS are worse by 1.35◦ and 4.63◦, respectively. In the

second experiment, the average translation error for CLUTE
is 0.13 units or 3.25% of the environment area, which is
better by 1.25% and 4.25% compared to MAP and MDS,
respectively. Moreover, the average rotation error estimated
by CLUTE is better by 0.41◦ and 2.84◦ than that of MAP
and MDS, respectively. In the third experiment, the average
translation error for CLUTE is 0.24 units, which are 6%
of the environment area. Also, the average rotation error
for CLUTE is 5.37◦. In comparison, the average translation
error for MAP and MDS is 0.32 units and 0.46 units,
respectively. Similarly, the average rotation angles for MAP
and MDS approaches are 8.55◦ and 13.72◦. In summary,
these experiments show that the performance of CLUTE is
better by an average of 1.25% for translation and of 1.65◦

for rotation with respect with MAP. In comparison to MDS,
the performance of CLUTE is better by 4.5% and 5.28◦ for
estimating translation and rotation, respectively. In addition
to this, the error variance for CLUTE is smaller than that
for MAP and MDS. Furthermore, it is noticeable that the
estimation results for the statistical approaches (i.e., CLUTE
and MAP) are better than that of the nonstatistical approach
(i.e., MDS). In general, the main limitation of MDS is that
it is based on a single parameter (in this case, the shortest
Euclidean distance) with an appropriate value. Therefore, the
parameter calculation is accurate and the approach performs
satisfactory only if given enough information.

We also analyzed the robustness of CLUTE to reduced
sampled trajectory (missing data) and noisy trajectory and
in case of camera failure. As MDS is poor in estimating the
localization, we compare the robustness of CLUTE and MAP
only (Table 3).

For the missing data test, the object’s trajectory is down-
sampled by 2 and by 3 for all the three experiments. The
results for downsampling by 2 show that on average CLUTE
does not suffer for translation estimation in experiment 1
and experiment 2 and improves in experiment 3. Similarly
for the rotation (especially for experiment 2 and experiment
3), a closer look at the results shows that in experiment 3
the estimation result is quite poor for C3 on the original
data compared to the other cameras. Figure 8 shows that



Journal of Electrical and Computer Engineering 7

Frame number 103

(a)

Frame number 207

(b)

Frame number 708

(c)

Frame number 1780

(d)

Figure 7: Sequence of images extracted from real dataset consisting of four nonoverlapping cameras. Frame numbers show the motion of
the object across the network.

(a) (b) (c)

Figure 8: CLUTE localization results for the 4-camera network. Yellow squares are the estimated localization and green lines indicate the
e6stimated trajectory in the unobserved areas. (a) Experiment 1 dataset; (b) experiment 2 dataset; (c) experiment 3 dataset.

in most cases the object takes very sharp turns before
entering into this camera. These sharp turns cause the
degradation of the result, while downsampling reduces the
sharpness of the turns and therefore simplifies the modeling.
Compared to MAP, the average translation error over the
three experiments for CLUTE is better by 2.75%. Similarly,
the rotation estimation is better by 2.58◦ in favor of CLUTE.
Also the performance of MAP degrades considerably due to
downsampling. The reason for this behavior is due to the
fact that in MAP the track points provide the likelihood
function over the trajectories and the camera parameters,
and therefore the posterior probability depends directly
upon the availability of enough reliable object measurements.
Downsampling reduces the likelihood probability and hence
degrades the overall results. On the other hand, in CLUTE,
the trajectories are estimated by interpolation of the track
points over time. For this reason, as long as the available
object observations maintain the shape of the trajectory,
the calibration will be performed accurately. For further
downsampling by 3, the average translation error over the
three experiments for CLUTE is still 4.25% better than
that of MAP. Similarly, the rotation estimation is better by
3.35◦ for CLUTE. Also when downsampled from 2 to 3, the
degradation for the position estimation is just 0.02 units for
CLUTE and 0.08 units for MAP. To summarize, CLUTE is
more robust to reduced sampling rates compared to MAP.

In order to analyze the performance of CLUTE with noisy
observations, we introduced a 5% Gaussian noise in the
measurements with variance equal to the 15% of the camera’s
field of view, for all three datasets. For both CLUTE and MAP,
the results degrade substantially for the position estimation
(especially C3, C4 in experiment 1 and C2, C4 in experiment
3) and orientation (especially C2 in experiment 3). This is due
to the fact that the noise not only degrades the quality of the
observations (essential for MAP), but also changes the shape
of the trajectory (essential for CLUTE), which are necessary
for accurate results from both approaches. However, it is
noticed that on average the results for CLUTE are degraded
by 8% for the translation and 20.02◦ for the rotation, whereas
the degradation for MAP is 8.5% and 20.20◦.

In order to analyze the localization performance in the
case of camera failure, we removed one camera’s observations
from the available datasets (1-camera failure case). The
complete results for the three experiments are shown in
Table 4. On average, the results for CLUTE are degraded by
5% for the translation and 22.47◦ for the rotation, whereas
the degradation for MAP is 10.25% and 24.81◦. The results
show that CLUTE is more robust in case of camera failure.

In the final experiment for the 4-camera network, we
use real data captured indoor (Figure 7). The fields of view
of the cameras are squares whose sides are 1.5 meters, and
the cameras are between 3 and 4 meters apart. A toy car is
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Table 3: Performance comparison between CLUTE, MAP, and MDS on the three datasets for missing and noisy data (4-camera network).

ID

Downsampled by 2 Downsampled by 3 Noisy

CLUTE MAP CLUTE MAP CLUTE MAP

εt εr εt εr εt εr εt εr εt εr εt εr

Exp 1

2 0.25 2.48 0.27 5.64 0.22 1.33 0.31 3.43 0.15 1.87 0.15 4.13

3 0.34 1.70 0.42 2.32 0.32 0.73 0.44 3.39 0.63 10.99 0.63 12.88

4 0.12 1.11 0.21 4.08 0.14 2.15 0.43 8.70 0.78 13.06 0.78 15.50

Average 0.18 1.32 0.22 3.01 0.17 1.05 0.30 3.88 0.39 6.48 0.39 8.13

Exp 2

2 0.14 4.27 0.21 4.47 0.15 4.54 0.13 5.96 0.37 11.12 0.39 13.45

3 0.22 5.02 0.35 6.27 0.24 5.70 0.34 7.88 0.33 7.55 0.43 9.88

4 0.15 4.45 0.16 7.94 0.16 4.86 0.43 5.41 0.58 19.14 0.71 17.14

Average 0.13 3.44 0.18 4.67 0.14 3.78 0.22 4.81 0.32 9.45 0.38 10.12

Exp 3

2 0.09 2.95 0.23 13.36 0.03 1.04 0.31 16.54 0.43 168.10 0.57 175.21

3 0.34 7.16 0.57 12.92 0.35 2.46 0.65 7.63 0.92 4.77 1.32 9.32

4 0.39 5.61 0.94 8.80 0.64 14.91 1.30 18.96 1.86 41.36 1.90 45.56

Average 0.20 3.93 0.44 8.77 0.26 4.60 0.56 10.78 0.80 53.56 0.95 57.52
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Figure 9: Evolution of the CLUTE translation error at each iteration
in the three experiments.

moving at varying velocities traces a long trajectory across
the cameras. Based on the ground-truth segmentation of
the moving object in the field of view of every camera,
we compute the relative distance and orientation between
the cameras based on trajectory estimation. Figure 11 shows
the results obtained with CLUTE, and Table 5 compares the
results of the three approaches on the real data. For CLUTE,
the sensors were on average misplaced by 70 cm from the
locations measured by hand, with an average orientation
error of 10.33◦. For the orientation estimation, CLUTE
performs on average better than MAP by 0.33◦ and better
than MDS by 5◦. For the position estimation, the error of

Table 4: 4-camera network: CLUTE and MAP comparison for 1-
camera failure.

ID
CLUTE MAP

εt εr εt εr

Exp 1
2 0.57 13.32 0.62 16.05

3 1.06 24.25 1.62 30.53

Average 0.54 12.52 0.75 15.53

Exp 2
2 0.12 3.84 0.25 6.53

3 0.28 5.80 0.83 12.49

Average 0.13 3.21 0.36 6.34

Exp 3
2 0.40 166.84 0.53 178.73

3 1.02 18.86 1.92 24.52

Average 0.47 61.90 0.82 67.75

Table 5: The rotation (in degrees) and translation (in meters)
errors of CLUTE for real data.

ID
CLUTE MAP MDS

εt εr εt εr εt εr
2 0.80 10.00 0.65 10.50 1.00 12.00

3 0.69 8.00 0.73 8.63 1.12 18.00

4 0.61 13.00 0.59 12.85 1.33 16.00

Average 0.70 10.33 0.66 10.66 1.15 15.33

CLUTE is 0.45 meter smaller than that of MDS and poorer
than that of MAP by 0.04 meters only.

5.2. 8-Camera Network. Three datasets have been generated
by simulating three different moving objects in a network
of 8 cameras with nonoverlapping fields of view. The
results obtained with CLUTE on these datasets are shown
in Figure 12. Table 6 contains the results obtained in each
experiment. CLUTE outperformed MDS as its average
translation and rotation errors are 13.75% and 3.63◦ lower
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(a) (b) (c)

Figure 10: Performance comparison for camera localization using CLUTE (green circle), MAP (magenta star), and MDS (blue cross). The red
triangles denote the ground-truth position of the cameras. (a) Experiment 1; (b) Experiment 2; (c) Experiment 3.

Figure 11: Network localization results using CLUTE on real data.
(black: original trajectory, green: estimated object trajectory in the
unobserved areas, gray square: original camera location (field of
view), andyellow square: estimated camera location (field of view).

than those of MDS. Likewise, CLUTE outperformed MAP in
estimating the orientation, as the average rotation error over
the three datasets is lower by 0.90% and in estimating the
translation MAP is better by 0.16%.

We further investigate the robustness of the methods for
missing data, noisy trajectories (Table 7), and camera failure.
For downsampling by 2, the average translation error over
the three experiments for CLUTE is 0.03 unit-size better than
MAP. Similarly, the rotation estimation is better by 2.19◦.
Also, for downsampling by 3, the average translation error
using CLUTE over the three experiments is 1.5% better than
using MAP. Furthermore, the rotation estimation is better
by 3.69 for CLUTE. Also, when downsampled from 2 to 3,
the degradation for the position estimation is 40% better for
CLUTE, compared to MAP. For trajectories contaminated
with a 5% Gaussian noise with variance equal to the 15%
of the camera’s field of view, the average translation error

Table 6: Performance comparison between CLUTE, MAP, and
MDS on the three datasets (8-camera network).

ID
CLUTE MAP MDS

εt εr εt εr εt εr

Exp 1

2 0.12 0.89 0.12 0.86 1.00 10.54

3 0.02 0.61 0.02 0.63 1.05 3.48

4 0.08 1.56 0.08 2.12 0.45 1.82

5 0.16 1.54 0.16 1.54 1.84 17.29

6 0.02 0.40 0.02 0.42 2.04 7.13

7 0.04 0.77 0.04 0.80 0.04 0.67

8 0.52 2.01 0.05 2.00 0.50 2.52

Average 0.14 1.11 0.07 1.20 0.99 6.21

Exp 2

2 0.14 0.85 0.24 1.90 0.98 11.01

3 0.28 1.38 0.28 1.94 0.98 3.47

4 0.14 3.00 0.26 4.12 0.73 2.92

5 0.20 0.07 0.22 0.54 1.23 17.29

6 0.36 1.49 0.35 1.42 1.01 2.13

7 0.22 1.09 0.22 1.86 0.99 0.67

8 0.17 1.25 0.14 5.20 0.55 2.52

Average 0.19 1.14 0.22 2.12 0.81 5.00

Exp 3

2 0.00 0.07 0.00 0.93 0.00 3.07

3 0.03 0.13 0.03 1.89 0.10 1.87

4 0.09 8.16 0.10 9.23 0.95 10.16

5 0.07 2.32 0.06 2.13 0.92 0.68

6 0.04 0.12 0.06 0.83 0.17 3.12

7 0.00 0.04 0.03 0.62 0.20 8.96

8 0.00 0.02 0.04 9.58 0.22 4.69

Average 0.03 1.36 0.04 3.15 0.32 4.07

for CLUTE over the three datasets is 2.5% better than that
of MAP and the rotation error is also better by 2.48◦.

For the camera failure, we simulated the one, three, and
five cameras failure situations by ignoring the measurements
coming from one, three, and five cameras, respectively, and
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Figure 12: CLUTE localization results with a 8-camera network: (a) experiment 1 dataset; (b) experiment 2 dataset, (c) experiment 3 dataset.

Table 7: Performance comparison between CLUTE, MAP, and MDS on the three datasets for missing and noisy data (8-camera network).

ID
Downsampled by 2 Downsampled by 3 Noisy

CLUTE MAP CLUTE MAP CLUTE MAP

εt εr εt εr εt εr εt εr εt εr εt εr

Exp 1

2 0.23 1.01 0.28 2.59 0.28 1.39 0.33 5.05 0.66 33.69 0.96 42.69

3 0.05 0.63 0.07 0.87 0.06 1.72 0.10 2.93 0.64 18.65 0.74 10.65

4 0.18 2.87 0.20 3.26 0.21 7.40 0.28 9.36 0.88 17.25 1.68 28.25

5 0.33 1.46 0.37 1.40 0.40 3.81 0.76 3.74 0.42 15.37 0.82 22.37

6 0.04 1.20 0.06 0.87 0.07 0.45 0.09 2.86 1.41 58.19 1.61 62.19

7 0.07 0.72 0.12 1.22 0.05 1.38 0.20 4.25 0.84 23.83 1.34 27.83

8 0.11 1.96 0.16 2.09 0.12 5.75 0.24 5.18 0.42 15.45 0.52 17.45

Average 0.14 1.41 0.18 1.76 0.17 3.13 0.29 4.77 0.77 26.06 1.10 30.20

Exp 2

2 0.02 0.78 0.03 3.61 0.02 0.91 0.09 5.91 0.03 0.30 0.04 7.61

3 0.08 1.47 0.06 0.59 0.08 1.48 0.09 7.52 0.02 0.53 0.05 3.74

4 0.03 4.38 0.05 6.62 0.05 4.99 0.10 11.01 0.06 1.22 0.08 4.24

5 0.04 0.06 0.09 5.48 0.04 0.10 0.11 5.62 0.21 0.52 0.23 2.92

6 0.14 1.68 0.17 5.68 0.13 1.66 0.14 8.85 0.11 0.41 0.13 2.07

7 0.05 1.06 0.06 3.99 0.06 1.24 0.09 6.59 0.19 3.62 0.20 5.37

8 0.03 1.25 0.04 4.25 0.03 1.30 0.07 7.31 0.02 0.25 0.06 2.40

Average 0.05 1.34 0.06 3.78 0.05 1.46 0.09 6.60 0.08 0.86 0.10 3.54

Exp 3

2 0.01 0.30 0.03 2.52 0.01 0.67 0.04 3.39 0.21 0.27 0.28 3.12

3 0.03 0.12 0.09 3.68 0.04 0.03 0.06 2.89 0.65 6.94 0.86 8.31

4 0.11 9.13 0.07 11.31 0.10 8.60 0.10 13.55 0.60 22.82 0.93 28.24

5 0.07 2.31 0.07 2.14 0.06 1.81 0.17 2.00 0.93 28.82 0.99 30.11

6 0.05 0.32 0.17 5.24 0.05 0.14 0.14 6.69 1.28 40.12 1.32 49.20

7 0.04 0.05 0.09 4.97 0.03 0.45 0.08 3.53 1.30 30.65 1.33 18.32

8 0.00 0.01 0.09 12.98 0.00 0.02 0.01 15.78 0.07 3.02 0.08 4.33

Average 0.04 1.53 0.08 5.36 0.04 1.47 0.08 5.98 0.63 16.58 0.72 17.70

by evaluating the localization accuracy of the remaining sen-
sors. For one camera failure (Table 8), the average translation
error (taken over three datasets) for CLUTE is 0.16 unit,
which is better by 0.25 units compared to MAP. The rotation
error for CLUTE is 6.81◦ better than MAP. Likewise, the
translation error for CLUTE in case of three (Table 9) and five
(Table 10) cameras failing is 12% of the environment size.
The translation results obtained by CLUTE are better than
MAP by more than 5% in both cases. Also for the rotation

error, the performance of CLUTE is better by 2.3◦ and 9.52◦

for the three and five cameras missing cases, respectively.

6. Conclusions

We proposed an algorithm to recover the network configura-
tion of a set of cameras with disjoint views. The algorithm
finds the position and orientation of each camera on a
common ground plane and consists of two main steps: the
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Table 8: 8-camera network: comparison between CLUTE and MAP
in case of the failure of 1 camera.

ID
CLUTE MAP

εt εr εt εr

Exp 1

2 0.20 3.12 1.00 9.23

3 0.06 1.43 1.60 11.23

4 0.18 14.39 0.83 24.42

5 0.21 1.61 0.62 14.98

6 0.08 1.96 0.76 19.22

7 0.12 2.77 1.12 21.77

Average 0.14 4.21 0.99 16.81

Exp 2

2 0.02 0.71 0.06 3.03

3 0.09 1.55 0.10 3.89

4 0.08 4.95 0.13 7.45

5 0.04 0.07 0.11 2.39

6 0.18 1.54 0.21 3.88

7 0.05 1.09 0.08 3.55

Average 0.07 1.41 0.10 3.46

Exp 3

2 0.36 20.39 0.39 21.00

3 0.03 0.04 0.03 12.31

4 0.93 29.65 0.96 19.43

5 0.61 0.35 0.59 20.19

6 0.02 0.57 0.02 29.05

7 0.03 0.48 0.03 2.54

Average 0.28 7.35 0.29 14.93

Table 9: 8-camera network: comparison between CLUTE and MAP
in case of the failure of 3 cameras.

ID
CLUTE MAP

εt εr εt εr

Exp 1

2 0.20 2.74 0.76 6.67

3 0.07 1.67 1.47 5.76

4 0.13 26.80 0.38 42.81

5 0.21 1.90 0.87 23.82

Average 0.15 8.28 0.87 19.77

Exp 2

2 0.01 23.14 0.32 3.51

3 0.03 25.16 0.17 1.99

4 3.13 30.28 3.44 45.34

5 0.06 2.33 0.49 7.98

Average 0.64 16.18 0.89 11.76

Exp 3

2 0.40 23.14 0.52 26.25

3 1.41 25.16 1.31 22.27

4 0.98 30.28 1.32 38.82

5 0.60 2.33 1.21 4.18

Average 0.68 16.18 0.87 18.30

estimation of the unobserved trajectory in the regions not
covered by the cameras’ fields of view and the estimation
of the relative orientations of the cameras. Kalman filtering
and linear regression are used for the estimation of the
trajectory. Forward and backward estimations are used to

Table 10: 8-camera network: comparison between CLUTE and
MAP in case of the failure of 5 cameras.

ID
CLUTE MAP

εt εr εt εr

Exp 1
2 0.65 8.58 0.85 42.51

3 1.55 2.63 1.63 24.12

Average 1.10 5.61 1.24 33.32

Exp 2
2 0.01 0.35 0.58 4.51

3 0.01 0.09 0.57 12.51

Average 0.01 0.14 0.38 5.67

Exp 3
2 0.55 30.31 0.75 45.90

3 1.39 26.42 1.69 24.57

Average 0.64 18.91 0.81 23.49

increase the reliability of the results. The relative orientation
of the cameras is obtained by using the exit and entry point
information in each camera’s fields of view.

We have compared the performance of the proposed
approach with a statistical approach (MAP) and with a
nonstatistical approach (MDS) on both simulated and real
data. The experimental results show that CLUTE is more
accurate in localizing the network compared to these state-
of-the-art approaches. Also, the proposed approach is more
robust for missing and noisy data and performs better in case
of failure of one or more cameras.

Our current work includes further improvements of
the trajectory estimation in unobserved areas by tracking,
when available, the audio information captured with stereo
microphones coupled with each camera [40].

Appendix

Relationship between Kalman Filter and
Linear Regression

To show that the Kalman filter and linear regression exhibit
similar behaviors in the unobserved regions, let us define the
object state X at time t as X(t) = [x, ẋ, y, ẏ], where (x, y) is
the object position and (ẋ, ẏ) is the object velocity. If A is the
model that transforms the object state at time t to the next
state at time t+1, the state evolution process can be expressed
as X(t+1) = AX(t)+V(t), whereV(t) is the process additive
noise and is assumed to be zero-mean Gaussian noise with
covariance Σv. The Kalman filter propagates the state using a
prediction and an update step. The state prediction equation
and error covariance matrix are defined as

X̂(t + 1 | t) = AX̂(t | t),

Σv(t + 1 | t) = ATΣv(t | t)A,
(A.1)

where X̂(·) is state estimate and the superscript T indicates
the transpose of a matrix. The filter is updated by computing
the Kalman gain, K(t), as

K(t) = Σv(t | t − 1)L
[
LTΣv(t | t − 1)L + Σw(t | t)

]−1
,

(A.2)
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where Σw is the covariance of the observation noise and L
maps the state vector with the measurements. The object
state can be updated using

X̂(t + 1 | t) = X̂(t | t − 1) + K(t)
(
Z(t)−

(
LX̂(t | t − 1)

))

Σv(t | t) = [I − K(t)L]Σv(t | t − 1),
(A.3)

where Z is the observational model. In the unobserved
regions, there is no prior information about the object state
and the observation noise covariance is zero. Therefore, (A.2)
can be written as

K(t) = Σv(t | t − 1)L
[
LTΣv(t | t − 1)L

]−1
. (A.4)

The optimal state estimate in this case can be expressed as

X̂(t + 1 | t) =
[[
LTΣv(t)L

]−1
LΣv(t)

]
(Z(t))

)
. (A.5)

Linear regression finds the optimal estimate of the object
state at t + 1 by minimizing the squared error between the
estimate and the observation. Let us consider the generalized
weighted sum of the squared residual Γ as

Γ =
(
LX̂(t + 1 | t)− Z(t)

)T
Σw
(
LX̂(t + 1 | t)− Z(t)

)
.

(A.6)

To minimize the squared residual, we take the derivative of
(A.6) with respect to optimal state estimate and set it to zero.
This results in

X̂(t + 1 | t) =
[(
LTΣwL

)−1
LTΣw

]
Z(t), (A.7)

and thus from (A.5) and (A.7) it is possible to notice that
both Kalman filter and linear regression exhibit similar
behavior for no prior object information.
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