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We present a novel approach for the on-chip generation of a fault-tolerant clock. Our method is based on the hardware
implementation of a tick synchronization algorithm from the distributed systems community. We discuss the selection of an
appropriate algorithm, present the refinement steps necessary to facilitate its efficient mapping to hardware, and elaborate on
the key challenges we had to overcome in our actual ASIC implementation. Our measurement results confirm that the approach
is indeed capable of creating a globally synchronized clock in a distributed fashion that is tolerant to a (configurable) number
of arbitrary faults. This property facilitates eliminating the clock as a single point of failure. Our solution is based on purely
asynchronous design, obviating the need for crystal oscillators. It is capable of adapting to parameter variations as well as changes

in temperature and power supply—properties that are considered highly desirable for future technology nodes.

1. Introduction

Throughout the last decades progress in VLSI technology has
constantly fueled an incredible advancement in complexity,
speed, functionality, and power efficiency of digital circuits
[1]. This trend has always created new opportunities, but at
the same time has been accompanied by various challenges
for the design of these circuits [2]. Contemporary chip design
seems to be dominated by the following issues.

(1) Fault Tolerance. It is commonly agreed that tech-
nology nodes smaller than 65nm tend to become
increasingly vulnerable to single-event upsets, due to
their small critical charges and the low voltage swing
[3-5]. As a consequence the need for fault tolerance
emerges, even for non-safety-critical applications.

(ii) Power Efficiency. With a growing number of transis-
tors per unit area, the power density is increasing,
even in spite of technological progress. This leads
to problems with power distribution and with heat
dissipation.

(ii1) Variation Tolerance. The fabrication tolerances of new
technology nodes lead to uncertainties in the timing
behavior, power consumption, and so forth, where

traditional corner-case design is too pessimistic [6].
Therefore design techniques are sought that are
capable of sustaining reliable operation even under
these variations.

In the light of these substantial challenges even one of
the foundations of digital design is being questioned, namely,
the globally synchronous paradigm. While the abstraction
of the chip being a perfect isochronous region facilitates an
efficient design, retaining a reasonable synchrony all over
a large and complex chip with a sub-nanosecond precision
has become extremely cumbersome. To minimize the skew
within the clock network, not only sophisticated geometries
are applied, but in addition large numbers of clock buffers
and deskewing units have to be placed at carefully chosen
positions [7-9]. As a result an appreciable share of the power
budget goes into the clock distribution network [10, 11].
This stands in contrast with the above stated requirement
for power efficiency. Recently, parallelism is being introduced
to increase processing power while maintaining clock speed.
This trend is accompanied by new communication schemes,
so called networks on chip. As a recent example, the Godson-
3B [12, 13] comprises two distinct groups of four tightly
coupled cores per group.
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Item 3 on the above list, namely the increasing fab-
rication tolerances, unfortunately forms another obstacle
for maintaining an isochronous region all over the chip:
The synchronous design paradigm rests upon the intimate
knowledge of the circuit timing that becomes blurred for
newer technologies.

And finally the globally synchronous clocking approach
proves to be problematic with respect to fault tolerance as
well. Although synchrony is an important foundation for
many fault-tolerance schemes (such as TMR or duplication
and comparison), the single, central clock source forms a
single point of failure even in such a replicated architecture.
This issue has long been neglected, as the clock network
is considered robust due to its strong drivers and its
relatively high capacitance. Recently, however, concerns have
been raised about the vulnerability of the clock nets, and
specifically clock repeaters, as well [14].

In addition to all these challenges, however, newer
technologies also introduce new possibilities as well. The
architectures found in systems on chip have very much
in common with traditional distributed architectures. In
the latter a globally synchronous clock source has hardly
ever been employed—their components are rather loosely
coupled, employing several local clock sources that are then
synchronized on a higher level of abstraction by distributed
algorithms, if desired. In this paper we will review options for
generating a fault-tolerant clocking scheme that is feasible for
modern technologies and architectures, and we will present
a novel scheme for fault-tolerant clock generation that is
based on a distributed algorithm and thus exploits the typical
architecture found in systems on chip (SoC). In addition to
its superior fault tolerance the proposed scheme is extremely
robust against process variations.

2. Related Work

As motivated above traditional, globally synchronous design
may not be able to meet all upcoming challenges to future
computer architectures. Subsequently, several promising
alternatives will be surveyed that have been proposed in the
literature.

2.1. Globally Asynchronous, Locally Synchronous. The Glob-
ally Asynchronous Locally Synchronous (GALS) approach
[15] is based on the generic architecture depicted in Figure 1.
Small (local) synchronous islands implement functions
(subtasks) of the whole system. Each local island’s function
is executed using the traditional synchronous design style,
whereas global interaction follows an asynchronous commu-
nication style. Each island is provided with its own oscillator
as clock source for the locally synchronous computations.
Compared to the high effort for global clocking of a
purely synchronous system, in local synchronous islands
skew optimization of the clock signal is much easier to
attain. Although GALS simplifies the clock distribution to
some extent, some other issues are still left. The need for
a dedicated oscillator for each synchronous island adds
additional components to the system, which clearly decreases
reliability. The often used quartz oscillators are sensitive to,
for example, vibration, temperature, shock, and so forth,
while on-chip RC oscillators are known for their strong
dependence on operating conditions like temperature and
supply voltage, which leads to frequency changes in the range
of 10 to 30%.

Beyond that, if compared to a synchronous system, the
GALS concept has two major fundamental disadvantages.
Firstly, a GALS design does not implicitly provide the
convenient systemwide notion of time which most hardware
designers are used to and design tools are made for. All
clock sources are free running—the local clocks may drift
arbitrarily apart from each other. Communication leaving
a local island’s clock domain introduces the need for
synchronization. The fact that the interface between globally
asynchronous communication and locally synchronous data
processing has to incorporate some sort of synchronizer
circuits poses the second, probably the most severe, dis-
advantage of GALS. Unfortunately, synchronizing clock
domains with arbitrary, possibly changing, relation to each
other, cannot be solved in a safe way. Metastability issues
might even upset the synchronizer circuits [16] and can
only be made more unlikely by adding further synchronizer
stages. Taking parameter variations and clock jitter into
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FIGURE 2: Interconnected ring oscillator architectures.

account synchronizers have to be designed very conserva-
tively, thus introducing significant performance penalties
into the asynchronous/synchronous interfaces.

Recent GALS implementations incorporate stoppable
(plausible) and/or stretchable clocks [17, 18] to reduce
performance loss at the clock domain interfaces. This,
however, comes at the price of a reduction of clock accurracy
and stability.

2.2. Interconnected Rings and Oscillators. This concept pro-
posed by Maza and Aranda in [19, 20] presents an alternative
approach for generating and distributing GHz clocks. The
design relies on the self-oscillation property when inter-
connecting an odd number of inverters in a ring topology
(shown in Figure 2) and achieves high clock frequencies
due to its simplicity. Inverter and buffer placement of the
proposed architecture determines wiring costs (in terms
of wire length), speed, and skew of the generated clocks.
The design especially fits as on-chip clocking scheme for
the previously introduced GALS systems. It can be seen as
a refinement of the GALS RC-oscillator clocking. Due to
the fact that all inverters of the clock generation scheme
are interconnected directly (locally) or indirectly (globally,
through some additional inverter stages) with each other,
the local islands of a GALS system cannot arbitrarily
desynchronize (at least in the fault-free case). This property
severely eases synchronization within the GALS design since
the synchronizers can take advantage of the fact that the local
clocks are not entirely unrelated.

2.3. Distributed Clock Generator. The scheme of a distributed
clock generator (DCG) introduced by Fairbanks and Moore
[21, 22] represents a special form of asynchronous FIFO
implementation for the purpose of on-chip generation
and distribution of a synchronized clock. Similarly to the
approach by Maza and Aranda, interconnected clock gener-
ation hardware is distributed in a grid all over the chip, but
the locally generated clocks are generated at approximately
the same instant having only small skew. Every DCG instance
is interconnected with its four neighbors, and half of the
DCG units are initialized with a clock token. Due to the
asynchronous FIFO implementation of each DCG the so-
called Charlie effect [22] ensures that clock tokens are passed

over to neighboring nodes in a synchronous way, generating
a chip wide synchronized clock signal (the Charlie effect
describes the force that slows down a subsequent token
within a FIFO if it is closing in on a previous one).

2.4. Purely Asynchronous Design. Asynchronous design styles
[23] are considered a viable alternative for synchronous
design in the future, specifically for application fields
like low power [24] or high performance [25, 26]. With
asynchronous design the burden of clock distribution can
be entirely eliminated and the clock tree be substituted by
far less timing critical local handshake signals. Parameter
variations are much less problematic in the context of,
for example, quasi delay-insensitive circuits [27] since, due
to the indication principle, only performance but not the
correct function is influenced by variations. Furthermore,
the inherent robustness of asynchronous design styles allows
to address the issue of increased failure rates in future VLSI
technology [28, 29] to some extent. On the downside, the
variety of existing asynchronous design styles and delay
models distracts not only designers who are not expert
in the field, but also EDA companies whose design and
verification tools are crucial enablers for a general acceptance
of the asynchronous design paradigm. Nonnegligible area
overhead, higher design complexity, and the intricate circuit
testing issues add to these problems. Even though a good
robustness is inherent to asynchronous designs, the “wait for
all” paradigm implied by the indication principle prevents
established system-level fault-tolerance techniques, like triple
modular redundancy (TMR), from being directly applied to
asynchronous systems [30].

2.5. Discussion. In the presented approaches the incorpo-
ration of fault tolerance as well as the robustness required
for coping with unexpected faults as well as parameter
variations is mostly lacking. GALS in general has issues
with interfacing multiple uncorrelated clock domains, and
its lack of a global time severely complicates the design
process (which is also the case for purely asynchronous
approaches). The interconnected rings and oscillators as well
as the distributed clock generator approach are not able to
cope with failures. To be able to tolerate arbitrary failures in
a clock synchronization process, theory shows that almost
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FIGURE 3: Replacing synchronous clocking by fault-tolerant distributed tick generation.

tully connected networks are needed [31] which is clearly
not fulfilled by those two approaches. Therefore, a transient
fault might lead to major clock deviation, overclocking
phenomena or could even stop the whole clock generation
process.

The work described in this paper focuses on the develop-
ment of a robust clocking scheme for future dependable sys-
tems. Especially in safety- and mission-critical environments
like in the automotive and aerospace domain robustness
against arbitrary faults is of utmost importance. Similar to
GALS, our approach provides strong local synchrony. In
contrast to GALS, however, a fault-tolerant time base is
maintained on the global level as well (albeit with slightly
relaxed synchrony assumptions).

3. The DARTS Concept

Figure 3 illustrates the key principle of our approach: we
replace the central clock source (crystal oscillator) by a set
of tick generation units. Each of these units implements
an instance of the same distributed algorithm in hardware
(therefore we call them TG-Algs further on). This algorithm
is based on communication between the individual TG-Algs,
through which the TG-Algs mutually stimulate each other,
thus creating an oscillation that can be viewed as a globally
synchronized clock. Through the choice of an appropriate
algorithm and by means of a careful implementation, the
TG-Algs’ local perceptions of this global clock remain within
a bounded precision, even if the communication network,
called TG-Net in Figure 3, introduces considerable delays
and skew. Each of the TG-Algs is attached to one or more
functional units of the SoC for which it provides a local clock
that is in synchrony with all other local clocks generated by
the other TG-Algs for their respective functional units (Fu;).
Based on these local clocks the functional units can internally
be operated according to the traditional synchronous design
paradigm, which is desirable and unproblematic as long as
their local extent is limited.

From a high-level perspective distributed algorithms
suitable for tolerating multiple Byzantine faults can be
incorporated to get a robust clocking scheme. If we use such
an algorithm for our TG-Algs, our clock generation will
stay operational even if some of the TG-Algs and/or links
of the TG-Net should fail arbitrarily. Clearly, the functional
units connected to the failed TG-Algs will no more be
supplied with a proper clock, but this can be compensated

by their appropriate replication along with connection of
the replica to different TG-Algs. Note that this solves a
notorious problem in classical fault-tolerant VLSI systems:
fault tolerance is considerably easier to implement under the
assumption of global synchrony, while the establishment of
global synchrony by means of a central clock introduces a
single point of failure. The key advantage of our approach is
to provide a globally synchronized clock that is at the same
time fault tolerant. On this foundation it is straightforward
to build a fault-tolerant architecture on the level of func-
tional modules. Furthermore, the global synchrony allows
metastability-free communication between the functional
units without the need for synchronizers [32]. Another
advantage of our approach is its insensitivity to delays in the
communication links as well as to the TG-Alg’s propagation
delays; as we will show later, even considerable tolerances,
drift and jitter, can be accommodated. This relieves the
designer from using strong drivers, which in turn increases
power efficiency.

We have designed, formally proven, simulated, imple-
mented, and evaluated the proposed concept in the course
of the research project Distributed Algorithms for Robust
Tick-Synchronization (DARTS). While an in-depth analysis
of the formal aspects of the DARTS approach can be
found in [33], this paper will be more concerned with
the implementation-related issues of DARTS. In particular,
throughout the remainder of this section we will investigate
the foundations for our concept, namely, the selection of
a suitable algorithm and the constraints that have to be
considered when implementing that abstract algorithm as
VLSI chip design.

3.1. Finding a Suitable Distributed Algorithm. Distributed
computing research provides the required algorithms for
fault-tolerant generation of synchronized clock ticks. The
class of distributed algorithms considered in the DARTS
approach is based on message passing, with a set of particular
properties to meet the requirements for tick generation. In
short these characteristics of tick-generation algorithms are
as follows.

(i) The algorithm consists of a set of rules which are eval-
uated whenever a message arrives at a node. These
rules conditionally update the respective node’s local
memory and trigger the transmission of messages to
other nodes.
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1: variables

2:  k:integer :=0

3: end variables

4: if C*~1(t) = kP then //ready to start C*
5: — broadcast(tick(k))

6: end if

7

8 — CK(t):=kP+a

9: end if

: if accepted the message(Tick(k)) then //according to a selection/voting function

ArcoriTHM 1: Nonauthenticated algorithm for clock synchronization at node p [36].

(ii) To implement a tick generation approach, the class
of distributed algorithms is restricted to those that
send only messages containing ascending natural
numbers, that is, it is demanded that every node
p sends messages (0), (1),(2),... in the given order
during its executions. When mapping tick generation
to hardware the natural numbers of messages T1cK (k)
mod 2 can be seen as discrete up and down transitions
of a hardware clock.

(iii) To achieve synchronization among all nonfaulty
nodes of a distributed system, a tick generation
algorithm has to solve the synchronization problem
following Lamport’s definition [34, 35] if synchro-
nization precision 7 and accuracy shall hold.

(iv) Furthermore, the algorithm is called fault-tolerant if
it maintains the conditions described above even in
the presence of faults.

An algorithm presented by Srikanth and Toueg in [36]
fulfils all these criteria. It comprises two parts. According
to Algorithm 1, the so-called nonauthenticated clock syn-
chronization part, node p broadcasts message Tick(k) as
soon as its clock counter C*~1(#) reaches a threshold value
indicating that the next tick has to be issued. The internal
clock counter is directly driven by a local oscillator. The
round-based threshold value is given by kP, where P denotes
the predefined resynchronization interval.

When reaching the threshold count node p is ready to
change from round k — 1 to round k. However, in order
to keep the system synchronized, this transition must be
coordinated with the other nodes. This is accomplished by
resynchronizing the clock counter C(t) at the instant an
“accepted Tick(k)” message is received from another node
(actually, Ck(¢) is adjusted to kP + a, where a denotes a
constant ensuring that the clock always steps forward in time,
see Figure 4).

The function responsible for generating these “accept
TICK(k)” messages forms the second part of the algorithm
and is shown in Algorithm 2. It comprises three parallel
rules for message processing. In response to the reception of
particular Tick(k) messages from at least f+1 distinct nodes,
either via init or echo messages, each node relays an echo
TICK (k) message to all other nodes (Relay rules). The actual
generation of an “acceptance event” for advancing the clock,
however, requires the reception of at least 2f + 1 distinct

Round k — 1 Round k

Ck=kP+a
Broadcast(k) Accept(k)

=kpP

Tck-1 t

F1GURE 4: Nonauthenticated broadcast execution at node p.

echo Tick(k) messages (Accept Rule). It has been shown by
Srikanth and Toueg that in a system of n = 3f + 1 nodes
Algorithm 1 in cooperation with the consistent broadcast
primitive of Algorithm 2 solves the clock synchronization
problem, even in the presence of up to f Byzantine faulty
nodes if the conditions hold that

(i) the local clocks’ maximum drift rate is known and
bounded by p,

(ii) message end-to-end delays are within a certain
known bound of [d,d + €],

(iii) two specific timing assumptions are ensured by
properly chosen values for P and a.

Let us reconsider the initial motivation for taking a
closer look at tick generation algorithms, namely, to get
synchronized clocks without the need for local clock sources.
The nonauthenticated algorithm for clock synchronization,
presented above in Algorithm 1, still requires a local clock
source at each node to supply the local clock counter.
Fortunately, some modifications of Algorithm 1 yield a
solution which no longer requires a local counter and also
removes the distinction of init and echo events, which largely
eases message handling. This algorithm is shown below
(Algorithm 3).

It is derived from the algorithm originally proposed
by Widder and Schmid [37], however, with the following
important change: in order to facilitate an implementation
in hardware (see Section 3.2) it no longer relies on infinite
TICK(k) numbers. Under the additional constraint that every
TICK(k) message is only sent [once] this simplification can be
accomplished without spoiling the analysis of [37].
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1: variables

2:  k:integer :=0

3: end variables

4: for each correct process do

5:

6: — send(echo,T1ck(k)) to all
7:  endif

8:

9: — send(echo,t1ck(k)) to all
10: endif

12:  — accept(tick(k))
13: endif
14: end for

if received(init,T1ck(k)) from at least f + 1 distinct nodes then //Init Relay Rule

if received(echo,T1ck(k)) from at least f + 1 distinct nodes then //Echo Relay

11: if received(echo,r1ick(k)) from at least 2 f + 1 distinct nodes then //Accept Rule

ALGORITHM 2: Acceptance function selecting valid clock ticks [36].

: variables

k: integer :=0

: end variables

: initially send T1cK(0) to all [once]

QU W =

K:=¢
7: end if

9: send Tick(k + 1) to all [once]
K:=k+1
10: end if

:if received TIcK(€) from at least f + 1 rem. processes with £ > k then //Relay Rule
send T1ck(k),..., TICK(£) to all [once]

8:if received TIcK(k) from at least 2 f + 1 remote processes then //Increment Rule

ALGoRrITHM 3: Byzantine-tolerant tick generation suitable for bounded tick numbers.

With this algorithm the previously used assumption on
message delays [d, d + €] can be weakened to the one that for
any two messages in transit m,, m, it has to hold that

8(my) _
8(ma) =

(1)

with §(m;) and §(m;) being the respective message delays
of m; and m,, and ® being constant. The analyses in [37]
show that despite the presented substantial simplifications,
Algorithm 3 still solves the clock synchronization problem—
in this particular case, this is maintaining precision 7 as
well as accuracy even in the presence of Byzantine faults.
Algorithm 3 processes like this: the “Relay Rule” of a
correct node fires as soon as TICK(£) messages from at least
f + 1 distinct nodes have been received—given that f is
the maximum number of faults the system is supposed
to tolerate, this ensures that at least one of these Tick(#)
messages has been issued by a correct node. Notice that
in the case of triggering the “Relay Rule” the node does
not immediately set its local clock k to € since this would
lead to skipping some values of k if the respective node is
lagging more than one tick behind. The strategy followed in
Algorithm 3 explicitly ensures that all messages T1CK(K),. . .,
TICK(¢) are issued when catching up with faster nodes,

resulting in a continuous progression of the clock without
potentially troublesome leaping effects. Especially when
recalling the targeted application of clocking synchronous
circuits, skipped clock ticks might result in inconsistent state
progression over different functional modules.

As a result we now have a distributed algorithm available
that is able to generate an ascending sequence of clock ticks
k in a fault-tolerant manner without relying on a local clock
source.

3.2. Hardware Implementation Challenges. So far our ap-
proach has been to use a distributed tick generation algo-
rithm for generating an ascending sequence of tick numbers,
and the mapping to rising and falling edges in the hardware
implementation simply implies a mod 2 operation. The
above algorithm provides all required features; however,
substantial implementation-related problems originate in
the fact that this algorithm (like virtually all other distributed
algorithms) has been designed on a very high level of
abstraction, at best with a software implementation in mind.

In general, a tick generation algorithm operates on
unbounded natural numbers, whereas a hardware clock
signal simply toggles between the two logic values high and
low (Figure 5). For our ultimate purpose of clocking our
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T1cK(0) Tick(k — 1) Tick(k + 1)

=TT

TICK(1) T1cK (k)

FIGURE 5: Hardware clock signal versus tick numbers.

functional units we do not need the history information
contained in the individual tick numbers, and we cannot
afford to convey it. With clock frequencies ranging into
hundreds of MHz or even some GHz the value of k rapidly
reaches gigantic dimensions, and in fact its unbounded
nature prohibits any concrete implementation. Moreover,
each value has to be repeatedly transferred at this high
frequency as part of the tick generation process, which
obviously causes an excessive data rate.

At the same time we cannot completely get rid of k,
since the abstract operational principle of tick generation
algorithms relies on counting up this integer tick number.
In order to facilitate a hardware implementation, we have
to change the algorithm such that it can accommodate
bounded values for the Tick(k) numbers and the resulting
wrap-around effects in their numerical representation, that
is, after sending the largest value of k in the chosen
integer representation, the smallest one, for example, T1CK(0)
follows. From the hardware point of view the bound on
k should be as low as possible. In practice, however, this
minimization of k is limited by the boundary conditions that

Alg-R1: it must be ensured that no Tick(k) messages
of different wrap-around phases can interfere with
each other, and a bound on the maximum offset of
any two clocks holds;

Alg-R2: the two parallel rules (Increment- and Relay-
Rule) executed on a node p never generate and
sequentially transmit the same Tick(k) message.

To accommodate for bounded values of k, the algorithm
presented by Widder and Schmid [37] was augmented by the
requirement that every Tick(k) message is only sent [once]
regardless of the fact that multiple rules might be eligible
to generate this particular Tick(k) message. This change is
already reflected in Algorithm 3.

Based on the refinements of our original algorithm
presented in this chapter, and considering the boundary
conditions we have identified, we can concentrate our efforts
on finding a suitable mapping of algorithmic statements to
hardware building blocks in the next chapter.

4. Hardware Implemented Fault-Tolerant
Tick-Generation

4.1. Hardware-Related Requirements. Even with the modified
tick synchronization algorithm by Widder and Schmid
(Algorithm 3) there are still several difficulties when attempt-
ing to map the software-based (high-level) tick generation
algorithm to the restrictions of hardware design. Most of
them are not due to algorithm-related requirements, but

rather originate from the need to find a fast and area-efficient
projection of the algorithm to hardware, since these issues are
by no means considered in the high-level description of the
algorithm so far. In the following we will give a list of these
challenges.

HW-R1: Tick Generation Network. Integer TicK(k)
messages have to be conveyed in a way to keep the
clock network as simple as possible without compro-
mising clock speed. Therefore, strategies having more
than a single wire per clock signal are assumed too
costly.

HW-R2: Tick Messages: Simple T1cK (k) messages have
to be used to enable highest possible speed, while
still operating on a single rail per clock signal—
clock transitions (up/down) on a single signal rail,
as depicted in Figure 5, seem to be the only viable
implementation option.

HW-R3: Unique Sender Identification: The algorithm
is based on the assumption that the receiver of a
T1cK (k) message can uniquely identify the respective
sender. In the light of HW-R2, appending a sender
ID is not feasible, hence we need a point-to-point
connection between any two nodes, that is, a fully
meshed network. This in turn confirms the claim for
a lightweight interconnection posed in HW-R1.

HW-R4: Asynchronous Design: Since the TG-Algs’
task is to generate a clock, they do not have a clock
available for their own operation in the first place.
(In principle, the provision of a local clock to each
TG-Alg would be possible, but it would counter-
act the original intention of the approach, namely
generating a clock, and it would suffer metastability
problems at the clock domain boundaries that would
inevitably emerge then.) As a consequence their
implementation needs to follow an asynchronous
design paradigm. From the available approaches the
(quasi) delay insensitive one is most attractive, since
it does not make assumptions on the individual path
delays, thus increasing the desired robustness.

HW-R5: Atomicity of Actions: For all distributed
computing models that the authors are aware of,
atomic computing steps at the level of a single node
are assumed. However, this abstraction cannot be
adopted when implementing an algorithm directly
in (asynchronous) hardware, where computations
are performed by numerous concurrently operating
digital logic gates. The most challenging part in our
case is given by the parallel processing of the two algo-
rithmic rules (“Relay Rule” and “Increment Rule”
of Algorithm 3) in conjunction with concurrently
arriving TIck() messages. To handle requirement Alg-
R1, explicit synchronization of local computations is
needed.

HW-R6: Fast Operation: The theoretical analysis of
the algorithm [38] confirms the intuition that the
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FIGURE 6: Tick generation architecture handling relative tick numbers.

oscillation frequency delivered by the DARTS scheme
as well as the attainable precision is determined
essentially by the round-trip times of the transi-
tions, that is, the time from the generation of a
particular transition until the generation of the next
one as a result of its reception by all other nodes.
Consequently, in order to obtain fast operation,
the hardware implementation shall minimize the
number of gate delays in these paths.

The most demanding design requirement is certainly
HW-R4, the need for an entirely asynchronous hardware
implementation: this restriction completely rules out the
employment of the well-established synchronous design
methods. Systematic asynchronous design styles (e.g., [39])
follow a handshake-based flow control to ensure that no
old data interferes with new one—this provides interlocking
between subsequent data waves. In this context it is impor-
tant that a transition at a gate input causes an effect at
the gate output, before the next input transition is allowed
to occur. This so-called indication principle is crucial for
handling concurrency (without having to introduce timing
assumptions), and it can be maintained by handshaking, as
long as the function of the gate is such that every input
transition actually causes an output transition, that is, no
input is being masked or disregarded.

However, in the context of fault-tolerant design a fun-
damental problem arises with this indication principle: if
a module is waiting until all REQs have properly arrived
before issuing an ACK and proceeding with its operation
(as it is implied by the handshake procedure), this would
allow a single faulty unit to inhibit any further processing.
Hence, a strategy has to be followed where processing is
halted only until an algorithm-dependent threshold of REQs
has been reached. While such an approach now enables the
incorporation of fault tolerance, it necessarily breaks the
implementation’s REQ/ACK feedback loops for the slowest
paths, thus inhibiting their indication. Without additional
measures or constraints such open loops tend to run out
of sync, endangering the correct operation of the whole
system. In order to obtain a fault-tolerant asynchronous
design the traditional closed REQ/ACK control loops have

to be augmented by explicit timing constraints, this way
supporting an interlocking scheme for consecutive data
waves for all, even the slowest paths. We will elaborate on
these timing constraints later on. For the moment we will
just summarize this insight in a further requirement.

HW-R7: Timing Requirements: In the absence of a
global clock we are forced to apply the principles
of asynchronous design, according to which all
activities must be involved in a REQ/ACK handshake
cycle. Due to requirement HW-R1 we do not want
to extend this handshaking principle to the TG-
Net. Furthermore, fault tolerance techniques like a
threshold function essentially contradict the “wait-
for all” paradigm implied by the handshaking. For
these reasons handshaking shall not be employed in
a completely consequent fashion, and appropriate
timing conditions shall be elaborated to constrain the
implementation in such a way that proper operation
is still ensured where the handshake loops are broken.

4.2. Block Diagram of the Implementation. Figure 6 shows
the basic architecture of a single TG-Alg’s hardware design
resulting from the above described specifications. The most
notable peculiarity of this design is the dissemination
strategy for Tick(k) messages. In accordance with HW-
R2 no explicit tick numbers are transmitted over the TG-
Net. Anonymous up and down signal transitions (zero-bit
messages) are used instead of conveying integer values. From
an abstract point of view this means that the sender just
conveys “differential” information in the shape of a plain
transition, while each receiver is equipped with a counter
to integrate this information into the actual tick number k.
In this way the message size can be reduced to the absolute
minimum, while, however, every node now requires one
separate counter per incoming link (i.e., n— 1), further called
“remote counter” (RC), in addition to the single one for
maintaining its local count (LC).

A closer look at Algorithm 3 reveals that only a relative
comparison between LC and RC is carried out, while their
absolute value is not relevant: the relay rule checks whether
the remote count / is greater than the local count k, while
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the increment rule checks whether RC = LC. Therefore, as
shown in Figure 6, we can employ up/down counters, further
referred to as +/— Counters to just maintain the difference
between LC and RC rather than their absolute values. Note
that this difference never becomes larger than the precision—
this is guaranteed by the function of Algorithm 3. With this
knowledge we can safely minimize the size of the difference
counters without having to consider a potential wrap-around
further on.

In accordance with Algorithm 3, in the next stage we
join the results of the “greater” (GR) comparisons and
those of the “greater or equal” (GEQ) comparisons from all
inputs of a node and check whether the number of positive
comparison results reaches the threshold of f + 1 implied by
the relay rule or 2 f + 1 from the increment rule, respectively.
This is done by the units called “threshold gates,” in Figure 6
marked by their respective threshold values. The task of an
m-of-n-threshold gate is simply to activate its output as soon
as m or more of its n inputs are at logic HI.

At this point it is interesting to note that, although
implied by Algorithm 3, we do not consider a self-reception
in our hardware implementation, that is, a node only receives
the tick messages sent by all other nodes, not the one
produced by itself. The reason is that in practice the self-
reception path is very likely to be much faster than all
the other message delays. Now recall from Section 3.1 that
the attainable precision largely depends on a constant ®
which is derived from the ratio of the fastest and slowest
feedback delays within the tick generation scheme. Hence
the imbalance caused by an extraordinarily fast self-reception
path would unnecessarily increase ®, thus degrading the
attainable precision. As a consequence of omitting the self-
reception path, the presented tick generation system has to
comprise at least 3f + 2 TG-Algs instead of the usually
applied (lower bound of) at least 3 f + 1 nodes to attain the
targeted degree of Byzantine fault tolerance.

The activation of a threshold gate’s output corresponds
to the firing of a rule in Algorithm 3, and as there are two
concurrent rules in the algorithm, we have two threshold
gates operating in parallel, with the appropriate thresholds
of f+1and2f +1. Finally, a tick generation unit (“Tick Gen”
in Figure 6) takes care of properly combining these outputs
into a tick that can be conveyed over the TG-Net. This is
the place where the “once” statement from Algorithm 3 and
requirement HW-R5 become important: care must be taken
to issue only one tick per k value in spite of the concurrent
operation of the two threshold gates.

The block diagram developed so far has been sufficiently
accurate to allow for a thorough formal analysis of the TG-
Alg design [33], yielding several implementation constraints.
Nevertheless, from a hardware designer’s point of view the
abstraction of the TG-Alg design has to undergo further
steps of detailing to enable a successful mapping to an ASIC
manufacturing process. This will be the subject of the next
section. (Our previous work [40] treated an FPGA prototype,
whereas the main focus of this paper is on the presentation
of the ASIC implementation and the evaluation of a DARTS
cluster based on the manufactured ASICs.)

5. DARTS Implementation

In this section the TG-Alg’s hardware implementation is
presented in more detail. To this end Figure 7 presents a more
accurate architecture of a single TG-Alg.

In the top part of the figure the +/— Counter module
is shown, decomposed into a “Local Pipeline,” a “Remote
Pipeline,” a “Diff Module,” and a “Pipe Compare Signal
Generator.” Note that this counter module just corresponds
to one remote input; overall n — 1 of these modules are
required per node to handle all incoming links from the
TG-Net. This fact is illustrated by the further counter
modules shown in the bottom left part of the figure. The
modules termed “Threshold Modules,” on the bottom right
in the figure, comprise the threshold gates and the “Tick
Generation” unit.

To understand the proposed structure of the + Counter
recall from Section 4 that message transmission is differen-
tial, that is, we use transitions to convey the TIck(k) messages.
As we do not know (and actually do not want to assume)
any phase relationship between the local ticks and the remote
ticks, Tick(1) and TIcK(!) transitions may occur arbitrarily
close to each other, hence introducing the potential for
metastability. Instead of building a flip-flop-based counter,
as one would usually do in synchronous logic, we decided
to go for a consequent implementation in transition logic.
In transition logic the expressiveness is limited to the causal
ordering of events in a basically time-free system. However,
to retain its delay insensitiveness the class of allowed circuit
elements is fairly restricted. Permitted elementary units are
for instance Muller C-Elements, inverters, XOR gates, and a
few rather complicated and quite exotic building blocks like
the toggle unit [41-43]. Even simple logic operations have
to be treated in a different way in the scope of transition
signaling. The behavior of a conventional OR gate that is
generating an output as soon as the first (rising) input
event has occurred would, for example, destroy the causality
relation of the late input with the issued output transition. Its
use is therefore not permitted in transition logic; the same is
true for the AND gate.

Given this limited set of available functions, our
approach to implement the +/— Counter is as follows:
we provide a buffer for incoming transitions, both from
the local and from the remote side. An implementation
based on the well-known transition signaling elastic pipeline
approach made famous by Sutherland [43] can be employed
here. These are the modules termed “Remote Pipeline”
and “Local Pipeline” in Figure 7. The “Diff Module” is
connected to the outputs of both these pipelines and removes
pairs of “matching” transitions (i.e., such with matching
(virtual) k values) from both sides. In the static case one
pipeline is always empty while the other one contains the
difference of ticks. The nonempty pipeline is the one that
has experienced a higher number of ticks (indicating the
sign of the difference), while the number of pipeline entries
equals the absolute value of the difference. As a result, the
two elastic pipelines together with the Diff Module form
the desired +/— Counter for the differential ticks. Note that,
while due to requirement HW-R1 no acknowledge is given



10 Journal of Electrical and Computer Engineering
Counter module 1 of 3f + 1
Reset Remote Pipeline Local Pipeline
St [T~ el et bbbty Shlatal Rl SRl bt B o
B R A Rt e W T T apn i an T Mmoo T A AT
i i iL[r He i " ] [ 'i
Remote.clk | I i L e i HEEEEEE
1 ! M [N I I
HINEES I'_ 1 Ic cs oE :lI ::
§ emote, i Riocalin i Local_clk_self
h - T N
: = 18119 .
X io| 1] idli3 7 s — i
t - N |
1! CEO N
i GEQ¢ !
NAND S0
! 2] o<NOR, |
i' G_Re 'i
iy oNAND; !
I "
I — Pipe C Signal Generati !
.. ipe Compare Signal Generation !
g SEQUNAND, | t
i i
i GRO i
bl GR C_ I
NAND S1
i — —o(NOR, !
: . Y, 1.
I i
l !
I "
" — I
i T i
I T
:L (7 ¢ ("Threshold Modules :: h
- ™ o _ -
ot > ] {168 [ 2+ TH | GEQe[: =2f +1
pimtd ol L N Counter module 3f + 1 of3f +1 —I = R
LY I Y B Local_clk
Pipe Compare Signal Generatiorﬂ —
[ GR? |: ]" | Generation
L1 ': >f+1 GR¢ = =f 1
Remote Diff Local g
\\ Plpehne Module Plpehne

FiGure 7: TG-Alg ASIC design architecture.

for incoming ticks, the pipelines internally operate fully via
handshake, and also the interface to the Diff Module employs
handshaking, thus yielding very robust operation. Details on
the implementation of these modules will be presented in
Sections 5.1 and 5.2.

There it will also become clear that the function of
this counter is fully symmetric for Tick(!) and TIck(})
transitions. This allows us to use no-return-to-zero (NRZ)
encoding for our tick messages, that is, each transition
represents a tick, no matter whether it is a rising or a
falling one, which perfectly supports our desire for efficient
communication (cf. HW-R2). Therefore we are willing to
accept the higher implementation efforts usually associated
with NRZ coding. By exploiting this symmetry we can
furthermore ensure that both half periods of our DARTS
clock (HI and LO) have undergone the same treatment
through our algorithm, and hence the duty cycle will be very
close to 50%. Note that, although in essence the ticks need
not be distinguishable, we can separate “odd” and “even”
ticks by their polarity (rising corresponds to odd, falling to
even). This will become important later on in the context of
interlocking.

The “Pipe Compare Signal Generation (PCSG)” module
performs the “greater” and “greater or equal” comparisons

of Algorithm 3 by inspecting the fill levels of the remote
and the local pipelines. In essence this is a conversion from
transition signaling to state logic. This move to state logic is
inevitable, since a counter value essentially represents a state
and not an event, and so does the comparison result between
two counter values. Within the state logic implementation
we operate without handshaking and rather rely on timing
assumptions. This is inevitable for the subsequent stage, the
threshold gate, anyway, since, as already outlined, we cannot
operate an m-out-of-n threshold in a fully handshake-based
manner. In the conversion from transition logic to state logic
care must be taken not to incidentally interpret transient
states; this issue will be treated in more detail below.

Notice that the PCSG provides two outputs for the
“greater” comparison, namely, GR’ and GR®, and another
two for the “greater or equal” comparison, namely, GEQ°
and GEQ°. This is because the PCSG’s operation is not
symmetric for rising and falling transitions. In order to
preserve the distinction between odd and even ticks we
therefore generate separate output signals for these.

5.1. Queueing Ticks. As mentioned before elastic pipelines
can be viewed as FIFO buffers for transitions. The better
part of an elastic pipeline consists of Muller C-Elements
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Element can informally be described as follows: the output
c is assigned the same logic value as the inputs a and b
whenever both inputs are equal (c=a=b=0 or c=a=b=1), and
c retains its previous value otherwise c=c_old. As a Boolean
function this can be expressed as

c=cod-(@a+b)+a-b=cga-a+caa-b+a-b. (2)

The Muller C-Element’s ability of retaining the old value
of output ¢ clearly demands some sort of storage loop. For
this storage loop to operate properly the inputs a and b
have to stay stable for at least fioop. This delay is defined
by the propagation delay through the logic gates plus some
additional wiring delays. More specifically, a Muller C-
Element’s correct behavior rests upon the assumptions that

(i) a single input does not toggle faster than #.p if the
initial transition would cause output ¢ to change its
value. For example, if input a = 0, b = 1, and output
¢ = 1, input b is not allowed to toggle faster than
tloop since the output preserving feedback loop needs
time to settle the new value of ¢ = 0 (see left part of
Figure 8(c));

(ii) input a and b never change their logic level to the
opposite value too close to each other. For instance,
again starting with a = 0 and b = 1 both inputs
must not change to the opposite polarity a = 1 and
b = 0 within an interval smaller than #,,, (right part
of Figure 8(c)).

A storage loop with respective timing restrictions is com-
mon to all Muller C-Element designs. In an asynchronous
design fully relying on handshaking the REQ/ACK control
loop ensures that a further input transition is not applied to
the Muller C-Gate before the output transition caused by the
previous input transition has been acknowledged. In this way
the above timing conditions are always met, at least in the
fault-free case. However, in our case we have to be aware of
the involved timing constraints.

5.1.1. Elastic Pipeline. Figure 9 shows a four-stage implemen-
tation of an elastic pipeline (our theoretical analysis pre-
dicted a precision of three ticks, so we considered a pipeline

B [loop, stage

FIGURE 9: Elastic pipeline design.

depth of four safe) whose regular structure allows for
effortless configuration of the FIFO’s buffer depth. It is
capable of storing up to four transitions applied at Ri.
The rightmost entry is consumed by a transition on Agys,
resulting in a right shift of all remaining ones.

In general, the elastic pipeline’s way of transition pro-
cessing provides a very elegant flow control and buffer-
ing mechanism as long as some basic timing constraints
are maintained. The involved timing paths are depicted
in Figure 9. Similar to the Muller C-Element itself, the
feedback loops of the elastic pipeline introduce an additional
timing condition restricting the input sequence. The path
delay fioop, stage limits the minimum distance between two
subsequent input transitions on R;j,. The Muller C-Element’s
input constraint which is characterized by tioop obviously
is the less restricitve factor at this point since figop,stage =
2tcgate + 2tyire + tinverter With floop, stage > fegate = floop-

It is evident that speed, robustness, and area efficiency
of a TG-Alg implementation are largely determined by the
quality of the available library cell for the Muller C-Element.
Therefore we decided to use a customized, transistor level
implementation in our ASIC design. It is based on the circuit
proposed by van Berkel [44], however, enhanced with several
extensions. First of all, dedicated reset and set inputs (cf.
Figure 8(a) for the symbol and Figure 8(b) for the enhanced
function) allow to properly initialize the element’s state. In
the case of our TG-Alg an empty pipeline is used as starting
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point. Furthermore, for improved performance two output
signals, ¢ and its inverted equivalent ¢, are provided, thus
saving the extra inverter in the feedback path of the elastic
pipeline (cf. Figure 7).

Note that in the TG-Alg’s elastic pipeline the output Aj,
is not connected. Again a closer look at Figure 7 reveals that
Ri,, corresponds to the clock input signal (remote or local).
In turn the feedback output Aj, would correspond to an
acknowledge signal for the incoming clock signal transitions
which we omit in accordance with requirements HW-R1 and
HW-R?7.

In contrast, the far-end interconnection to the Difference
Module includes the entire pipeline interface Roy and Agys.
As long Rout = Aout, the pipeline is empty and waiting
for input transitions and no tick can be removed by the
Difference Module. However, as soon as Ry # Aouw the
pipeline holds at least one clock tick which can be consumed
by altering Aoy to the value of Roy.

5.2. Counting Ticks. Each of the elastic pipelines presented
above manages to buffer incoming clock transitions—four
clock transitions in the particular case of the proposed TG-
Alg ASIC node design. This buffering scheme is essential
because it decouples the time domains between local and
remote ticks, thus allowing us to handle them according
to a strict, predefined sequence (i.e., without having to
consider concurrency), which in turn avoids metastability by
design. As already outlined above, the actual +/— counting is
implemented by combining a pair of such elastic pipelines,
one for the remote ticks and one for the local ones and
removing matching ticks from both sides. Note that this
removal procedure requires us to have one dedicated instance
of the local pipeline per counter.

5.2.1. Difference Module. This module is responsible for an
orderly removal of matching ticks. In essence it resembles an
asynchronous state machine that first removes a tick from the
remote pipeline (as soon as one is available) and only after
this removal has been acknowledged enables tick removal
at the local side. This procedure ensures that the conditions
remote > local and remote > local, which directly translate
to the fill-level signals GEQ®, GR®, and GEQ’, GR’ are never
falsely activated. It turns out from the analysis of the desired
behavior that this state machine can be implemented by a
Muller C-Element as shown in Figure 10, that is, in contrast
to the Muller C-Elements in the elastic pipeline, initialized to
1.

A hardware design optimized for the targeted ASIC
manufacturing and implementing the whole +/— Counter
Module is presented in Figure 10.

5.2.2. Pipeline Compare Signal Generation. The PCSG mod-
ule is responsible for generating the comparison results
GR’, GEQ’ and GR®, GEQ® based on the fill levels of local
and remote pipe. As already mentioned, its function can
be partitioned in the processing of odd and even ticks.
The PCSG part treating incoming even ticks ultimately
triggers the generation of odd ticks by issuing GEQ®, GR®
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signals. Similarly, the circuit concerned with odd ticks and
controlling GEQ’ and GR? is responsible for generating even
clock ticks.

Generally all output signals of the Pipeline Compare
Signal Generation Module (GEQ®, GR®, GEQ’, GR?) as well
as all internal logic operations are active low. This allowed us
to exclusively use inverting basic gates (NAND/NOR instead
of AND/OR) within the PCSG design, which contributed to
optimizing the speed of the ASIC implementation.

The PCSG performs the conversion from the transition
logic used in the elastic pipelines and the Diff Module to
state logic. At this point specific care must be taken that the
comparison signals never switch to the active state before
remote = local and remote > local conditions, respectively,
actually hold. Note that, however, the nature of the tick
generation function allows them to stay active for some
time even if the respective conditions are no longer fulfilled.
From the perspective of the algorithm this means that the
early or illegal firing of a rule is disastrous, while the late
deactivation of a rule is less critical. In the design of the
Diff Module we have already carefully avoided glitches that
might be introduced by the removal process. Still, however,
we may experience erroneous activations due to a dynamic
state of one elastic pipeline, that is, when a transition ripples
towards the output of the pipe. For this reason three taps of
the local pipeline are combined to ensure that no dynamic
effects during tick arrival or removal can compromise the
fill level signal, although for the static case only two would
be sufficient. In detail, the signals SLocall, SLocal2, and
SLocal3 in conjunction with the NOR; gate are used to
indicate whether the pipeline holds a single even tick. The
fill-level indicators on the remote side (SRemote2, SRemote3
and SRemote2_N, SRemote3_N) are responsible for checking
if one or more clock ticks are currently stored in the pipeline.
An appropriate combination of local and remote side fill-
level signals allows to generate the output signals GEQ® and
GR®, which represent the conditions remote > local and
remote > local, respectively. To attain an active fill-level
signal GEQ®, corresponding to remote > local it has to hold
that:

(i) at most one even (tick-1) clock transition is stored
inside the local pipeline which is indicated by NOR,
(the distinction whether no or one single transition
is in the pipeline depends on the state of the ACK,
that is, whether the last transition has already been
removed by the Dift Module, as this is not relevant
for our comparison, involving the ACK signal was not
necessary),

(ii) at least one even clock tick is present in the remote
pipeline, indicated by signal SRemote3_N.

These two conditions are combined in a final step via
NAND,, generating the output GEQ°. Similarly, for the
activation of the low active signal GR® implementing the

condition remote > local the following constraints have to
be fulfilled:

(i) again only one even (tick-!) clock transition is
allowed inside the local pipeline, which is assessed by
the NOR; gate;
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FiGure 10: TG-Alg ASIC +/— Counter Module.

(ii) more than one clock tick has to be present in the
remote pipeline, an even clock tick in pipeline stage
§3 and additionally an odd tick in stage S2.

These conditions are evaluated by the gate NAND; via
signals SRemote2_N and SRemote3_N in conjunction with
the output of NOR;. The activation of the signals GEQ’ and
GR? follows by analogous means, simply treating odd instead
of even input signals.

We have carefully analyzed the dynamic behavior of the
pipe to confirm that our solution can handle all possible
dynamic effects caused by transitions rippling through the
elastic pipelines.

5.3. Generating Ticks. The final processing step of every TG-
Alg node is concerned with the evaluation of the counter
fill levels and the generation of new clock ticks according to
the “Relay Rule” and “Increment Rule” from Algorithm 3.
Here a move back from state logic to transition logic needs
to be performed, which requires the careful consideration of
possible glitches. After all, in transition signaling every signal
change is treated as meaningful data.

5.3.1. Threshold Modules. Four distinct threshold circuits
allow to separately evaluate all output signals of a node’s
(3f +1) +/— Counter Modules. As depicted in Figure 11,
two threshold circuits are responsible for processing the
fill-level signals GEQ® and GR® for even ticks. This way
they implement the tick generation algorithm’s “Relay Rule”

and “Increment Rule” for falling transitions by virtue of
threshold gates with threshold f + 1 and 2f + 1, respectively.
In the same way their odd counterparts treat the signals
GEQ’ and GR®.

For the implementation of a single threshold function
several possibilities exist. We have evaluated them according
to the following criteria.

(i) Low Propagation Jitter: As outlined in Section 3.1 the
algorithm’s correctness and performance ultimately
rely on the ratio ® of different timing path delays
within the TG-Alg design. Therefore we do not
want different paths to have substantially different
propagation delays (e.g., comprise a different number
of logic stages).

(ii) Low Propagation Delay: The threshold module’s
propagation delay directly adds to the TG-Alg’s
round-trip time and thus impacts performance.

(iii) Robustness: Since we are heading for a fault-tolerant
solution we do not allow a module to compromise
the overall robustness. This rules out solutions based
on summing up currents or charges in the analogue
domain.

(iv) Area Overhead

(v) CMOS Technology: As the approach is targeted for
digital CMOS circuits, the threshold gate should
as well be implementable in CMOS technology,
preferably with standard cells.
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In [45] we have made an elaborate comparison of the
available approaches and identified the sum of products
scheme as the one that best matches these constraints,
although its area overhead is quite substantial.

For the needed implementation of an m-out-of-k design
(k) product terms have to be computed and then summed
up. The threshold circuits of the ASIC TG-Alg have been
designed for 11 input signals. The resulting 4-out-of-11
implementation of the f + 1 threshold circuit yields 330
product terms. These product terms have to be summed
up in a treelike cascaded architecture since no elementary
gates with a fan-in of 330 are available in the ASIC target
technology. A notable peculiarity of the sum of products
implementation is the fact that for a given configuration of
n — 1 inputs with n — 1 = 3f + 1, the required threshold
functions f+1and 2 f +1 can be converted into each other by
simply inverting all input and output signals, therefore only
one function has to be designed.

Although the chosen sum of products implementation is
beneficial in many respects, it cannot be implemented such as
to operate completely glitch-free. This is not an implementa-
tion deficiency, but a general behavior of asynchronous state
logic that tends to produce glitches on the outputs while
processing its inputs as long as no strict restriction on the
input sequence is ensured [46]. At this point we can take
advantage of the separation between odd and even ticks.
Having the circuit blocks for odd and even ticks operating
in alternation, we can determine a period of inactivity for
every threshold gate, during which it may produce glitches
without jeopardizing the proper overall operation of the TG-
Alg, provided these glitches are orderly masked. It will be
the task of the Tick Generation Module (see Section 5.3.2)
to provide this masking, and we will have to consider timing
constraints for the allowed duration of glitches.

5.3.2. Tick Generation Module. The task of the Tick Gen-
eration Module (see Figure 11) is to actually generate and
broadcast the next tick, as soon as the rules implemented

in the threshold module indicate it is time to do so. It is
specifically here where the conversion from state logic back
to transition logic takes place.

In the Tick Generation Module the four threshold circuit
outputs q1, 42, g3, and g4 are combined by simple logic gates
in a way such that only valid clock ticks are generated, in
essence it handles the concurrency of the two rules of the
algorithm. Furthermore, the Tick Generation Module has
to ensure that after generating a clock tick the TG-Alg’s
clock output remains stable despite the fact that the outputs
of the threshold circuits might toggle due to glitches. This
retention of the clock output is enabled mainly by the Muller
C-Element at the output which only issues a new tick if
both inputs indicate to do so. However, since the storage
loop of the Muller C-Element needs stable inputs during its
settling time the outputs of the threshold circuits have to be
stable for a small time interval before and after a new tick is
generated. This safety window must be ensured by the timing
constraints. Assuming that all implementation constraints
are fulfilled and taking the above-mentioned considerations
into account, a new tick is generated only if

(i) the threshold circuits responsible for the generation
of the last tick issued (by providing enabled input
signals GEQ, GR) have become inactive again;

(ii) at least one of the two threshold circuits responsible
for the generation of the new tick gets activated.

Note that by these rules the generation of an odd tick
k+1 € Noga := 2N + 1 is triggered only if the last tick
generated was even (k € Neyen := 2N). A thorough analysis
of the described tick generation process, conducted in the
context of the DARTS project and published in [33], shows
that the presented approach is sufficient to avoid that old
and new instances of GR’ and GEQ’ get mixed up. The
main message of this formal analysis—the derived timing
constraints for the hardware implementations—will be given
subsequently.
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5.4. Timing Constraints. The correct behavior of the tick
generation approach of Algorithm 3 relies on some par-
ticular timing constraints. In fact, implementation-specific
constraints on path delays have to hold. The most important
one is given by the Interlocking Constraint that ensures that
TIcK(k) and TIcK(k + 2) messages do not interfere with each
other.

Constraint 1 (interlocking). Tmax,dis < Tmin + Tmin,dis Must
hold.

With the delay paths.
Tinax.dis := Tiyg + maX(TER, TEEQ) + 1.
Tmin := Try + min(rgR, TaEQ> + Tioe + Tpifs (3)
Trmin,dgis 1= Try + min(TéR’ TéEQ) * Tloo>

Tmaxdis represents the slowest disabling path starting and
ending at the tick generation output of the respective
node. Tmin corresponds to the fastest path for generating a
clock tick, whereas Tin, dis, analogously to Tiax, dis» accounts
for the minimum deactivation time of the previous clock
tick which in turn enables the generation of the next
clock tick. Figure 12 graphically presents TG-Alg node’s
opposing interlocking delay paths. Note that the involved
paths only include design units at a local node. This locality
of Constraint 1 considerably facilitates designing the path
delays accordingly.

The interlocking constraint is not the only relevant
timing bound. In short, it also has to hold that ticks in
the local and remote pipelines get removed fast enough
to inhibit excessive queuing of ticks. An additional timing
constraint bounds the fastest remotely triggered generation
of a new tick in relation to the slowest locally processed one.
Moreover, the start-up (booting) of all correct nodes has to
be in a certain time interval. A detailed description of these
additional constraints can be found in [38].

6. Results

Based on the design presented in the previous section,
we have implemented an ASIC prototype in a 0.18 ym
technology. We have chosen this relatively large feature size,
since it allows a radiation hard implementation, which is an
important feature for the spaceborne applications we had in
mind. The threshold gate is configurable for a system up to
f = 3, thatis, n = 11. This ASIC implementation allows
us a first estimation of cost and performance of the DARTS
concept in practice. This section reports on our experiences
and measurement results.

6.1. TG-Alg Implementation Characteristics. The analysis of
the whole TG-Alg design is conducted by putting together
the characteristics of all subunits. For this purpose exact
numbers for the hardware effort in terms of gate equivalents
and die size will be given. The fully connected network
topology clearly implies a quadratic growth of the TG-Net’s
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TaBLE 1: Hardware effort of a single TG-Alg and its components.

No. of basic gates No. of C-Elements area in [pm?] area in %
Remote Pipeline — 4 944 0.20
Local Pipeline — 4 944 0.20
Difference Module 2 1 270 0.06
PCSG 6 — 395 0.08
+/— Counter 8 9 2,553 0.05
11 +/— Counters 88 99 28,083 5.80
f + 1 circuit 550 — 51,641 10.67
2f + 1 circuit 1,013 — 176,083 36.39
Tick Generation 2 1 303 0.06
Threshold Modules 3,128 1 455,751 94.19
single TG-Alg 3,218 100 483,862 100.00

number of links with node count n and thus also with f,
that is, @(f?), and has direct impact on the complexity of
a TG-Alg’s implementation. Notice, however, that we do not
advocate building a system with high #; even a value of f = 3,
as it is available for our experiments, is much better than the
“single fault assumption” usually applied for hardware.

Staying with the flow of the previously presented sub-
blocks the tick queueing and tick counting mechanisms
are treated first. The hardware effort for building a TG-
Alg’s queueing and counting blocks is for a considerable
part determined by the amount of incorporated Muller C-
Elements. Considering the remote and local elastic pipelines
as well as the Difference Module, the Muller C-Element
presents the only relevant building block, whereas the
Pipeline Compare Signal Generation Module is assembled
using a few basic gates with two and three inputs, respec-
tively. Recall from Figure 7 that n — 1 = 11 individual
+/— Counter Modules are required—one for each remote
TG-Alg. The upper part of Table 1 presents numbers for
gate count and silicon area (in the 0.18 ym ASIC target
technology) treating submodules as well as the whole design
of a +/— Counter. Furthermore, the hardware effort is added
up to account for the 11 +/— Counters of the actual TG-Alg
implementation. It can be observed that the elastic pipelines
are the main contributors to the chip area of each +/—
Counter. This is due to the relatively complex structure of
the library cell employed for the Muller C-Element with its
extra inputs for direct set and reset. Note, however, that
we used custom cells designed on transistor level. Had we
chosen a gate-level implementation (e.g., a design based on
NAND gates), we would have experienced an even higher
area overhead and a notable loss of performance.

In contrast to the queueing and counting blocks (+/—
Counter) every TG-Alg holds only one Threshold Module—
incorporating four threshold circuit units and the Tick Gen-
eration Module. As thoroughly described in Section 5.3.1,
threshold circuits are purely combinatorial blocks following
a sum of products implementation. Given an input width
of n — 1 = 11, the presented complexity growth with the
number of inputs yields 330 and 462 product terms for
each of the f + 1 and 2f + 1 threshold circuits, respec-
tively. Therefore the exponential increase with approximately

(;f ++11) is one of the prominent cost driving factors when
scaling the tick generation system’s resilience f < | (n—2)/3]
and hence the number of nodes n. Due to the fact that
basic standard cell gates like NAND and NOR, which are
used in the sum of products implementation, are typically
available only with two and three inputs, hardware effort is
additionally increased with increasing number of n. This is
true for the product terms as well as for the terminal sum
term because increasing numbers # and m result in the need
for cascading basic gates.

In contrast to the threshold circuits the Tick Generation
Module does not suffer from scaling effects since it consists of
two basic gates and a single Muller C-Element only. Similarly
to the elastic pipelines it benefits from the transistor-level
implementation of the Muller C-Element. The lower part of
Table 1 lists gate count and area numbers for the involved
design units and the Threshold Module block overall.

The comparison of TG-Alg’s components in terms of
hardware effort, shown in Table 1, reveals that the sum
of product threshold circuit implementation accounts for
a substantial part of the entire design. Almost 95% of a
TG-Alg’s chip area is devoted to the Threshold Modules.
The enormous hardware effort reflects the threshold circuits’
unfavorable scaling with f and . In general, the Threshold
Modules’ predominance in hardware effort allows to give an
estimate for the scaling of a TG-Alg’s chip area following
:(}fjl). This scaling obviously only applies for the used
sum of products approach and would be completely different
for other implementation technologies. Analogously to the
customized Muller C-Element, an applicable enhancement
to reduce the sum of products area effort might be given by
an optimized transistor-level implementation. Furthermore,
the design alternatives presented in [45] might provide
reasonable options for improvement.

6.2. Performance Assessment. The following assessment aims
at thoroughly characterizing the properties of a running tick
generation system. These evaluations give insight on tick
generation under varying operating conditions and validate
the fault tolerance properties (worst-case scenarios) of the
DARTS approach. A tick generation system composed of
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n = 8 (and f = 2) fully interconnected ASIC nodes (Ul
to U8) was assembled for all evaluations of the cluster.

In the context of average-case experiments the assess-
ment of implementation and operation characteristics is
certainly of interest. In particular, stability considerations
arise when recalling that the primary goal of the DARTS
clocking scheme is to provide conventional synchronous
circuits with a fault-tolerant clock. On the one hand the
asynchronous nature of the TG-Alg implementation allows
the design to adapt its operation to varying conditions,
thus increasing its robustness. On the other hand this
flexibility might be problematic from the synchronous unit’s
point of view since it is controlled by the adaptive, thus
varying, TG-Alg clock. Due to the TG-Algs” asynchronous
implementation a certain degree of operation parameter
sensitivity can be expected.

6.2.1. Frequency. The attainable clock frequency solely relies
on switching delays of the asynchronous circuits and
interconnection delays of the remote and local clock lines.
Using predictions from theory the tick generation scheme’s
frequency can be bounded by the synchronization property
Progress (P) together with the tick generation path Tg,:

1 1,
ﬁwerage = [ETP: ETﬁrst]‘ (4)

The path given by Tp denotes the slowest possible gener-
ation of a subsequent tick, while Tj., and Tmin represent
the fastest remotely, and locally triggered tick generation,
respectively. The required delay parameters can be extracted
from the ASIC design files. Together with delays for the chip
interconnect this is sufficient to give a sound estimation
of the achievable clock frequency. For the DARTS design,
T = 6ns and Trin = 6ns with an assumed interconnect
delay of 1 ns lead to an expected fmax = 71 MHz.

Measurements of a similar path for Tf,, showed a delay
of 7 ns. This path involves remote_clk[-] input pin, next 6
Muller C-Elements, the PCSG unit, the Threshold Modules
including tick generation, and finally local_clk output pin.
Analogously to the above examination the delay for Ty, is
measured as 7 ns. The path is also quite similar comprising
the local_clk_self input pin followed by 5 Muller C-
Elements, the PCSG unit, the Threshold Modules, and Tick
Generation block, ending at the 1ocal_clk output pin.

The difference of 1 ns between measurements and design
files is mainly due to the fact that the measurement setup
does not—unlike the evaluation of the design files—use the
shortest path through the threshold circuits. (This is due to
the fact that a system of 8 nodes with f = 2 was used for the
measurements; however, the paths considered in the design
files use the faster paths of n = 5and f = 1). From theory,
however, it is clear that the rate based on the fastest paths
(Tgrse and Trin, resp.) can only be maintained for a short
period, that is, either the remote or the local pipeline has
to be full while ticks at the opposite side arrive at Tg,, or
Tmin, respectively. As soon as the previously filled pipeline
gets emptied the clock rate will notably slow down which
leads to the observed average frequency of fiverage = 54 MHz.
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TasLE 2: Cluster of 8 standard nodes: voltage scaling.

Core voltage Avg. frequency ~ Current ASIC ~ Current all in
in (V) in (MHz) U6 in (mA) (mA)

1.3 38 11.7 100

1.4 43 15.1 126

1.5 47 17.6 150

1.6 50 20.6 178

1.7 52 23.8 204

1.8 54 27.2 233

6.2.2. Operation Condition Dependency. As mentioned
above, the switching speed of the circuits is likely to be a
function of supply voltage. Moreover, digital CMOS circuits
are also known to be sensitive to temperature variations.
Both effects are typically encountered in normal operation
modes. The mentioned voltage dependence of a CMOS
circuit can be approximated by deriving the delay times for a
single gate and essentially boils down to

Cr
foate ® 7 > 5
gat ﬁVDD ( )

with Cp, being the load capacitance,  and Vpp representing
the CMOS transistors’ gain and supply voltage, respectively
[47]. Note that the above mentioned temperature depen-
dence of CMOS circuits is hidden inside . The carrier
mobility (electrons and holes) decreases with increasing
temperature, thus f decreases, yielding a slowdown of the
circuit as temperature rises. Table 2 shows the measured
average frequency and the corresponding current drawn by
the design.

As expected from (5) the achieved clock frequency scales
proportional to the supplied core voltage. Figure 13(a)
presents results of detailed measurements in which the
applied core voltage has been changed in 10mV steps
in an interval starting with 1.30V and ending at the
nominal voltage of 1.80V. An improved illustration of the
measurement data which makes the correlation of voltage
and clock frequency more evident is given in Figure 13(b).
Core voltage and frequency are given in percentages of their
respective maximum value. This way it can be observed that
a voltage change of 1% vyields approximately 1% variation
in clock frequency (red line in Figure 13(b)). The strong
impact of the core voltage on the operating frequency of
the asynchronous tick generation implementation meets
the expectation. A second important factor of influence is
temperature. Again, according to (5) the switching speed
and propagation delay of CMOS circuits scale indirectly
proportional to temperature. This expectation has also been
confirmed by the measurements.

6.2.3. Short-Term Jitter. Short-term fluctuations of the fre-
quency and discontinuities in the clock periods during fault-
free operation are expected from at least two sources. Firstly,
the above-mentioned supply voltage dependence will project
its voltage jitter to a frequency jitter. Temperature changes
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FIGURE 13: DARTS cluster’s mean clock frequency core voltage dependence.

12000

10000

8000

6000

4000 |

2000

8.5 9 9.5 10

10.5
Time (ns)

(a) Half periods

15000

10000 b

5000 1

53 53.5 54
Frequency (MHz)

(b) Clock frequency

FIGURE 14: Single clock evaluation of a running standard node cluster.

are considered to be too slow to yield perceivable short-
time effects, but since propagation delay is known to be
affected by thermal noise, so will be the frequency produced
by our system. The evaluations are based on short-time
measurements with very high resolution (up to 10 GS/s)
including approximately 40,000 clock transitions. These
measurements aim at characterizing the clock of a single
node running within a DARTS cluster.

The measured half periods are presented in the histogram
plot shown in Figure 14(a). Two cluster points can be
identified, one at =~ 8.7ns and the other at =~ 9.8ns.
A separate examination (not shown) revealed that these
accumulation points correspond with the distributions of
the HI and LO periods. This observation can be explained
by the slightly different processing speed of the respective

clock signals, in particular, (a) the separate processing of
rising and falling transitions in our implementation yielding
different path delays and (b) the different timing behavior
(rise time/fall time, e.g.,) of Muller C-Elements for rising and
falling transitions. Figure 14(b) presents the distribution of
the clock frequency with a mean frequency of 53.4 MHz and
a standard deviation of 0.153 MHz.

6.2.4. Long-Term Jitter. In the tick generation system’s long-
term operation especially the effect of varying temperature
is expected to be noticeable. Self-heating of the TG-Alg
chips is anticipated to continuously slow down the tick
generation process. The numbers presented in Table 2 show
that the stability of the clock frequency heavily depends on
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the stability of the operating conditions. Figure 15 presents
a long-term assessment of a node’s mean clock frequency
with an evaluation interval of more than 17 hours. It can
be observed that clock frequency noticeably decreases over
time by about 250kHz. The operating conditions, that is,
core voltage and ambient temperature, were not varied in this
experiment setup. The measurements start with all nodes in
reset state with no activity. Thus no mentionable current is
drawn by the chips. As soon as the reset gets deactivated the
designs start to draw substantial current that contributes to
self-heating of the running chips and causes the asymptotic
decrease of the mean clock frequency depicted in Figure 15.
A 15-minute snapshot of another frequency measure-
ment including a high resolution trace of the core voltage
is presented in Figure 16. In this figure it can be observed
that a discrete jump of the core voltage is directly followed
by a frequency jump. This behavior perfectly fits into the
design’s voltage dependence presented earlier. In the depicted
measurement the voltage changed by ~ 0.5mV,nys which
led to the aforementioned shift of average frequency by
10-20kHz. The initial cause for the observed minor voltage
change is hidden in the used digital power supply which
has quantization steps of 0.5 mV,y,. The correctness of this
interpretation for the frequency jumps has additionally been
confirmed by crosscheck measurements with analog power
supplies. In these evaluations overall increased frequency
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jitter was observed due to the higher level of voltage noise.
However, neither discrete steps in the voltage level nor in the
mean frequency were encountered.

In addition to the presented assessment of a single
clock signal, the clock signals of the whole ensemble were
evaluated as well, albeit with a lower precision, since these
measurements had to be performed with a logic analyzer,
whose time resolution was limited to 250ps. The main
interest clearly resides in the synchronization of the clock
ensemble. Detailed short-term measurement showed that for
the fault-free case the ensemble starts with tight synchrony
and remains closely synchronized (the small initial offset is
due to differences in the propagation of the reset signal).
Under normal conditions, that is, nominal core voltage and
room temperature, evaluations yielded initial offsets in the
range of 1ns to 1.5ns. In these short-term measurements
the maximum skew among any two T1cK(k) clock transitions
never exceeded its initial offset of 1.5 ns. Hence, a fault-free
clock ensemble running under nominal operating conditions
has precision 7 = 1. In Figure 17 all 8 nodes’ frequencies
of a DARTS cluster (starting from reset state) are depicted.
(To enhance the expressiveness of the graph the data values
actually have been smoothed to compensate for the limited
resolution of the logic analyzer. Note that this did not
affect the general trend but only the magnitude of the
frequency changes). It can be observed that the frequencies
of all DARTS clocks change jointly, thus yielding close
synchronization.

6.3. Fault Tolerance Properties. Up to now all evaluations
have assumed TG-Alg nodes operating fault-free. In con-
trast, the evaluations presented in this paragraph consider
scenarios with faults artificially introduced into a running
cluster of 8 nodes (which by design should be resilient to
f = 2 Byzantine faults). In the conducted experiments the
consequences of crashing TG-Alg nodes are examined in
particular. The node crash scenarios are implemented by
resetting one or two nodes of the DARTS cluster. Note that
these scenarios do not necessarily have the benign properties
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of crashes as they are assumed in distributed systems. Even
stuck-at faults can be outside the scope of the crash fault
scenario. For instance, an early clock transition, that is,
changing a clock rail from HI to LO (stuck-at-0) through
the activation of a node’s reset is already within the class of
malicious/Byzantine failures. All combinations of scenarios
with one or two nodes crashing yielded Figure 18. For each
of the reset scenarios the mean frequency before and after the
crash has been derived from measurement data. The lines
interconnecting these two mean frequency values illustrate
the actual drop of the clock frequency. As anticipated, in
all 36 reset scenarios the deactivation of nodes leads to a
decrease of the mean clock frequency. This slowdown is
quite natural since for the remaining nonfaulty nodes of the
cluster the crashing of nodes implies that one or two of the
previously 2 f + 1 fastest node(s) has/have been deactivated.
Hence the correct nodes have to wait until tick messages are
received from slower nodes which are still up and running,
consequently leading to additional delay before the next
tick can be generated. Note that due to small differences
in propagation delays and the close synchronization of all
clocks, each node’s set of 2f + 1 fastest neighbors might be
different. This leads to the effect that the reset of each node
at least slightly influences the clock overall clock frequency.
The synchronization precision 7 represents one of the
most important synchronization properties of the DARTS
tick generation system. It may simply be assessed by mea-
suring the clocks’ relative offset. However, this evaluation is
unlikely to reflect worst-case conditions. As already pointed
out in Section 6.2.4 the computation and interconnect delays
of the DARTS cluster are almost perfectly matched—which
yields a precision 7 = 1. Thus an appropriate scenario has
to be derived and established for worst-case measurements.
Figure 19(a) shows the generic setup to statically force a
system of 3 f + 2 TG-Alg nodes into an operation mode with
worst-case precision. The only relevant parameters for this
scenario are given by the interconnecting remote delays Trem.
As depicted, a set of f nodes have to be faulty in a way that
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no TIck(k) messages are delivered to a second set of f slow
TG-Algs. It further has to be ensured that ticks sent among
the set of slow nodes as well as those received from the group
of f + 2 fast TG-Algs are issued with the maximum remote
delay 7;,,. Connections not explicitly shown in Figure 19(a)
can be assumed to have delay 7,.,,. More formally speaking,
in a system where P denotes the set of all nodes there are three
distinct sets of TG-Algs with A comprising the fast nodes, B
the slow, and the F faulty ones. The remote delays from p to
q in this setup are given by

Trem (P € A,q € B) = 7oy
Trem (P € F,q € B) = +o0
Trem (P € B, € B) = 15, (6)
Trem(p € P,q € A) = Tpoy
Trem(p € P,q € F) = Ty

To get a better understanding for the reasons why
this static evaluation setup represents a valid worst-case
scenario for the tick generation system, Figure 19(b) depicts
an execution trace of the relevant (non-faulty) nodes. As
indicated in the trace, it is assumed that all nodes start
at approximately the same time by issuing Tick(0). For
the example, it is assumed that 7., alone determines the
processing speed of the tick generation system. (Recall from
Section 3.1 that only the ratio ® of fastest to slowest path
determines the algorithm’s properties, thus it makes no
difference if Trem or the whole delay of the tick generation
path is considered in the experiment scenarios.) In the given
setup, set A comprises f + 2 fast TG-Algs. Together with f
fast, but faulty nodes € F, ticks are generated continuously
at a rate determined by 7,.,, and according to the algorithm’s
“Increment Rule” (= 2f + 1 threshold). Analogously, the f
slow TG-Algs € B also start to issue clock ticks triggered by
the “Increment Rule” (I), however, at a period determined by
7. Thus, group A starts “running away” with 7., while the
slow group B “runs behind” with period 7;5,,,. At some point
the slow nodes’ flow of issuing ticks changes to the operation
mode where the “Relay Rule” (R) takes over tick generation.
This switching point is reached when T1CcK (k) messages arrive
at the slow nodes, indicating that the fast remote nodes are
ahead by at least one tick, that is, k > [, with ¢ being the
current local tick number. This way the “Relay Rule” ensures
that the system stays in a synchronized state. The maximum
offset in time between the first sending of Tick(k) at #
and the last sending of Tick(k) at t; for any pair of correct
nodes p,q can be used to derive the cluster’s precision 7
(for more precise calculations of the maximum clock skew of
correct nodes refer to the detailed formal analysis presented
in [33, 48]).

The implementation of the above described evaluation
scenario confirmed the predictions from theory. As expected
the measurements showed that the synchronization of fault-
free nodes only depends on the ratio of fastest to slowest
path ©. Via these artificially introduced path delays the worst
case ratios of fastest to slowest path could be set to achieve
precision 7 = 3 which still poses no threat to the clocking
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FIGURE 19: Evaluation scenario to attain worst-case precision 7.

approach and can be handled by the buffering of the four-
stage elastic pipelines.

7. Conclusions

Considering the increasing need for fault tolerance in
general, and the lack of fault-tolerant clocking schemes that
allow globally synchronized operation even in the presence of
significant skew in particular, we have proposed a novel clock
generation approach that closes this gap. DARTS provides a
clock with scalable fault tolerance for both, clock generation
units as well as interconnect, that is globally synchronized
with a bounded precision.

The key idea behind DARTS is to use a tick synchro-
nization algorithm from the distributed systems community
whose performance and fault-tolerance features can be
formally proven. By moving this originally software-based
algorithm to a hardware implementation, the attainable
precision can be improved to a level that is suitable for
clocking hardware units with reasonable synchrony. When
doing so, however, two crucial issues had to be mastered.
Firstly, the algorithm had to be appropriately chosen and
modified so as to suit to a hardware implementation,
and secondly the hardware implementation as such raised
considerable challenges. Many of these challenges originated
not only from the desire to attain a fast and area-efficient
solution, but also from the fact that many facets of the
abstract algorithm turned out to be difficult to project to
hardware, such as unbounded count values or atomicity of
actions.

We have presented a solution that is based on asyn-
chronous logic design, partly based on the original indi-
cation principle with handshaking and partly on timing
assumptions. The latter turned out to be necessary to
attain the desired fault tolerance and also for keeping the
clock distribution in a single-rail fashion. Among the key
measures for achieving a robust and efficient solution were
the reduction of the problem from an absolute to a relative
comparison, the differential transmission of the counter

values, the realization of the required +/— Counter by means
of elastic pipelines, the separated treatment of rising and
falling ticks to facilitate the interlocking, and the masking of
glitches during idle phases of the threshold gates.

We have reported on the implementation and measure-
ment results obtained with a CMOS ASIC design of the
DARTS concept. In this context we have identified the thresh-
old gates as the major contributors to area consumption.
Beyond serving as a proof of concept, our experiments
have investigated the clocking scheme’s behavior in terms of
clock stability, clock jitter, precision of synchronization, and
fault tolerance. Overall the expectations from the theoretical
models could be confirmed.

Although the DARTS approach as it is already represents
an attractive solution for fault-tolerant clock generation, we
are still considering a lot of future improvements. One of
these is the use of a weaker fault model in order to reduce
the area and improve the scaling with the number »n of
nodes. Other ideas include the pipelining of clock ticks to
speed up the clock frequency or to build an efficient global
communication scheme on top of the DARTS clocks that is
metastability-free by construction.
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