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The new generation of multicore processors and reconfigurable hardware platforms provides a dramatic increase of the available
parallelism and processing capabilities. However, one obstacle for exploiting all the promises of such platforms is deeply rooted in
sequential thinking. The sequential programming model does not naturally expose potential parallelism that effectively permits to
build parallel applications that can be efficiently mapped on different kind of platforms. A shift of paradigm is necessary at all levels
of application development to yield portable and scalable implementations on the widest range of heterogeneous platforms. This
paper presents a design flow for the hardware and software synthesis of heterogeneous systems allowing to automatically generate
hardware and software components as well as appropriate interfaces, from a unique high-level description of the application, based
on the dataflow paradigm, running onto heterogeneous architectures composed by reconfigurable hardware units and multicore
processors. Experimental results based on the implementation of several video coding algorithms onto heterogeneous platforms

are also provided to show the effectiveness of the approach both in terms of portability and scalability.

1. Introduction

Parallelism is becoming more and more a necessary prop-
erty for implementations running on nowadays computing
platforms including multicore processors and FPGA units.
However, one of the main obstacles that may prevent the
efficient usage of heterogeneous platforms is the fact that
the traditional sequential specification formalisms and all
existing software and IPs, legacy of several years of the con-
tinuous successes of the sequential processor architectures,
are not the most appropriate starting point to program
such parallel platforms [1]. Moreover, such specifications
are no more appropriate as unified specifications when tar-
geting both processors and reconfigurable hardware compo-
nents. Another problem is that portability of applications
on different platforms becomes a crucial issue and such
property is not appropriately supported by the traditional
sequential specification model and associated methodolo-
gies. The work presented in this paper focuses in particular
on a methodology for the generation of scalable parallel
applications that provide a high degree of portability onto

a wide range of heterogeneous platforms. We argue that to
achieve such objectives is necessary to move away from the
traditional programming paradigms and adopt a dataflow
programming paradigm. Indeed, dataflow programming
explicitly exposes the parallelism of applications, which can
then be used to distribute computations according to the
available parallelism of the target platforms. Moreover, the
methodology described here has also the objective of raising
the level of abstraction at all levels of the design stages
involving human intervention for facilitating the overall
design of complex applications onto heterogeneous systems,
composed of multicore processors and FPGAs.

A key requirement in our design approach is that appli-
cations have to be portable and scalable. Portability ensures
fast deployment of applications with minimal assumption on
the underlying architecture, which drastically shortens the
path from specification to implementation. The application
should be able to run on any processing component archi-
tecture of a heterogeneous system from a single description,
without code rewriting. Another important feature is that
applications should also be scalable. It means that the



performance of the running application should scale with the
available parallelism of the target architecture.

The following sections present the main stages of a dat-
aflow-based approach that present the described features in
the design of applications on heterogeneous platforms.

2. Related Works

Hardware-Software (HW-SW) codesign concept and funda-
mental ideas, that are also at the base of our work, have
been introduced in the nineties [2, 3]. A formal definition
of the term codesign is not unique. In the rest of the
document codesign stands for the joint design of SW and
HW components from a single-application description.

Our application model is in the line with model-based
design. Model-based design was proposed to raise the level
of abstraction when designing digital processing systems.
High-level models provide useful abstractions that hide low-
level details, such as platform independency, in order to
ease analysis tasks. Prior research related to model-based
design using data- and control-dominated models and a
combination of both is the subject of a wide literature.
Essentially the various methods proposed mainly differ by
the model used and by the so-called model of computation
(MoC).

Without claiming to be exhaustive, we can mention
the POLIS [4] framework based on Codesign Finite State
Machine (CFSM) that relaxes FSMs to communicate asyn-
chronously. Such model has limited expressive power which
is a key feature when targeting the design of critical reactive
systems and results rather difficult to be used outside the
scope of control-dominated systems.

By contrast to control-dominated models, data-domi-
nated models such as communicating sequential processes
(CSPs), dataflow graphs or Kahn process networks (KPNs)
are preferred when dealing with stream processing algo-
rithms.

SynDEx from INRIA [5] is one of such design approaches
based on a restricted dataflow model. In this model, a
vertex of the dataflow graph may be factorized (n-times
repetitions during the graph execution) and conditioned
(conditional statements by using the hierarchy in vertices and
control values). The SynDEx model is deliberately restricted
to ensure real-time constraints and consequently is not
always adapted to model more general class of applications.
Moreover, the high-level synthesis (HLS), that turns the
model to HDL, is no more maintained.

Compaan/Laura from Leiden University [6] is based on
KPN approach by using a subset of MATLAB code to model
applications. The HW back-end (Laura) then turns the KPN
model expressed by MATLAB code to VHDL. KPN-based
models are much more expressive than more restricted MoC
and can cover a much broader class of applications. However,
since analyzability is, roughly speaking, inversely related to
the expressiveness, it is somehow difficult to figure out the
ability to generate the corresponding KPN models of more
complex applications written in MATLAB.
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PeaCE from the Seoul National University is an ap-
proach that lays at midway between dataflow (synchronous
dataflow—SDF) and FSM [7]. This model raises the level
of expressiveness, by enabling the usage of more control
structures using FSM inside SDF vertices and vice versa.
However, while PeaCE generates the code for composing
blocks of the model both is SW and HW, it lacks code
generation support for the blocks themselves and thus
requires the definition of HW-SW blocks in later stage, which
is time consuming when targeting several kinds of platforms.

Another interesting approach is SystemCoDesigner from
the University of Erlangen-Nuremberg [8]. SystemCoDe-
signer is an actor-oriented approach using a high-level lan-
guage named SysteMoC, built on the top of SystemC. It
intends to generate HW-SW SoC implementations with
automatic design space exploration techniques. The model is
translated into behavioral SystemC model as a starting point
for HW and SW synthesis. However, the HW synthesis is
delegated to a commercial tool, namely, Forte’s Cynthesizer,
to generate RTL code from their SystemC intermediate
model.

Several Simulink-based approaches have been also pro-
posed to address HW-SW codesign [9]. Simulink, which was
initially intensively used for simulation purposes, is becom-
ing a good candidate for model-based design, particularly
after the recent development of HW-SW synthesizers. Tools
such as Real-Time Workshop for SW, or HW generators
such as Synopsys Synphony HLS, Xilinx System Generator
or Mathworks HDL coder are examples of these approaches.
However, such methods are not always “off the shelf” and
require the deep knowledge of a set of commercial tools and
their appropriate usage.

Most of the approaches presented in the literature
delegates the HW synthesis to commercial HLS tools. Men-
tor’s Catapult, Synopsys’s Synphony C Compiler, or Forte’s
Cynthesizer to name but a few are used with that purpose.
Our approach shows such capabilities using free and open
source tools. We believe that it is more flexible starting
point, since those synthesizers can be easily tuned to target
particular requirements.

3. Proposed Methodology

The paper presents a codesign environment that intends to
address some of the limitations present in the state of the art
particularly supporting SW and HW synthesis of the same
source code with the synthesis of SW that scales on multicore
platforms. It is expressly thought for the design of streaming
signal processing systems. The essentials of the design flow
are illustrated in Figure 1 and consist of the following stages.

(i) Dataflow-Based Modelling. We use an extension of the
dataflow process network model (DPN), which is closely
related to KPN, that enables to express a large class of appli-
cations, where processes, named actors, are written using a
formal domain-specific language with the useful property of
preserving a high degree of analyzability [10].



Journal of Electrical and Computer Engineering

(1) Application model (2) Architecture model
) Smuaon nd /| @ Napping |

(5) Communication
refinement

| (6) Code generation |

AN

C/CH++ ]

( RTL ) (

FIGURE 1: Overview of the design flow.

(ii) Architecture Model. We also employ an architecture
model based on [5, 11] that enables to specify any architec-
ture model for heterogeneous platforms composed by multi-
core processors and FPGAs at a high-level of abstraction.

(iii) Simulation and Profiling. We provide tools for func-
tional validation, performance, and bandwidth estimations.

(iv) Mapping. HW-SW mapping can be both based on
designer experience, or based on extracted metrics from the
high level profiling or by more accurate profiling metrics if
available from the platforms. Scheduling of SW partitions
issues and available approaches are also discussed.

(v) Automatic Communication Interface Synthesis. Commu-
nication scheduling for interpartition communication as well
as interfaces are automatically inserted in the design to be
taken into account at synthesis stage.

(vi) Automatic Code Generation. HW and SW are automati-
cally generated from CAL using ORCC and OpenForge syn-
thesizers, including multicore support for SW components.

The codesign environment is implemented as an Eclipse
plug-in built on the top of ORCC and OpenForge, open
source tools that provide simulation and HW-SW synthesis
capabilities. More details related to those capabilities are
provided in the following sections. The complete tool chain
is illustrated in Figure 2. The inputs of the tool chain are
application (XDF) and architecture (IP-XACT) descriptions.
The application is made by instantiating and connecting
actors taken from an actor database (CAL).
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FIGURE 2: The cosynthesis tool chain.

4. Application Model: Dataflow with Firing

The dataflow paradigm for parallel computing has a long
history from the early 1970s. Important milestones may be
found in the works of Dennis [12] and Kahn [13]. A dataflow
program is conceptually represented as a directed graph
where vertices (named actors in the rest of the document)
represent computational units, while edges represent streams
of data. Figure 3 depicts a possible dataflow program. Formal
dataflow models have been introduced in the literature,
from Kahn process network (KPN) to synchronous dataflow
(SDF) just to name a few. They differ by their models
of computation (MoC) that define the behavior of the
execution of the dataflow programs. There exists a variety
of MoCs which results into different tradeoffs between
expressiveness and efficiency.

In the paper, we use a model based on an extension of
the dataflow process network MoC (DPN) [14]. Following
the DPN MoC, actors execute by performing a number of
discrete computational steps, also referred to as firings or
firing functions. During a firing, an actor may consume
data from input streams, produce data on output streams,
and modify its internal state. An important guarantee is
that internal states are completely encapsulated and cannot
be shared with other actors, that is, actors communicate
with each other exclusively through passing data along
streams. This makes dataflow programs more robust and
safe, regardless of the interleaving of actors. A firing rule is
associated to each firing function, which corresponds to a
particular pattern matching on the input streams and the
current state. A firing occurs when its firing rule is satisfied,
atomically and regardless of the status of all other actors.

In [10], authors presented a formal language for writing
actors. The language, called CAL, is designed to express
actors that belong to the DPN MoC. Of course, the language
supports implementations of actors that can belong to more
restricted MoCs, for example, CSDF, SDEF, and so forth. The
CAL language is a domain-specific language, it makes it
possible to analyze actors easily and then determine their
associated MoCs. It is an important property for many
efficient optimizations that can be applied during code
generation. An example of such optimizations is the static
scheduling of actors (a correct-by-construction sequence of



FIGURE 3: A simple dataflow program as a graph.

FIGURE 4: An example of a ring architecture composed of 3 op-
erators and 3 media.

fpga-0

firings that can be executed without testing their firing rules)
for some network partitions [15, 16].

CAL can also be directly synthesized to software and
hardware [17-19]. Recently a subset of CAL, named RVC-
CAL, has been standardized by ISO/IEC MPEG [20]. It is
used as reference software language for the specification of
MPEG video coding technology under the form of a library
of components (actors) that are configured (instantiations
and connections of actors) into networks to generate video
decoders.

5. Architecture Model

The architecture model used in the design flow presented
here, is based on the model proposed in [5, 11]. The archi-
tecture is modeled by an undirected graph where each vertex
represents an operator (a processing element like a CPU or an
FPGA in the terms of [11]) or a medium of communication
(bus, memories, etc.), and edges represent interconnections
viewed as a transfer of data from/to operators to/from media
of communication. The model supports point-to-point or
multipoint connections between operators.

The architecture model is serialized into an IP-XACT
description, an XML format for the definition, and the
description of electronic components, an IEEE standard
originated from the SPIRIT Consortium. The architecture
description is hierarchical and permits to describe archi-
tectures with different levels of granularity. For instance, a
multicore processor can be represented as an atomic vertex
or hierarchically exposing lower level details, where cores and
memories become in turn atomic vertices. Figure 4 depicts
a possible architecture with 3 operators connected with 3
point-to-point media.
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6. Simulation and Profiling

RVC-CAL is supported by an interpreter that can simulate
a dataflow graph of CAL actors. This interpreter is part of
the Open RVC-CAL Compiler (ORCC). ORCC is a compiler
infrastructure dedicated to RVC-CAL language [21]. More
details on the ORCC infrastructure may be found in [18].
Essentially, the front end of ORCC transforms each actor into
a corresponding intermediate representation (IR). The IR is
then interpreted by the simulator.

A profiler, built on top of the interpreter, allows the
user to extract high-level metrics when the execution of
the dataflow program is simulated. The goal of the instru-
mentation is to determine the complexity of the actors. This
complexity is extracted by counting instructions (assign-
ment, load and store from/to the memory, loops, and if-
statements) and operators in expressions (add, sub, mod, div,
Ish, etc.). The instrumentation enables to extract metrics at
an early stage of the system design without any information
on the target architecture.

The relative bandwidth of FIFOs is also extracted in the
profiling stage. The profiler can extract FIFO-related metrics
by counting the number and size of data that are exchanged
during execution.

7. Algorithm-Architecture Mapping

7.1. Partitioning. The partitioning consists of assigning each
actor to a processing element (PE). A partition is defined as
a subset of the application graph associated to each PE. In
the proposed discussion of the design flow and associated
results, partitions are statically defined (there is no actor
migration from a partition to another at runtime). The
static partitioning can be assigned manually according to the
designer experience and/or requirements or automatically
by using any optimization method aiming at optimizing
appropriate objective function, using the metrics extracted
during the profiling stage. However, design space exploration
techniques that end up to automatic partitioning are not
discussed in the rest of the paper. For more details on
objective functions and associated heuristics, readers may
refer to [22].

7.2. Scheduling. Once the partitioning is determined, the
scheduling of actors assigned on a given PE consists of order-
ing their executions. In fact, the definition of appropriate
scheduling strategies is not necessary in the context of recon-
figurable hardware, since all the actors can run in parallel,
regardless of the status of other actors. However, when the
number of actors bound to a single PE is larger than one, a
scheduler needs to be defined to execute actors sequentially.
Defining a scheduling consists of determining an ordered list
of actors for execution on a given partition. Such list can be
constructed at compile time (static scheduling) or at runtime
(dynamic scheduling). In our case, the scheduling of actors is
deferred to runtime, since all of them are assumed to belong
to the DPN MoC. In other words, the scheduler always
needs to check if a given actor is enabled before execution,
based on its firing rules. A simple scheduling strategy has
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FIGURE 5: Mapping of the initial application graph.

been selected that consists of using a round-robin scheduling
algorithm, where each actor is checked one after the other
by the scheduler for execution. Once an actor is selected, the
scheduler tries to run it as long as it can while it matches one
of its firing rules.

The runtime checks result in a significant runtime over-
head [23] due to a large number of (sometimes unnecessary)
conditional statements. However, scheduling statically (a
subset of) those actors are sometimes possible when they
belong to more restricted MoCs, namely, SDF and CSDF
MoCs, that can help to reduce the overhead by removing
some of those unnecessary checks. Several studies are
devoted to solve this problem using other approaches and
some interesting results showing relevant improvements are
discussed in [23, 24].

The mapping stage is illustrated in Figure 5, where ver-
tices of the dataflow graph are associated to PEs (the color of
vertices comes from Figure 4).

8. Communication Scheduling

The HW-SW mapping results in a transformed dataflow
graph. Transformations still need to be applied on the dat-
aflow graph in order to exhibit the communications across
partitions. The process mainly consists of transforming
the initial dataflow graph by inserting additional vertices
that represent communications between partitions, using
the appropriate media between PEs from the architec-
ture. Such transformation introduces special vertices in
the application graph, which will encapsulate at a later
stage the (de)serialization of data and the inclusion of the
corresponding interfaces between partitions. This step is
illustrated in Figure 1 where (de)serialization (resp., Ser. and
Des.) and interface vertices are inserted.

The underlying DPN application model prevents from
being able of scheduling communications statically. The seri-
alization has the objective of scheduling the communications
between actors that are allocated on different partitions
at runtime. The fact is that when several edges from the
dataflow graph are associated to a single medium of the
architecture, data need to be interlaced in order to be able
to share the same underlying medium.

In the case of serialization, on the sender side, “virtual”
FIFOs are used to connect the serializer to incoming actors.
By contrast with conventional FIFOs that store data and
maintain the state (read/write counters), “virtual” FIFOs

Dest Size

1 2 Size

Ficure 6: Header and the payload of the stored data in the
serialization FIFO.

just maintain the state while data are directly stored into
a single FIFO, shared by incoming actors. The idea behind
such procedure is to emulate the history of FIFOs (emptiness,
fullness) in order to fairly schedule data in the serialization
FIFO. Data are scheduled by actors themselves, without using
any scheduling strategy in the serializer. In order to retrieve
data on the receiver side, a header is placed at the beginning
of each data that defines the destination FIFO and the size
(in byte) of the payload. This simple header is illustrated on
Figure 6. On the receiver side, conventional FIFOs are used to
connect the deserializer to outgoing actors. The deserializer
is responsible to decode the header and put the payload to
the appropriate destination FIFO.

For instance, in Figure 5, the blue partition has two out-
going FIFOs connected to the red partition. Thus, a serializer
vertex is inserted in Figure 7.

Reconfigurable hardware and multicore processors can
invoke various interprocess communication methods
(shared memory, sockets, etc.) through various physical/
logical interconnections (PCI Express, Ethernet, etc.) to
implement the interaction between PEs. Interfaces com-
municate with other components via appropriate I/O.
Interfaces are introduced during the synthesis stage and
must be supported by libraries according to the nature of the
PE presents on the platform. On the sender side, data from
the serialization FIFO are packed (for instance, we use the
maximum transmission unit in case of ethernet) and sent
using the appropriate interface. On the receiver side, data
are just unpacked and passed to the deserializer. In Figure 7
a PCle interface is inserted and connected to the serializer
previously cited.

9. Hardware and Software Code Generation

9.1. Software Synthesis. The software synthesis generates
code for the different partitions mapped on SW PEs. ORCC
compiler infrastructure is used to generate source code.
The front end transforms each actor into a equivalent
intermediate representation (IR). Then, a back end that
translates the IR into C++ code has been developed. A naive
implementation of a dataflow program would be to create
one thread per actor of the application. However, in general,
from the efficiency point of view it is not a good idea. In fact,
distributing the application among too many threads results
into too much overhead due to many context switches. A
more appropriate solution that avoids too many threads is
presented in [14]. It consists of executing actors in a single
thread and using a user-defined scheduler, that selects the
sequence of actor execution. The extension to multicore
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Figure 7: Communication refinement of the input application graph.

creates as many threads as existing cores. Since each core
executes a single thread, threads are executed in parallel.

9.2. Hardware Synthesis. For the generation of the executable
on programmable HW units, a synthesizable HDL code is
automatically generated from the CAL dataflow program
assigned to FPGAs. OpenForge, the HW synthesizer, is used
to generate RTL code based on behavioral synthesis method
translating the IR into HW descriptions expressed in Verilog
[25] that can then be synthesized into implementations on
FPGAs. More details about Openforge synthesis capabilities
can be found in [17].

9.3. Runtime System. Runtime system libraries are needed
for both SW and HW. Those libraries implement the
FIFOs, serializers, deserializers, and the instantiation of the
appropriate interfaces. On the software side, the dedicated
runtime system provides the supports for the multicore
requirements (threads, thread-safe queues, etc.). Note that
the runtime is cross-platform and has been successfully
tested on x86, PowerPC, and C66x DSP.

10. Experiments

10.1. Experiments on Multicore. CAL and its ISO standard
subset RVC-CAL have been used with success for imple-
menting video decoding algorithms in HW as reported
and demonstrated in [17], and the dataflow model is
clearly a good approach for exploiting massive parallel
platforms such as FPGAs. Targeting less massively parallel
systems, such as multicore platforms, it requires in addition
appropriate methodologies for yielding efficient partitioning
and scheduling.

The goal of the investigations presented here is to show
how scalable parallelism can be achieved, in other terms
that applications can be written at high level and their
implementations can run faster when more parallelism is
available in the implementation platform.

Prior researches have already reported implementation
results of CAL programs on multicore. In [19], an imple-
mentation of an MPEG-4 SP decoder running on 2-core
processor is reported. The ACTORS project [26] has reported
the implementation of an MPEG-4 SP decoder with rather

good speedup on 4-core processors [27]. The experimental
results reported here show the evolution of these works
in terms of improved scalability, portability on different
platforms and increased throughput for the same application
example. In this case study we have implemented 2 versions
of an MPEG-4 Simple Profile decoder onto 2 different
multicore platforms.

(i) Serial MPEG-4 Simple Profile. It is illustrated in Figure 8.

It contains 13 actors that correspond to the entropy decod-
ing (syntax parser and the variable length decoder), the
residual decoding (AC-DC predictions, inverse scan, inverse
quantization, and IDCT), and the motion compensation
(framebuffer, interpolation, and residual error addition).
The source (S) reads the bitstream, while the sink (D)
displays the decoded video.

(ii) YUV-Parallel MPEG-4 Simple Profile. It is illustrated in
Figure 9. The so-called parallelism is due to the fact that
the color space components Y, U, and V can be decoded
separately. It is composed by 33 instances of actors. Each
branch includes two subnetworks “TX” and “MX”, where
“X” is to be replaced by the appropriate component, that,
respectively, corresponds to the residual decoding and the
motion compensation. The “P” subnetwork (with 7 actors)
corresponds to the entropy decoder and finally the “M”
actor merges the decoded components and sends data to the
display (D).

Two implementation platforms have been used: a desk-
top computer with an Intel i7-870 processor, with 4 cores at
2.93 GHz, and a Freescale P4080 platform, using a PowerPC
€500 processor with 8 cores at 1.2 GHz. The result of the SW
synthesis from the dataflow program is a single executable
file that is configured using the parameters that defines the
partitions. A list of actors is extracted from each partition.
Each list of actors is then used to create a thread where actors
are instantiated and scheduled. Note that in both cases, it is
a single executable file that is running on 1, 2, 3, or 4 cores.
Three sequences at different resolutions have been encoded
at different bitrates: foreman (QCIF, 300 frames, 200 kbps),
crew (4CIF, 300 frames, 1 Mbps), and stockholm (720p60,
604 frames, 20 Mbps).

Figures 8 and 9 describe the different partitions used
on the serial and the parallel versions of the decoders



Journal of Electrical and Computer Engineering

(d) 4-core partitioning

(c) 3-core partitioning

FIGURE 8: Partitions of the serial version of the MPEG-4 SP decoder for 1, 2, 3, and 4 cores configurations.
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FIGURE 9: Partitions of the parallel version of the MPEG-4 SP decoder for the 1, 2, 3, and 4 cores configurations.

TABLE 2: Framerate of the YUV-parallel MPEG-4 SP decoder at

TABLE 1: Framerate of the serial MPEG-4 SP decoder at QCIE, SD
QCIFE SD and HD resolutions.

and HD resolutions.

F t . of
Platform  Resolution ramerate (no. of cores) Platform  Resolution Framerate (no. of cores)
1 2 3 4 1 2 3 4
176 X 144 1788 3426 4416 5260 176 X 144 1580 2940 4303 5494
Intel i7-870 704 x 576 126 203 219 307 Intel i7-870 704 x 576 104 178 267 340
1280 x 720 37 63 71 84 1280 x 720 34 62 75 89
176 x 144 275 520 676 913 176 X 144 223 465 711 853
Freescale Freescale
P4080 704 x 576 18 30 43 51 P4080 1280 x 720 15 30 43 52
1280 x 720 6 10 12 16 1280 % 720 5 9 13 18

respectively. The blocks represented by a stripe background ~ more cores. It is also observed in the experiment that a
are distributed over different partitions. near to linear speedup in most of the cases is obtained,
Tables 1 and 2 report the framerate in frame per second  which tends to indicate that the dataflow applications scale

(fps) of the serial and the parallel decoders, respectively, on ~ well on multicore processors. Particularly, on the P4080 at
the 4 cores. QCIF resolution, it is observed a more than linear scale. This

The resulting speedup is illustrated in Figure 10. It shows  anomaly is due to the reduction of the scheduling overhead
that it is possible to achieve significant speedups when adding ~ when the number of the partitions increases.
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FIGURE 10: Speedup of the MPEG-4 SP decoder running on an X86 quad-core (in black) and on a PowerPC e500 8-core (in gray) processors.

TasLE 3: RVC-CAL JPEG encoder throughput for one image in ms.

FPGA F
Type Resolution GA Frequency
50 Mhz 80 Mhz
RVC-CAL HDL 512 X 512 48 ms 28.9ms
Generated Code 1920 x 1080 373 ms 223 ms
Handwritten VHDL 512 X 512 31.2ms 18.7 ms
1920 x 1080 317 ms 190 ms

Figure 11 reports results related to the scalability that is
also preserved when changing the resolution of the video
format. The results show that both decoders produce real-
time performances for HD resolution (720p60) starting
from the 2-core configurations. Results that are remarkable
considering the high-level starting point and the lack of
any low-level and platform-specific optimizations. In terms
of speedup factor versus the single-core performance, the
results are slightly better than the ones presented in [27].

In term of absolute throughput, the experiment shows
a very significant improvement. The normalized throughput
results in macroblock (A macroblock corresponds to 16 X
16 pixels in MPEG-4 SP, which is equivalent to 6 X 8 x 8 bytes
in 4:2:0 format.) per second divided by the frequence—
MB-s~!-Hz 'are5.94 x 10" MB-s~!-Hz! for the ARMI11
in [27],22.68 x 107 for the PowerPC and 60.41 x 107° for
the Intel i7-870 (for the serial decoder at QCIF resolution).

Figure 11 shows that the parallel version of the decoder
scales much better than the serial one. Moreover, the higher
the resolution, the lower the speedup factor we obtain. This
result is due to the fact that the application is constituted by
a lower number of actors, a fact that reduces the number of
possible partitions, thus reducing the possibility to balance
equitably the processing load. By contrast, the parallel
version is less sensitive to the resolution. Those results
indicate that the parallel decoder seems to be a better starting
point when targeting implementations on more cores.

10.2. Experiments on Reconfigurable Hardware. The purpose
of this experiment is to compare the HDL synthesis from a
dataflow application with a handwritten one. To this end, a

baseline profile JPEG encoder was developed and a VHDL
JPEG encoder was taken from the OpenCores project [28].
Figure 12(a) represents the dataflow JPEG encoder where
computation blocks are at the encoding DCT, quantiza-
tion (Q), zigzag scan (ZZ), and variable-length encoding
(VLC). As for the VHDL encoder which is represented in
Figure 12(b) the DCT, Q, and ZZ are processed in parallel for
the luma (Y) and chroma (UV) blocks. This VHDL encoder
design was chosen for its dataflow resemblance with the
RVC-CAL JPEG encoder.

The ML509 Virtex 5 board was used for both encoders.
Table 3 indicates the throughput of both encoders for
encoding two images with different resolutions and the
throughput of this images for two different clock frequencies.
The result of this experiment shows that the handwritten
VHDL JPEG encoder is only 1.5 times faster when compared
to the automatically generated HDL from the initial version
of the dataflow JPEG encoder. One of the reasons why the
VHDL encoder is faster is that it uses the FDCT IP core
accelerator from Xilinx and that the luma and chroma blocks
are processed in parallel. The splitting of the Y, U, and V
components is a possible optimization for the RVC-CAL
JPEG encoder.

Table 4 compares the resource usage of both encoders
on the FPGA. The generated JPEG encoder uses 5% less
registers, 4 times less LUT-FF pairs, and 2% more of
DSP48E1 (which represents only 3% of the DSP block on
a Virtex 5 FPGA, those DSP blocks are mainly used in the
FDCT and in the quantization actors) than the handwritten
VHDL JPEG encoder. Thus the generated HDL from the
high-level version of the RVC-CAL JPEG encoder requires
less FPGA logic resources than the handwritten one.

We can also notice that the RVC-CAL JPEG encoder can
encode 4 Full HD images (1920 x 1080) in less than a second
at 80 MHz and it can encode in real-time 512 X 512 images.

10.3. Synthesis of Both HW and SW from the Same Dataflow
Description. The goal of the experiment is to validate the
portability for the proposed design approach. To this end,
additional to the JPEG encoder, we developed a JPEG
decoder in RVC-CAL for creating a baseline profile JPEG
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FIGURE 11: Speedup of the MPEG-4 SP decoder on an Intel i7-870 processor at QCIF (red), SD (blue) and HD (green) resolutions.
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FiGure 12: Description of the RVC-CAL and handwritten VHDL JPEG encoders.

codec. We have implemented this codec onto three differ-
ent platforms made of FPGAs and embedded processors.
Figure 13 represents the JPEG codec. The host used in all
platforms is the one that was used in the first experiment. The
two first platforms are FPGA-based platforms. The first one
is a proprietary board with a Xilinx Spartan3 FPGA and the
second one is a ML509 board with a Virtex-5 FPGA as used
in the previous experiment. The last platform is composed by
a Freescale P2020 board, with 2 cores at 1 GHz. Ethernet, PCI
express (PCle) and RS232 are used to communicate between
the host and the specialized PEs.

It has to be noticed that several mappings have been
successfully tested. In fact, a single actor can seamlessly be
synthesized to general-purpose processors, embedded pro-
cessors, and FPGAs. A partition of the dataflow application
can be swapped from SW to HW and vice versa, and all
yield functionally equivalent implementations. For the sake
of clarity, results are given only for a meaningful partitioning,
separating the encoding and the decoding processes. More
precisely, the partitioning of the application consists of
assigning the whole encoding process on the specialized PE
and the decoding process is done by the host. Note that on
the P2020 the encoding is balanced between the 2 cores.

Results of the experiment are summarized in Table 5.
Three different media of communication have been tested
(“—” indicates that the corresponding communication link
has not been tested in the executed experiments). The results
using the serial link present low performances in term of fps.
At least, it makes explicit that several interfaces can be used
in the design flow.

The results using the Virtex5 and the PCI express in-
terface are competitive with the ones presented in [6, 8].

TaBLE 4: FPGA occupation of the handwritten VHDL JPEG encoder
versus the RVC-CAL JPEG Encoder.

FPGA occupation

Logic utilization Handwritten Generated

Usage % Usage %
Registers 17869 11 10965 6
Slice LUTs 16439 19 14413 18
LUT-FF Pairs 11817 64 3504 16
Block RAM 35 13 43 14
DSP48E1s 2 1 18 3

TaBLE 5: Framerate of the JPEG codec on 3 platforms with 3
interfaces and a 512 x 512 video resolution.

Serial link  Ethernet PCle
Spartan3 0.2 3.7 N.A.
ML509 with Virtex5 0.2 — 8.5
P2020 with PowerPC — 3.8 —

On the one hand, the encoder only implemented on the
Virtex-5 can encode around 4 full HD frames per second
at 80 MHz. While on the other hand, the decoder only, on
the host, is able to decode at 135fps 512 X 512 frames.
This result indicates that either the interface bandwidth or
the communication scheduling is the limit for the design
performance.
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FIGURE 13: Description of the JPEG codec and the partitioning for the platforms.

11. Conclusions

The presented approach provides a unified design flow for
the automatic synthesis of SW and HW components. The
synthesis is directly obtained from high-level descriptions of
both application programs and platform architectures. The
high degree of abstraction enables the program to undergo
several design iterations that enable rapid prototyping of
applications onto architectures, validation, and testing of
performances for different mappings by relying on automatic
cosynthesis tools. Indeed, it consumes much less resource to
refactor the dataflow program. In general, it is not possible to
map imperative programs arbitrarily onto platforms without
code rewriting. Rewriting the code, to fit a given platform, is
time consuming and error prone, and usually most of the
design time is wasted in the phase of debugging to reobtain
design that works correctly. In our design flow, the design
can go through many more design iterations, with less effort
since just the mapping needs to be changed, that can shorten
the path to implementation.

The paper has demonstrated, by experiments, both the
scalability and the portability of real-world applications.
Several implementations have been validated onto different
platforms composed of both FPGAs and multicore proc-
essors. The results reported in the paper have only addressed
and demonstrated the portability and scalability features
provided by the approach. However, the potential of the
approach can progress much further in terms of design
space exploration capabilities. Future investigations will
focus on the development of tools for automatic design space
exploration, driven by objective functions that will use the
metrics extracted during the profiling stage.
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