
Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2012, Article ID 593532, 12 pages
doi:10.1155/2012/593532

Research Article

Selectively Fortifying Reconfigurable Computing Device to
Achieve Higher Error Resilience

Mingjie Lin,1 Yu Bai,1 and John Wawrzynek2

1 Department of Electrical Engineering and Comouter Science, University of Central Florida, Orlando, 32816 FL, USA
2 Department of Electrical Engineering and Comouter Science, University of California at Berkeley, Berkeley, 94720 CA, USA

Correspondence should be addressed to Mingjie Lin, mingjie@eecs.ucf.edu

Received 11 September 2011; Revised 9 January 2012; Accepted 11 January 2012

Academic Editor: Deming Chen

Copyright © 2012 Mingjie Lin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the advent of 10 nm CMOS devices and “exotic” nanodevices, the location and occurrence time of hardware defects and
design faults become increasingly unpredictable, therefore posing severe challenges to existing techniques for error-resilient
computing because most of them statically assign hardware redundancy and do not account for the error tolerance inherently
existing in many mission-critical applications. This work proposes a novel approach to selectively fortifying a target reconfigurable
computing device in order to achieve hardware-efficient error resilience for a specific target application. We intend to demonstrate
that such error resilience can be significantly improved with effective hardware support. The major contributions of this work
include (1) the development of a complete methodology to perform sensitivity and criticality analysis of hardware redundancy, (2)
a novel problem formulation and an efficient heuristic methodology to selectively allocate hardware redundancy among a target
design’s key components in order to maximize its overall error resilience, and (3) an academic prototype of SFC computing device
that illustrates a 4 times improvement of error resilience for a H.264 encoder implemented with an FPGA device.

1. Introduction

With the advent of 10 nm CMOS devices and “exotic” nan-
odevices [1–3], error resilience is becoming a major concern
for many mission- and life-critical computing systems.
Unfortunately, as these systems grow in both design size
and implementation complexity, device reliability severely
diminishes due to escalating thermal profiles, process-
level variability, and harsh environments (such as outer
space, high-altitude flight, nuclear reactors, or particle
accelerators). Unlike design faults, device failures often are
spatially probabilistic (the locations of hardware defects and
design faults within a chip are unknown) and temporally
unpredictable [4, 5] (the occurrence time of hardware defects
are hard to foretell).

1.1. Related Work. Traditionally, either special circuit tech-
nique or conservative design is employed to ensure correct
operation and to achieve high error resilience. Existing cir-
cuit techniques include guard banding, conservative voltage

scaling, and even radiation hardening [6, 7]. For example,
qualified versions of SRAM-based FPGAs, such as Xilinx’s
QPro [8], are commercially available for mitigating SEUs at
the circuit level. More recently, hardware designers started
to employ information redundancy, hardware redundancy,
time redundancy, or a combination of these techniques in
order to circumvent hardware defects at the device, circuit,
and architectural levels. Specifically, the use of redundant
hardware, data integrity checking, and data redundancy
across multiple devices is gaining considerable popularity
[9–11]. In fact, several engineers and researchers [12, 13]
have demonstrated that logic-level triple-modular redun-
dancy (TMR) with scrubbing of the FPGAs programming
(or configuration) data effectively mitigates the results of
radiation-induced single-bit upsets (SBUs). However, most
of these redundancy techniques detect and recover from
errors through expensive redundancy statically, that is, the
allocation of hardware redundancy based on previously
known or estimated error information, usually treating all

2 Journal of Electrical and Computer Engineering

components within a system indiscriminately, and therefore
incur huge area and performance penalties.

Recognizing TMR is costly; a recent study from BYU [14]
proposed applying partial TMR method on the most critical
sections of the design while sacrificing some reliability of
the overall system. Specially, they introduced an automated
software tool that uses the partial TMR method to apply
TMR incrementally at a very fine level until the available
resources are utilized, thus maximizing reliability gain for
the specified area cost. Although with apparent conceptual
similarity to this work, there are several important dis-
tinction between studies [14–16] and this one. First, while
the study [14] focuses primarily on TMR or partial one,
we consider more general case of selecting among n-nary
modular redundancy (nMR) choices, where n = 3, 5, 7,
This generalization turned out to be important. In Section 7,
we will show that in our target H.264 application, if more
than TMR, such as 7-MR, is applied to certain components,
the overall error resilience can be significantly improved. In
addition, we provide a stochastic formulation of maximizing
a system’s error resilience when hardware failures are spatially
probabilistic and temporally unpredictable. As a result, we can
in principle obtain a mathematically provable optimal solu-
tion to maximizing the system’s overall error resilience while
being constrained by a total available hardware redundancy.
Finally, while the techniques studied in [14–16] are mostly
specific to FPGA fabric, our proposed methodology can be
readily introduced into logic synthesis for an application-
specific integrated circuit (ASIC) design.

Identifying the most critical circuit structures, thus
trading hardware cost for SEU immunity, is not a new idea.
In fact, Samudrala et al. proposed the selective triple modular
redundancy (STMR) method which uses signal probabilities
to find the SEU-sensitive subcircuits of a design [15].
Morgan et al. have proposed a partial mitigation method
based on the concept of persistence [16]. We approach the
criticality analysis differently in this study. Instead of being
logic circuit or FPGA fabric-specific, we analyze individual
system criticality by computing output sensitivity subjected
to various amount of input perturbation probabilistically.
Therefore, we are able to not only distinguish critical and
noncritical components, but also quantitatively assigning
different criticality values, which leads to a more cost-
effective allocation of hardware redundancy.

This paper proposes a selectively fortified computing
(SFC) approach to providing error resilience that preserves
the delivery of expected performance and accurate results,
despite of the presence of faulty components, in a robust and
efficient way. The key idea of SFC is to judiciously allocate
hardware redundancy according to each key component’s
criticality towards target device’s overall error resilience. It
leverages two emerging trends in modern computing. First,
while ASIC design and manufacturing costs are soaring today
with each new technology node, the computing power and
logic capacity of modern FPGAs steadily advance. As such,
we anticipate that FPGA-like reconfigurable fabric, due to
its inherent regularity and built-in hardware redundancy,
will become increasingly attractive for robust computing.
Moreover, we believe that modern FPGA devices, bigger

and more powerful, will become increasingly more suitable
hardware platforms to apply the SFC concept and methodol-
ogy for the improvements of fault-tolerance and computing
robustness. Second, many newly emerging applications, such
as data mining, market analysis, cognitive systems, and
computational biology, are expected to dominate modern
computing demands [17]. Unlike conventional computing
applications, they typically process massive amounts of data
and build mathematical models in order to answer real-
world questions and to facilitate analyzing complex system,
therefore tolerant to imprecision and approximation. In
other words, for these applications, computation results
need not always be perfect as long as the accuracy of the
computation is “acceptable” to human users [18].

The rest of the paper is organized as follows. Section 2
overviews the proposed SFC framework and Section 3
discusses its target applications. We then delve into more
detailed descriptions of criticality analysis and optimally
allocating hardware redundancy with constrained hardware
allowance. Subsequently, Section 6 describes in detail our
H.264 decoder prototype and numerous design decisions.
Finally, we present and analyze the error resilience results
from a SFC design against its baseline without hardware
redundancy in order to demonstrate its effectiveness, with
Section 7 concluding the paper.

2. SFC Framework Overview

There are two conceptual steps depicted in Figure 1
to achieve hardware-efficient reliable computing by the
approach of selectively fortified computing (SFC): criticality
probing and hardware redundancy allocation. Because there
is a fundamental tradeoff between hardware cost and com-
puting reliability, it is infeasible to construct a computing
system that can tolerate all the faults of each of its elements.
Therefore, the most critical hardware components in a
target device need to be identified and their associated
computation should be protected as a priority. In SFC, we
develop methods to identify sensitive elements of the system
whose failures might cause the most critical system failures,
prioritize them based on their criticality to user perception
and their associated hardware cost, and allocate hardware
redundancy efficiently and accordingly.

3. Target Applications

Many mission-critical applications, such as multimedia pro-
cessing, wireless communications, networking, and recog-
nition, mining, and synthesis, possess a certain degree of
inherent resilience, that is, when facing device or component
failure, their overall performance degrades gracefully [19–
22]. Such resilience is due to several factors. First, the
input data to these algorithms are often quite noisy and
nevertheless these applications are designed to handle them.
Moreover, the input data are typically large in quantity
and frequently possess significant redundancy. Second, the
algorithms underlying these applications are often statistical
or probabilistic in nature. Finally, the output data of these

Journal of Electrical and Computer Engineering 3

Application Criticality map

0.95

0.8
0.43

Discriminatively
allocating
hardware
redundancy

reconfigurable deviceSFC

Criticality
analysis

Place
and
route

Figure 1: Conceptual flow of SFC (selectively fortified computing) methodology.

applications are mostly for human consumption, therefore
some imperfections can be tolerated due to limited human
perception. We believe that these applications are ideal SFC
candidates because their overall system error resilience can
potentially be significantly improved by selectively fortifying
their key components. In this study, we illustrate our
proposed SFC strategy by focusing on a highly efficient 720 p
HD H.264 encoder [23]. We choose H.264 encoder because
it is widely used in many mission-critical instruments.
Moreover, H.264 contains a variety of computational motifs,
from highly data parallel algorithms (motion estimation) to
control intensive ones (CABAC) as depicted in Figure 2.

Our baseline FPGA implementation consists of five
major functional components that account for more than
99% of the total execution time. Among these functional
components, IME (integer motion estimation) finds the
closest match for an image block from a previous reference
image and computes a vector to represent the observed
motion. While it is one of the most compute intensive parts
of the encoder, the basic algorithm lends itself well to data
parallel architectures. The next step, FME (fractional motion
estimation), refines the initial match from integer motion
estimation and finds a match at quarter-pixel resolution.
FME is also data parallel, but it has some sequential
dependencies and a more complex computation kernel that
makes it more challenging to parallelize. IP (intraprediction)
then uses previously encoded neighboring image blocks
within the current image to form a prediction for the current
image block. Next, in DCT/Quant (transform and quantiza-
tion), the difference between a current and predicted image
block is transformed and quantized to generate quantized
coefficients, which then go through the inverse quantization
and inverse transform to generate the reconstructed pixels.

Finally, CABAC (context adaptive binary arithmetic coding)
is used to entropy-encode the coefficients and other elements
of the bit-stream. Unlike the previous algorithms, CABAC is
sequential and control dominated. While it takes only a small
fraction of the execution (1%), CABAC often becomes the
bottleneck in parallel systems due to its sequential nature.

To appreciate the limited resilience characteristics of the
HD H.264 encoder, we first implement all of five com-
ponents using a standard HDL synthesis flow with Xilinx
ISE Design Suite 13.0. Subsequently, errors are injected to
four key components—IME (integer motion estimation),
FME (fractional motion estimation), DCT/Quant (trans-
form and quantization), and CABAC (context adaptive
binary arithmetic coding) separately through VPI inter-
faces (see Section 5.2). These four components are quite
diverse and representative in their computing patterns. More
importantly, they together consume more than 90% of
total execution load and more than 75% of total energy
consumption [23]. For each of our target components X (I,
II, III, and IV in Figure 2), we conduct 10000 fault injection
experiments for each different error rate r according to the
procedure outlined in Section 5.2. At a different redundancy
ratio wi, we repeat this procedure and measure the output
deviation between the resulting image and its reference and
quantify the result error as in Section 5.3. More details of our
measurement procedure can be found in Section 5.

Before discussing the results presented in Figures 3 and 4,
we formally define several key parameters. Some of them will
be used in subsequent sections. Let hi denote the hardware
cost of implementing the component i in our target design.
We define redundancy ratio wi = (hi − hi,0)/(hi,0), where hi,0
denotes the hardware cost of the component i without any
redundancy.

4 Journal of Electrical and Computer Engineering

+

−

Video signal

Transform Quantization Entropy coding

Output buffer

Inverse quantization

Inverse transform

Deblocking filter

Frame buffer

MC prediction

Motion estimation

Output bitstream

I, II

III
IV

Intraframe prediction

Preprocessing

Figure 2: Block diagram of a standard H.264 encoder.

Figure 3 plots our measurement results for IME (inte-
ger motion estimation). Different curves represent output
responses for different hardware redundancy ratios. Intu-
itively, the higher the value of wi is, the more computing
fortification the target device will possess. Roughly speaking,
wi = 2 is equivalent of a TMR (triple modular redundancy)
unit. The values of wi can be fractional because of partial
redundancy as discussed in Section 6.1. In our experiments,
error injection rate is measured as in error/gate/clock-cycle.
We defer all discussions of error modeling and injection
procedure to Section 5.2. Note in Figure 3 that errors injected
at rate below 1 × 10−4 error/gate/clock-cycle do not impact
the output quality by more than 1%, revealing the inherent
resilience of such applications to rare data errors. However,
error rates beyond 2.0 × 10−4 error/gate/clock-cycle impact
image outputs significantly. We call this error rate as critical
point. In our set of experiments, we injected errors by
randomly selecting one of considered subcomponents and
flipping one bit at a randomly chosen location. Our IME
unit becomes totally dysfunctional after an average of 67
error injections when the error injection rate was as low
as 1.13 × 10−4 error/gate/clock-cycle. These results confirm
that, without proper system design, we cannot expect IME to
produce useful results on unreliable hardware with relatively

high error rate. Interestingly, as we increase hardware redun-
dancy ratio, the critical point noticeably shifts towards high
error rate. For our particular IME unit instance, diminish
return of hardware redundancy quickly appears as wi goes
beyond 4, which is manifested by the flattening in its curve.
Finally, at each wi, the middle portion of each curve in
Figure 3 exhibits a strong linearity, thus can be accurately
approximated as a straight line.

In Figure 4, we fix error inject rate at 3.0 × 10−4

error/gate/clock-cycle and plot our measurement results for
all four key components. The values of wi can be fractional
because of partial redundancy as discussed in Section 6.1.
In general, different component responds quite differently
to the same error rate. As wi increases, the output error
decreases consistently except for the component IV: CABAC.
The relative small slopes of all curves in the middle portion
again display early occurrence of diminished return of
hardware redundancy. The most important finding of this
experiment is to discover that DCT is far more sensitive to
hardware redundancy than other components, while CABAC
show exactly the opposite. Intuitively, this means that if
facing hardware cost constrains, DCT should be assigned
with a higher priority of hardware fortification and will have
a larger benefit in improving the overall error resilience of
the whole system. Finally, these results show that without

Journal of Electrical and Computer Engineering 5

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Error injection rate (×10−4 error / gate/ clock-cycle)

= 0
= 2

= 4
= 6

N
or

m
al

iz
ed

ou
tp

u
t

er
ro

r

wi

wiwi

wi

Figure 3: Output error versus error injection rate at different wi for
IME unit.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7

Hardware redundancy ratio

N
or

m
al

iz
ed

ou
tp

u
t

er
ro

r

IV: CABAC
III: DCT

II: FME
I: IME

(wi)

Figure 4: Output error versus hardware redundancy ratio wi for
different units.

computing fortification, the inherent error resilience for
these key components, although exists, is quite limited.

4. Stochastic Formulation of Error Resilience

For a target design G consisting ofK functional components,
each component Ci will be assigned a criticality value ϕi as
defined in Section 5. Intuitively, a higher criticality value for a
particular componentCi means more importance in its effect
towards the overall correctness of final results. Moreover,
we should allocate relatively more hardware resources to
components with higher criticality in order to maximize the
overall system’s error resilience when constrained by total
hardware usage.

Assume each component Ci consumes Ai units of hard-
ware in the target application’s final FPGA implementation.

The unit used here can be either gate count or physical
chip area. Furthermore, assuming all hardware defects are
distributed in an i.i.d. manner, that is, all hardware defects
are independent and identically distributed, all following a
uniform distribution. Therefore, for any randomly occurring
device error, the probability for one specific component
Ci to be affected is Ai/

∑K
j=1 Aj = gi. Note that in our

proposed DFHS methodology, the random distribution of
hardware effects can be in other form and does not limit
the applicability of our proposed approach. In other words,
if the randomly distributed hardware failures are more
concentrated (i.e., occurring with higher probability) in
certain component i, we can accordingly increase Ci to
accommodate such changes.

Finally, we define the error probability of each compo-
nent Ci to be ei = F(wi,ni), a function of two variables: wi

and ni. wi denotes the hardware redundancy ratio defined in
Section 3, which quantifies how much hardware redundancy
is built in the component Ci. Associated with each of the
n functional components, there exist several choices of
design alternatives having different hardware redundancy
ratios w (as defined in Section 3). Typically, higher wi values
intuitively indicate more error resilience for a particular
component at the price of high hardware usage. ni denotes
the number of hardware defects occurring in the component
under consideration.

Given all the above definitions, further assuming error
propagation within this target system is multiplicative, the
objective of maximizing the overall error resilience of the
target system G, under the attack of N randomly located
hardware defects, can be formulated as minimizing the
overall product of error probability and criticality among all
its components:

E
(
�w,N

) =
K∑

i=1

ϕigiei =
K∑

i=1

ϕi

⎛

⎝
N∑

j=1

(
Ai

∑K
k=1 Ak

) j

F
(
wi, j

)
⎞

⎠, (1)

where �w denotes w1, w2, . . ., wK . Clearly, constrained by
a total hardware resource H , the problem is to determine
which hardware redundancy ratio to select for each key
component in order to achieve the greatest error resilience
while keeping the total hardware cost within the allowable
amount, taking into consideration each component’s distinct
criticality. This formulation of the problem leads to minimiz-
ing the total system error probability E:

arg min
wi ,i∈[1,K]

E
(
�w,N

)
, s.t.

n∑

i=1

Ai ≤ H. (2)

Interestingly, because both gi and ei depend on wi,
(1) is fundamentally a nonlinear multivariate optimization
problem. More discussion on solving this optimization
problem can be found in Section 6.

5. Criticality Analysis

Criticality analysis (CA) provides relative measures of sig-
nificance of the effects of individual components on the

6 Journal of Electrical and Computer Engineering

overall correctness of system operation. In essence, it is a
tool that ranks the significance of each potential failure for
each component in the system’s design based on a failure
rate and a severity ranking. Intuitively, because some parts
within an application may be more critical than others,
more computing resources should be allocated to these more
critical components, that is, stronger computing “fortifica-
tion,” in order to achieve higher overall error resilience. In
the framework of SFC, because the target computing device
to be fortified is synthesized with a standard HDL flow
and then realized (placed and routed) with a reconfigurable
device such as an FPGA, criticality analysis is the key step
to optimally allocate hardware redundancy within the target
implementation.

Criticality analysis has been extensively studied within
software domain [24–26], but quite rare in error-resilient
computing device research. Our proposed approach to quan-
tifying criticality directly benefits from mature reliability
engineering techniques and scenario-based software archi-
tecture analysis. The key insight underlying our approach is
that criticality analysis can be recast as a combined problem
of uncertainty analysis and sensitivity analysis. Sensitivity
analysis involves determining the contribution of individual
input factors to uncertainty in model predictions. The most
commonly used approach when doing a sensitivity analysis
on spatial models is using Monte Carlo simulation. There
are a number of techniques for calculating sensitivity indices
from the Monte Carlo simulations, some more effective or
efficient than others (see Figure 5).

Figure 6 depicts our procedure of criticality analysis. For
each target system implemented with HDL, we first dissect it
into multiple components. Often based on domain-specific
knowledge of designer, a set of key components is selected
and undergoes our criticality analysis. Fault modeling and
injection mechanism are discussed in Section 5.2, and how
to quantify the output errors is described in Section 5.3.
To facilitate later discussion, we now define two metrics:
sensitivity ψi and criticality ϕi for a specific component i at
error rate e, the sensitivity value ψi = Δyi(e)/Δwi. Moreover,
we define the criticality value ϕi as

ϕi = E

⎡

⎣

(
1/ψi

)

∑
j

(
1/ψj

)
(e)

⎤

⎦, (3)

where E[·] denotes the expected averaging over a wide range
of error injection rates. In our case, we picked an i.i.d.
uniform distribution for different error rates. ψi can be
further approximated as a linear equation ψi(e) = ai(e) +
bi(e)wi. Both ai and bi values can be obtained through
performing least square data fitting on our empirical data
exemplified in Figure 4.

5.1. System Component Dissection. For a given target hard-
ware implementation, before performing sensitivity and crit-
icality analysis, the first step is to decompose the overall sys-
tem into components. In this study, such system dissection
typically follows naturally with individual module boundary.
In most instances, block diagrams of logic implementation

Input vector

Output vector

Varying i

Component without
hardware redundancy

Component with
hardware redundancy

wi

Figure 5: Conceptual diagram of sensitivity and criticality analysis.

clearly shows the boundary between different system mod-
ules.

We now use IME as an example to illustrate our FPGA
implementation in detail. More importantly, we demonstrate
how we perform component dissection in this SFC study.
IME computes the motion vector predictor (MVP) of current
macroblock (MB). There are many kinds of algorithms
for block-based IME. The most accurate strategy is the
full search (FS) algorithm. By exhaustively comparing all
reference blocks in the search window, FS gives the most
accurate motion vector which causes minimum sum of
absolute differences (SAD) or sum of square difference
(SSD). Because motion estimation in H.264/AVC supports
variable block sizes and multiple reference frames, high
computational complexity and huge data traffic become
main difficulties in VLSI implementation [23]. Therefore,
current VLSI designs usually adopt parallel architecture to
increase the total throughput and solve high computational
complexity. We implemented our IME unit in Verilog HDL
language by closely following the block diagram in Figure 7.
Among all units, PE array and four-input comparators
perform computation on input pixel values and are most
critical to the accuracy of final outputs. We totally have
41 four-input comparators and 138 PE units. Our approach
allows either fortifying some or all of these subunits.

5.2. Fault Modeling and Injection. Much of our fault model-
ing and error injection mechanism is based on prior studies
[27–29]. Our fault injection and evaluation infrastructure
exploit Verilog programming interface (VPI) in order to
quickly and flexibly inject emulated hardware defects into
Verilog-based digital design in real time. Unlike many
traditional fault injection methods, which either need to
modify the HDL code or utilize simulator commands for

Journal of Electrical and Computer Engineering 7

Input vector

Output variance

Probabilistic Error injection

and modeling

Perfect system Defective system

Sensitivity
analysis

Criticality
analysis

error vector

Figure 6: Flow chart of criticality analysis.

fault injection, our VPI-based approach is minimally invasive
to the target design. Due to standardization of the VPI,
the framework is independent from the used simulator.
Additionally, it does not require recompilation for different
fault injection experiments like techniques modifying the
Verilog code for fault injection.

As shown in Figure 8, at the beginning of the simu-
lation, the simulator calls the system with the command
$HDL InjectError, which generates one fault injection
callback that is subsequently registered according to the spec-
ified arguments fault type and place. Each of such callbacks
is specified by its time instant and duration and will be
scheduled to execute at the injection instant and the end
of injection. Then, when the inject instant reaches, the
according callback will be executed by the simulator. This
callback sets the conditions when the value modification on
the specified place will occur. During the injection, the value
of the injection place is modified by using VPI to control the
Verilog simulator. At the end of fault, the injection callback
is executed again to restore the normal value. One advantage
of using VPI-based fault injection is that it can be applied to
all VPI compliant Verilog simulators.

In order to make fault injection and evaluation feasible,
we limit the fault models used in this work to single bit faults.
A variety of fault models are defined in order to represent
real physical faults that occur in integrated circuits (ICs). We
totally consider four kinds of hardware fault. In this work,
the bit flip representing the inverted value at the instant
ts is differentiated from the toggling bit flip that toggles
with original value. In principle, fault types can be readily
extended with additional fault types.

5.3. Evaluating Fault Impact. The criticality analysis in SFC
requires accurately quantifying the impact of injected hard-
ware faults by comparing the result images with the reference
ones. Unfortunately, computing the overall differences of

pixel values will not detect and record the visual differences
critical to human perception [30]. In this study, we feel
other instances of comparing. In particular, the methodology
presented here is based on a stochastic Petri-net (SPN) graph
We instead calculate the Hausdorff distance to extract and
record local and global features from both images, compare
them, and define the percentage of similarity.

The Hausdorff distance measures the extent to which
each point of a “model” set lies near some point of an
“image” set and vice versa. Thus, this distance can be used
to determine the degree of resemblance between two objects
that are superimposed on one another. In this paper, we
provide efficient algorithms for between all possible relative
positions of a binary image and a model.

Given two finite point sets A = a1, a2, . . . , ap and B =
b1, b2, . . . , bq, the Hausdorff distance is defined as

H(A,B) = max(h(A,B),h(B,A)), (4)

where

H(A,B) = max
a∈A

min
b∈B

‖a− b‖ (5)

and ‖ · ‖ is some underlying norm on the points of A and
B (e.g., the L2 or Euclidean norm). The Hausdorff distance
H(A,B) is the maximum of h(A,B) and h(B,A). Thus,
it measures the degree of mismatch between two sets by
measuring the distance of the point of A that is farthest from
any point of B and vice versa. Intuitively, if the Hausdorff
distance is d, then every point of A must be within a distance
d of some point of B and vice versa. Thus, the notion of
resemblance encoded by this distance is that each member
of A be near some member of B and vice versa. Unlike most
methods of comparing shapes, there is no explicit pairing
of points of A with points of B (e.g., many points of A
may be close to the same point of B). The function H(A,B)
can be trivially computed in time O(pq) for two-point sets

8 Journal of Electrical and Computer Engineering

Pixels
register

array

2D PE
array

Register
array

Motion estimation data2 reference images

41 four-input
comparators

Figure 7: Block diagram of an integer motion estimator design with a macroblock parallel architecture and sixteen 2D PE arrays [23].

Fault injection callbacks

Bit toggle Bit flip

Open fault

HDL InjectFault

Verilog simulator
VPI

Value

modification
Callback

registration

Test bench file

VPI fault injection library (C/C++ code)

Stuck at 0 or 1

$HDL InjectError

Figure 8: Block diagram of VPI simulation and fault injection flow [29].

Journal of Electrical and Computer Engineering 9

of size p and q, respectively, and this can be improved to
O((p + q) log(p + q)) [30].

6. Optimally Allocating Hardware Redundancy

Assuming that our target system consists of n functional
components and error propagation within the target system
is multiplicative. Associated with each of the n functional
components, there exist several choices of design alternatives
having different hardware redundancy ratio w (as defined
in Section 3). Let ei represent the ith component with a
specified inherent error tolerance, and let Ri(w) denote the
derived error tolerance function of the ith component when
the hardware redundancy ratio of ei is w. Given the overall
hardware cost limit of H , the problem is to determine which
hardware redundancy ratio to select for each key component
in order to achieve the greatest error resilience while keeping
the total hardware cost within the allowable amount. This
formulation of the problem leads to the maximization of
system reliability R given by the product of unit error
resilience

arg max
wi ,i∈[1,n]

R =
n∏

i=1

Ri(wi), s.t.
n∑

i=1

hi ≤ H. (6)

We now discuss the procedure to obtain both Ri(w) and
hi and how to solve the above multivariate optimization
problem.

6.1. Modeling Reliability and Its Hardware Cost. We consider
two kinds of hardware redundancy: fractional redundancy
and n-nary modular redundancy. First, for multiple sub-
components within one unit, we allow a fraction of these
subcomponents to have hardware redundancy. For example,
in Figure 7, a typical IME unit contains 138 PE units, each of
which independently performs sum of absolute differences
(SAD) and sum of square difference (SSD) operations. Due
to stringent hardware costs, we normally cannot afford to
build hardware redundancy into each of these PE units.
Instead, our SFC framework allows part of these units to
be fortified. In this study, the selection of these units is
done randomly for a given fixed percentage. Second, our
SFC system allows classic n-nary modular redundancy for
chosen components. An n-tuple modular system is a natural
generalization of the TMR (triple-modular redundancy)
concepts [31], which utilizes 2n + 1 units together with a
voter circuitry and its reliability is R(NMR) = ∑n

i=0

(
N
i

)
(1−

R)iRN−i where the combinatorial notation
(
N
i

) = N !/((N −
i)!i!).

Despite being conceptually simple, analytically comput-
ing the cost of hardware redundancy and its impact on
the overall system’s error resilience proves to be extremely
difficult and inaccurate [31]. In this study, we opted to obtain
both values empirically. As shown in Figure 3, ϕi(w) can be
approximated as ai + biwi, where ai and bi are the regression
coefficients derived from experimental data. Furthermore,
the hardware cost of implementing fortified component i is
(1 +wi)hi,0 according to wi’s definition.

6.2. Solving Allocation Problem. In this section, we deter-
mine the optimal allocation for a generic hardware design
subject to a set of hardware redundancy with various costs,
for example, solving the optimization problem defined in
(6). Note arg maxwi,i∈[1,n]R equals arg maxwi,i∈[1,n] lnR =
arg maxwi ,i∈[1,n]

∑n
i=1 lnRi(wi), where ln(ai + biwi) can be

extended using Taylor series as

(
ai,0 + bi,0wi,0

)
+
d ln(ai + biwi)

dwi
|wi=wi,0 ·

(
wi −wi,0

)
+ · · ·

≈ αiwi + βi,
(7)

where αi = (bi,0)/(ai,0 + bi,0wi,0) and βi = ((ai,0 + bi,0wi,0)2 −
bi,0wi,0)/(ai,0 + bi,0wi,0). In practice, wi,0 should be chosen
to be close to the optimal solution w∗i of (6) in order to
approximate more accurately. Therefore, (6) becomes

arg max
wi,i∈[1,n]

n∑

i=1

αiwi + βi, s.t.
n∑

i=1

hi,0(wi + 1) ≤ H. (8)

Equation (8) is a classic linear programming problem
with bounded constraints and therefore can be readily solved
by the simplex algorithm [32] by constructing a feasible
solution at a vertex of the polytope and then walking
along a path on the edges of the polytope to vertices
with nondecreasing values of the objective function until
an optimum is reached. Although in theory, the simplex
algorithm can perform poorly for the worse case, in practice,
the simplex algorithm is quite efficient and can be guaranteed
to find the global optimum rather quickly [32]. In this study,
we implemented a revised simplex method according to the
algorithm outlined on page 101 of [33]. For all the simplex
runs we have performed, they all complete successfully
within 20,000 iterations.

7. Hardware Prototyping and
Performance Comparison

Our prototype of H.264 encoder is based on the parallel
architecture suggested by [23] and implemented with a
Virtex-5 FPGA (XCV5LX155T-2) device. The functionality
of this prototype is verified against a software reference
design provided with MediaBench II Benchmark [34].
Table 1 lists the hardware usage of various components, in
which IME and FME consume more than half of the total
hardware usage and exhibits a clear data parallel computing
pattern while CABAC is much smaller in gate usage but is
totally control dominated.

For input image data, we used the base video input
data set that has a 4 CIF video resolution (704 × 576)
with a moderate degree of motion and is compressed to
a bitrate providing medium/average video quality using a
search window of ±16 pixels for motion estimation [34].
As shown in Figure 9, we compare error resilience results
between our baseline design with zero hardware redundancy,
equal criticality solution, and the SFC design with optimally
allocated redundancy. All three designs are subjected to

10 Journal of Electrical and Computer Engineering

Table 1: Hardware usage of a H.264 encoder with a Virtex-5 FPGA
(XCV5LX155T-2) device.

Unit Logic Memory % ϕi wi

elements bits

IME 58960 4500 21.2 0.13 2.13

FME 79842 7600 29.0 0.10 1.89

IP 47823 3600 17.1 0.23 3.42

DCT 8966 750 3.2 0.43 5.78

CABAC 62451 2100 21.5 0.11 2.11

Other 10210 410 8 — —

a wide range of error injection rates. To make a fair
comparison, both the equal criticality solution and the SFC
design are only allowed 30% additional hardware for design
redundancy. For our baseline design, the error resilience is
quite limited. As soon as the error injection rate exceeds
0.5 × 10−4 error/gate/clock-cycle, the normalized output
error immediately jumps to more than 1, which roughly
means more than 10% of output image data is corrupted and
unrecognizable. We obtained the equal criticality solution by
equalizing the ratio between hardware usage and criticality
among all key components, that is, for components i =
1, . . . ,n, equalizing hi/ϕi. Intuitively, this allocation scheme
means assigning more hardware redundancy to more critical
components, which impact more onto the system’s overall
error resilience. From Figure 9, we can see clearly that this
criticality equalizing approach, despite conceptually simple,
yields significant improvements. In fact, on average, the
equal criticality solution improves the average error resilience
by almost 1.5 times. Finally, after applying the method
outlined in Section 6.2, the SFC solution produces even
further improvements in error resilience. Now, the H.264
encoder can perform almost undisturbed even the error
injection rate reaches beyond 4×10−4 error/gate/clock-cycle,
an almost 4 and 2.5 times improvement over the baseline
design, respectively.

As shown in Figure 9, for different number of hardware
faults N and a total amount of available hardware redun-
dancy W , the optimal hardware redundancy allocation is
different. As a user of DFHS, when we make our FPGA
design, we do not know exactly how many hardware errors
will be encounter, therefore how do we make our choice
of �w to maximize its error resilience? Figure 10 presents three
different allowable total hardware redundancy W = 50%,
75%, and 85%. For each W , we plot two curves showing
the total error resilience E as defined in (1) versus different
numbers of hardware errors N . The lower curve is the result
of optimal �w, whereas the upper curve is the worst E for
each different N when choosing any of optimal �w solutions
at differentNs. This figure is useful because, for any specified
maximumly allowed error resilience, the user can use
Figure 10 to decide how much total hardware redundancy
should be used and how many hardware failures the resulted
design can tolerate. For example, if the maximumly allowed
E is 0.12, using 50% total hardware redundancy and any
optimal solution �w when considering N ranges from 1 to 20,

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Error injection rate (×10−4 error/gate/clock-cycle)

N
or

m
al

iz
ed

ou
tp

u
t

er
ro

r

Baseline design
Equal criticality solution
SFC design

Figure 9: Error resilience comparison between baseline, equal
criticality solution, and SFC design.

0

0.5

0.1

0.15

0.2

0.25

1 10 100

Total number of random hardware failures N

W = 50%

W = 75%

W = 85%

E
(−→

,N
)

w

Figure 10: Design space exploration of DFHS for different allowed
amount of hardware redundancy.

the resulted design can tolerate no more than 4 hardware
failures. If the user desires to tolerate no more than 20
hardware failures (E ≤ 0.12), the design needs to use at least
85% of total hardware redundancy.

8. Conclusion

This study introduces the concept of selectively fortified
computing (SFC) for many mission-critical applications
with limited inherent error resilience. The SFC methodology
deviates significantly from the conventional approaches that
heavily rely on static temporal and/or spatial redundancy
and sophisticated error prediction or estimation techniques.

Journal of Electrical and Computer Engineering 11

Instead of treating hardware or software redundancy as
static objects and assuming prior knowledge of defects, the
SFC approach focuses on providing much more hardware-
efficient reliable computing through efficiently and strate-
gically distributing hardware redundancy to maximize the
overall achievable reliability.

To validate the feasibility to implement an error-
resilient reconfigurable computing system with SFC, we
have implemented a 720P H.264/AVC encoder prototype
with an Virtex 5 FPGA device that operates at very high
error rates. The goal was to show that even under such
harsh error environment, our SFC system can still maintain
high error tolerance without incurring excessive hardware
redundancy. To achieve such robustness, various algorithms
are developed to perform hardware sensitivity and criticality
analysis, followed by an efficient heuristic methodology to
optimally allocate hardware redundancy. Our experimental
results from a 720P H.264/AVC encoder prototype imple-
mented with an Virtex 5 device has clearly demonstrated
the effectiveness of SFC operating under a wide range of
error rates. Specifically, this H.264 prototype can tolerate
the error rates as high as 18,000 errors/sec/RRC, which are
emulated by hardware defects uniformly distributed through
the whole computing device. Such high error rates extend
far beyond radiation-induced soft error rates and may be
caused by highly frequent erratic intermittent errors, process
variations, voltage droops, and Vccmin. Compared with the
unmodified reference design, the SFC prototype maintains
90% or better accuracy of output results and achieves more
than four times of error resilience when compared with a
baseline design. In principle, SFC is not restricted to video
processing applications and can be applied to other general-
purpose applications that are less resilient to errors.

Acknowledgments

This work was partially supported by DARPA System Center
(Grant no. N66001-04-1-8916). Partial results of this study
were published in the HASE2011 conference.

References

[1] P. Bose, “Designing reliable systems with unreliable compo-
nents,” IEEE Micro, vol. 26, no. 5, pp. 5–6, 2006.

[2] S. Borkar, “Designing reliable systems from unreliable compo-
nents: the challenges of transistor variability and degradation,”
IEEE Micro, vol. 25, no. 6, pp. 10–16, 2005.

[3] W. Robinett, G. S. Snider, P. J. Kuekes, and R. S. Williams,
“Computing with a trillion crummy components,” Commu-
nications of the ACM, vol. 50, no. 9, pp. 35–39, 2007.

[4] S. L. Jeng, J. C. Lu, and K. Wang, “A review of reliability
research on nanotechnology,” IEEE Transactions on Reliability,
vol. 56, no. 3, pp. 401–410, 2007.

[5] S. R. Nassif, N. Mehta, and Y. Cao, “A resilience roadmap,”
in Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition (DATE 10), pp. 1011–1016, March
2010.

[6] N Haddad, R. Brown, T. Cronauer, and H. Phan, “Radiation
hardened cots-based 32-bit microprocessor,” in Proceedings

of the 5th European Conference on Radiation and Its Effects
on Components and Systems (RADECS ’99), pp. 593–597,
Fontevraud , France, 1999.

[7] W. Heidergott, “SEU tolerant device, circuit and processor
design,” in Proceedings of the 42nd Design Automation Con-
ference (DAC ’05), pp. 5–10, ACM, New York, NY, USA, June
2005.

[8] “QPro Virtex-II Pro 1.5V Platform FPGAs,” http://www.xilinx
.com/support/documentation/defenseqpro.htm/.

[9] M. A. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomer-
anz, “Transient-Fault Recovery for Chip Multiprocessors,”
IEEE Micro, vol. 23, no. 6, pp. 76–83, 2003.

[10] J. Gaisler, “A portable and fault-tolerant microprocessor
based on the SPARC V8 architecture,” in Proceedings of the
International Conference on Dependable Systems and Networks
(DNS ’02), pp. 409–415, June 2002.

[11] H. Quinn, P. Graham, J. Krone, M. Caffrey, and S. Rezgui,
“Radiation-induced multi-bit upsets in SRAM-based FPGAs,”
IEEE Transactions on Nuclear Science, vol. 52, no. 6, pp. 2455–
2461, 2005.

[12] N. Rollins, M. Wirthlin, M. Caffrey, and P. Graham, “Evalu-
ating TMR techniques in the presence of single event upsets,”
in Proceedings of the 6th Annual International Conference on
Military and Aerospace Programmable Logic Devices, pp. 63–
70, September 2003.

[13] G. M. Swift, S. Rezgui, J. George et al., “Dynamic testing
of xilinx virtex-II field programmable gate array (FPGA)
input/output blocks (IOBs),” IEEE Transactions on Nuclear
Science, vol. 51, no. 6, pp. 3469–3474, 2004.

[14] B. Pratt, M. Caffrey, J. F. Carroll, P. Graham, K. Morgan, and
M. Wirthlin, “Fine-grain SEU mitigation for FPGAs using
partial TMR,” IEEE Transactions on Nuclear Science, vol. 55,
no. 4, Article ID 4636895, pp. 2274–2280, 2008.

[15] P. K. Samudrala, J. Ramos, and S. Katkoori, “Selective triple
modular redundancy (STMR) based single-event upset (SEU)
tolerant synthesis for FPGAs,” IEEE Transactions on Nuclear
Science, vol. 51, no. 5, pp. 2957–2969, 2004.

[16] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and
M. Wirthlin, “SEU-induced persistent error propagation in
FPGAs,” IEEE Transactions on Nuclear Science, vol. 52, no. 6,
pp. 2438–2445, 2005.

[17] S. Narayanan, G. V. Varatkar, D. L. Jones, and N. R. Shanbhag,
“Computation as estimation: estimation-theoretic IC design
improves robustness and reduces power consumption,” in
Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP ’08), pp. 1421–1424,
April 2008.

[18] M. A. Breuer, “Multi-media applications and imprecise com-
putation,” in Proceedings of the 8th Euromicro Conference on
Digital System Design (DSD ’05), pp. 2–7, September 2005.

[19] R. Hegde and N. R. Shanbhag, “Energy-efficient signal
processing via algorithmic noise-tolerance,” in Proceedings of
the International Conference on Low Power Electronics and
Design (ISLPED ’99), pp. 30–35, ACM, New York, NY, USA,
August 1999.

[20] D. Mohapatra, G. Karakonstantis, and K. Roy, “Signifi-
cance driven computation: a voltage-scalable, variation-aware,
quality-tuning motion estimator,” in Proceedings of the 14th
ACM/IEEE International Symposium on Low Power Electronics
and Design (ISLPED ’09), pp. 195–200, ACM, New York, NY,
USA, August 2009.

[21] R. Nair, “Models for energy-efficient approximate comput-
ing,” in Proceedings of the 16th ACM/IEEE International

12 Journal of Electrical and Computer Engineering

Symposium on Low Power Electronics and Design (ISLPED ’10),
pp. 359–360, ACM, New York, NY, USA, 2010.

[22] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “Ersa:
error resilient system architecture for probabilistic applica-
tions,” in Proceedings of the Conference on Design, Automation
and Test in Europe (DATE ’10), pp. 1560–1565, European
Design and Automation Association, Leuven, Belgium, 2010.

[23] Y.-L. S. Lin, C.-Y. Kao, H.-C. Kuo, and J.-W. Chen, VLSI
Design for Video Coding: H.264/AVC Encoding from Standard
Specification to Chip, Springer, 1st edition, 2010.

[24] P. G. Bishop, R. E. Bloomfield, T. Clement, and S. Guerra,
“Software criticality analysis of cots/soup,” in Proceedings of
the 21st International Conference on Computer Safety, Relia-
bility and Security (SAFECOMP ’02), pp. 198–211, Springer,
London, UK, 2002.

[25] C. Ebert, “Fuzzy classification for software criticality analysis,”
Expert Systems with Applications, vol. 11, no. 3, pp. 323–342,
1996.

[26] P. Anderson, T. Reps, and T. Teitelbaum, “Design and imple-
mentation of a fine-grained software inspection tool,” IEEE
Transactions on Software Engineering, vol. 29, no. 8, pp. 721–
733, 2003.

[27] R. Leveugle, D. Cimonnet, and A. Ammari, “System-level
dependability analysis with RT-level fault injection accuracy,”
in Proceedings of the 19th IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems (DFT ’04), pp. 451–
458, October 2004.

[28] J. Arlat, M. Aguera, L. Amat et al., “Fault injection for depend-
ability validation: a methodology and some applications,”
IEEE Transactions on Software Engineering, vol. 16, no. 2, pp.
166–182, 1990.

[29] D. Kammler, J. Guan, G. Ascheid, R. Leupers, and H. Meyr,
“A fast and flexible platform for fault injection and evaluation
in Verilog-based simulations,” in Proceedings of the 3rd IEEE
International Conference on Secure Software Integration Relia-
bility Improvement (SSIRI ’09), pp. 309–314, July 2009.

[30] N. G. Bourbakis, “Emulating human visual perception for
measuring difference in images using an SPN graph ap-
proach,” IEEE Transactions on Systems, Man, and Cybernetics
B, vol. 32, no. 2, pp. 191–201, 2002.

[31] F. P. Mathur and A. Avižienis, “Reliability analysis and archi-
tecture of a hybrid-redundant digital system: generalized triple
modular redundancy with self-repair,” in Proceedings of the
Spring Joint Computer Conference (AFIPS ’70), pp. 375–383,
ACM, New York, NY, USA, May 1970.

[32] G. B. Dantzig and M. N. Thapa, Linear Programming 1:
Introduction, Springer, Secaucus, NJ, USA, 1997.

[33] R. Darst, Introduction to Linear Programming: Applications and
Extensions, Pure and Applied Mathematics, M. Dekker, 1991.

[34] J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf, “Medi-
aBench II video: expediting the next generation of video
systems research,” Microprocessors and Microsystems, vol. 33,
no. 4, pp. 301–318, 2009.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

