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Robust and efficient foreground extraction is a crucial topic in many computer vision applications. In this paper, we propose an
accurate and computationally efficient background subtraction method. The key idea is to reduce the data dimensionality of image
frame based on compressive sensing and in the meanwhile apply sparse representation to build the current background by a set
of preceding background images. According to greedy iterative optimization, the background image and background subtracted
image can be recovered by using a few compressive measurements. The proposed method is validated through multiple challenging
video sequences. Experimental results demonstrate the fact that the performance of our approach is comparable to those of existing

classical background subtraction techniques.

1. Introduction

Foreground extraction is often the first step of many visual
surveillance applications such as object tracking, recognition,
and anomaly detection. Background subtraction [1] is the
most frequently used method to detect and extract objects
automatically in video sequences. The basic principle can
be formulated as a technique that builds the background
model and compares this model with the current image
frame in order to distinguish foreground, that is, moving
objects from static or slow moving background. Many pixel-
based methods have been investigated in the past decades.
Among these, Gaussian mixture model (GMM) [2] is a
representative method for robustly modeling complicated
backgrounds with slow illumination changes and small repet-
itive movements. This method models the distribution of
the values observed over time at each pixel by a weighted
mixture of Gaussians. Several modified methods concerning
the number of Gaussian components, learning rate, and
parameters update [3-5] have been proposed. However, the
main drawback of these approaches is being computationally
intensive. In [6], a nonparametric kernel density estimation
(KDE) has been proposed to model the background, but
this method consumes too much memory. Besides, in [7],
each pixel is represented by a codebook which is able to

capture background motion over a long period of time
with a limited amount of memory. The codebooks can
evolve with illumination variations and moving backgrounds.
Nevertheless, the codebook update will not allow the creation
of new codewords once codebooks have been learned from a
typically training sequence. Recently, a universal background
subtraction method called ViBe has been presented in [8],
where each pixel is modeled with a set of real observed pixel
values. It is reported that this method outperforms current
mainstream methods in terms of both computation speed
and detection accuracy.

Most of pixel-level background subtraction techniques
have considerable computation costs; thus some other meth-
ods are proposed to improve the computation efficiency.
Our earlier work [9] proposed a block-based image recon-
struction to reduce the video frame size and then applied
GMM to model the background for the constructed frame. In
recent years, there has been a growing interest in compressive
sensing (CS) and the idea of CS has also been exploited
for background subtraction. In [10], an image is divided
into small blocks and random projections based on CS are
then computed for each block to reduce the data dimen-
sionality. After this, each projection value is modeled by
GMM to determine whether the block belongs to foreground
or not. The work in [11] describes a CS reconstruction



method to directly recover background subtracted images
from compressive measurements. The main idea is that the
background subtracted images can be represented sparsely
in the spatial image domain. Based on this, an improved
method called adaptive rate compressive sensing (ARCS) is
presented in [12]. Furthermore, a dynamic group sparsity
(DGS) recovery algorithm [13] is proposed based on the
extended CS theory to perform background subtraction.
According to both sparsity and dynamic group clustering
priors, DGS can recover stably background subtracted image
using fewer measurements and computations.

Recently, the approach proposed in [14] exploits sparse
representation (SR) to perform classification, where a test
image can be sparsely represented by a subspace spanned
from training images. CS has shown the ability to efficiently
compress signals using SR. Motivated by this idea, we
present a new background subtraction method combining
CS and SR techniques in this paper. In our solution, the
background modeling can be cast as a greedy sparse recovery
problem. This paper is organized as follows. In Section 2,
we briefly review the CS theory. This review presents the
framework developed for compressive background model-
ing. Section 3 extensively describes our solution and the
implementation process: sparse representation, background
initialization, background modeling, and update mechanism.
Section 4 compares our method with several state-of-the-art
background subtraction techniques and discusses the per-
formances in terms of accuracy and computation efficiency.
Section 5 concludes this paper.

2. Compressive Sensing

The CS theory [15] states that a signal can be reconstructed
from a small number of measurements with high probability,
provided that the signal is sparse in the spatial domain or
some transform domains, for example, wavelets. Assume that
a signal x can be represented as x = W0, where ¥ denotes
a basis and 0 is the coeflicients corresponding to the basis.
The signal x is said to be k-sparse if all other elements in 0
vanish except for k nonzero coefficients. According to CS, for
a sparse signal x € R", compressive measurements can be
collected by the following random projections:

y=0x+e, 1)
where ® € R™", m < n, is the measurement matrix, y € R”
contains 1 measurements, and ¢ is the measurement noise.
Specifically, a high dimensional vector x is converted into a
much lower dimensional measurement vector y. Moreover,
the compressive measurements in y contain almost all the
information of the sparse vector x. This means that we can
work with data of significantly lower dimension so as to
achieve computation efficiency as well as accuracy.

Since m < n, the recovery of the sparse signal x from y
is underdetermined. However, the following two additional
assumptions make the recovery possible [16, 17]. First, ® is
required to satisfy the restricted isometry property (RIP).
Some randomly generated matrices, for example, Gaussian,
Bernoulli distribution of 41, obey the RIP and can be used for
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random projections. Second, m is greater than O(k log(n/k));
that is, the number of measurements must be large enough
with respect to the number of nonzero coefficients in 6. Under
these circumstances, the sparse recovery can be formulated
by solving the following £, minimization problem:

X = argmin|x[l, st |y- CDx"2 <e. (2)

It is known that (2) is an NP hard problem. In general, the
sparse solution can be obtained by ¢, convex optimization or
greedy iterative algorithms.

3. Compressive Background Modeling

3.1. Sparse Representation of Background. To improve the
computation efficiency of sparse recovery, the image frame
is first divided into M blocks of pixels. We describe the
sparse representation of background on a block because the
operations to be carried out on the vector of each block are
identical. For the ith block, i = 1,..., M, it is vectorized
into a column vector x; of size n x 1, where n denotes the
product of the height and width of the block. The vectorized
image block x; is assumed to consist of both background b,
and background subtracted image f;; that is,

x;=b+ f;. (3)

According to SR, the current background can be repre-
sented as a linear combination of all preceding background
images. Due to the memory requirement blast for long video
sequences, we use [ preceding backgrounds to sparsely rep-
resent the new background, where [ should be large enough
to comprise a sufficient number of background samples. Thus
the background b, can be measured as follows:

b= A =[b, b0 by o, (4)
where A; € R™ is a subspace spanned from preceding back-
grounds b, ;,j=1,...,L o; € Risa sparse coefficient vector
whose most elements are either zeros or very close to zeros.
Substituting (4) into (3), we have

x= A+ f=[A0]]"
= a fi= o]

i

] =V¥s;, (5)

where I € R™ is an identity matrix, ¥; € R g
called the dictionary, and s; € R"™ is the corresponding
coeficient vector. In fact, the sizes of the foreground objects
are relatively smaller than the size of the background image.
Only a small part of pixels in the background subtracted
image has nonzero values; that is, f; exhibits sparsity in the
spatial domain. The fact that both «; and f; are sparse implies
that s; is sparse. In this case, x; can be well approximated using
nonzero coefficients of s; under ¥;, which is critical to the

sparse recovery base on CS.

3.2. Background Initialization. As described before, the
background subspace is characterized by A; containing !
preceding backgrounds. Thus the first problem we face
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is theinitialization of A;. Normally, most mainstream
approaches need tens or hundreds of image frames to initial-
ize background by estimating probability density functions
or statistical parameters of background pixels. For instance,
GMM initializes every background pixel by a mixture of K
Gaussian distributions, where the weight, mean, and variance
of each distribution are learned and updated from a sequence
of frames. Nevertheless, the model initialization takes up
large amounts of computation resources. Besides, the shape of
a probability density function is sensitive to outliers and the
evaluation of the statistical parameters is largely dependent
upon the number of samples to be considered. As a matter of
fact, it is not imperative to estimate the temporal distribution
of background pixels using a large amount of pixel samples.
Each background pixel can be initialized with a set of real
observed pixel values instead of with an explicit pixel model.

Like the authors of [8], we initialize A; from the first
frame of the video sequence based on the assumption that
neighboring pixels share a similar temporal distribution.
Given a pixel located at u in ith image block, its value and
the spatial neighborhood are denoted by v(u) and Ng(u),
respectively. Therefore, the background sample value of the
pixel u, b, j(u), is equal to the value of a pixel v randomly
selected in N (u) in the first frame:

bW=v(vIveNsw) j=1...L (6

Based on this, the background model of pixel u is filled with
a collection of | sample values. Thus A; can be initialized by
background models of all pixels in the ith block:

A;=[{b, W}, b, w},....{b; W)}], uebdlocki. (7)

It is noteworthy that this strategy can perform foreground
extraction from the second frame, which is beneficial for
a short video sequence or memory-constrained embedded
devices. Furthermore, the spatial neighborhood of moderate
size is preferred. A large size leads to the degradation in the
statistical correlation between pixels at different locations.
Conversely, the diversity of background samples cannot be
guaranteed under a small size. In our solution, samples are
selected randomly in the 8-connected neighborhood of each
pixel.

3.3. Compressive Background Modeling. Likewise, we take the
ith image block for example. As mentioned earlier, due to
the sparsity of s; under the dictionary ¥, x; can be pro-
jected into compressive measurements without losing much
information. Combining (5) with (1), random projections are
executed for each block:
&;
y,-:CDx,-+s:(D[A,-,I][ ]+s:®‘{’isi+s. (8)
1
Let ® be an m X n random matrix whose entries ¢,
independent realizations of +1 Bernoulli random var1ab?es

1
+_
m’
Ppq = 9

1 1
i with probability 7

with probability 5

Note that once @ is generated in the beginning, the same
matrix is used for each block throughout the video sequence.

Assume that ¥, ; is the dictionary of the ith block at time
t. For the image at time ¢ + 1, let x;,, ; be the vector of the ith
block. Given @ described in (9), the compressive measure-
ments y,,;; can be obtained by the matrix multiplication of
® and x;,, ;. According to (8), the background modeling at
time ¢ + 1 is thus formulatedas the following sparse recovery
problem:

DY, s, < e
(10)

(‘xt+1,i’ft+1,i) = argmin "St,ino » St ”yHl,i -

In our method, the sparse recovery in (10) is solved by a
greedy algorithm called DGS [13]. The reason for this is that
DGS can recover stably sparse data with less measurement
requirement and lower computation complexity, because it
considers not only sparsity but group clustering priors of
sparse data as well. Compared to existing greedy recovery
algorithms, the difference is that the estimation pruning uses
DGS approximation rather than k-sparse approximation. To
reduce the computational cost, background modeling can be
performed at specified intervals instead of every frame.

3.4. Background Update. To adapt to gradual changes that
occur in the background such as environment disturbances
and slow lighting changes, the background modelneeds to
be updated over time. In this paper, we tackle this problem
by dynamically updating background model once every T'
frames, and the frame interval is set at 3 to 7. The reason
for this is threefold. Firstly, it is acceptable that background
model remains the same for a certain period of time, which
does not materially deteriorate the results of background
subtraction. Secondly, the continuous sparse recovery results
in arelatively heavy computation overhead. Furthermore, too
often update introduces small errors into background model
at each time, and the accumulative errors have negative effects
on the accuracy of foreground extraction.

At initialization, A; is built using (7) from the first video
frame. Subsequently, A; is updated according to the sparse
recovery result. Assume that the background subspace at time
t is denoted as A, ;. The sparse coefficient vectorat time ¢ + 1,
;1 ;> can be obtained via (10); thus the background at time
t + 1 is calculated by b,,,; = A;;a,,;. We can see from
(4) that the background update is equivalent to replacing
a certain sample b, ;, j = 1l in A,; using b, ;. The
traditional approach to background update is to substitute
the new values for old ones in turn. However, there is no
reason to naively remove a valid sample if it corresponds
to a background. Unlike this idea, we adopt a probability
strategy to update A,; where a sample in A,; is chosen at
random according to a uniform law and replaced by the new
background b, ;. Therefore the background subspace at time
t + 1 is denoted by

Avsrg = gy V8, 1 b = by o vith probability | (1)

Furthermore, the background update should also take

sudden illumination changes into account. As stated earlier,
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FIGURE 1: Results on a video sequence of 150 frames with background disturbances. (a) Original frames, (b) background, (c) background

subtracted images, and (d) foreground masks.

A, is initialized from a single frame. This technique provides
a rapid response to sudden illumination changes; that is,
the existing background model is discarded directly and
a new model is initialized right now. Obviously, a sudden
illumination change leads to the great change of pixel value.
We count the pixels with great value change; if the ratio
of these pixels to the total exceeds a threshold Th, the
background is reinitialized according to the current frame
in order to accomplish foreground extraction under the new
illumination condition.

4. Experimental Results

4.1. Effectiveness Analysis. This experiment is designed to
demonstrate the effectiveness of compressive background
modeling. We implement the proposed method in MATLAB
and test it on two complicated scenarios involving back-
ground disturbances and illumination changes. The same
parameters are used for these sequences in the experiment.
The values of parameters are as follows: M = 4,1 = 15, T = 5,
Th = 0.6, and the measurement rate m/n = 1/16.

Figure 1 shows examples of background modeling and
foreground extraction for two typical frames of the first
sequence of 176 x 144 pixels, which concerns a floating tin can
under condition of waves. Figure 1(a) is the original frames,
Figures 1(b) and 1(c) show the recovered background images
and background subtracted images, respectively. To facilitate
the observations, Figure 1(d) gives the binary foreground
masks that are directly obtained via background subtracted
images. All results are the solutions of the optimization
problem in (10) with a simple postprocessing based on
morphological operations. As can be seen, the proposed
method can almost accurately recover the background and
extract foreground objects, except in the case of severe distur-
bances; for example, the background subtracted image shown
in the second row contains a small piece of background
corresponding to a heavy wave. The results show that the

background modeling based on CS and SR techniques can
handle dynamic scenes well. Moreover, the spatial consis-
tency of neighboring pixels is absorbed into the initialization
of background model, which can mitigate the impact of waves
to some extent.

Figure 2 shows the background subtraction results on the
other video sequence of 160 x 120 pixels, which concerns
three different illumination conditions, that is, normal; the
light is switched off and switched on again. As described
in Section 3.4, when the light is switched off/on, a new
background model is initialized instantaneously to keep track
of the sudden change in illumination. After this, the recovery
of the background and background subtracted images can
proceed as before and continue to improve. From Figure 2,
it is clear that the resulting images are clean even undergoing
repetitive sudden illumination changes. This means that the
proposed method is able to handle random illumination
conditions. In addition, our method overcomes effectively the
impact of the flickering monitors.

4.2. Qualitative Comparison. To evaluate the performances
of the proposed method, we compare the results of our
method with those of five representative background sub-
traction algorithms: (1) ARCS [12]; (2) CS-MoG [10]; (3)
ViBe [8]; (4) KDE [6]; and (5) GMM [2]. We implement
the five algorithms by ourselves, and all the parameters in
these algorithms use the proposed default values accord-
ing to the original papers. These algorithms are tested on
seven different video sequences, and all the experiments
give similar conclusions as described below. Due to space
constraints, only five out of seven sequences are illustrated in
Figure 3. The first three sequences involving pedestrians and
vehicles detection under sunny and overcast days contain 500
frames of 320 x 240 pixels. The last two sequences concern
the foreground extraction in the presence of background
disturbances such as swaying tree and waves on the water,
where the former is a standard sequence consisting of 286
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(c)

FIGURE 2: Results on a video sequence of 750 frames with sudden illumination changes. (a) Original frames, (b) background, (c) background

subtracted images, and (d) foreground masks.

frames of 160 x 120 pixels and the latter comprises 150
frames of 176 x 144 pixels. According to the image size, the
number of image blocks is set to M = 16 for the first three
sequences and M = 4 for the last two sequences. Figure 3(a)
shows one typical frame of each sequence, and Figures 3(b)-
3(g) correspond to the foreground extraction results of the
aforementioned six methods. Note that all the foreground
masks are immediate results without any morphological
postprocessing operations. Thus the comparisons based on
these results are objective and reasonable.

There are several points we can learn from the experi-
mental results. First, the results of our method and ARCS are
similar due to the fact that background subtraction is cast as a
sparse recovery problem. Both of them have relatively stable
performance under various scenarios, as shown in Figures
3(b) and 3(c). Second, CS-MoG is a block-based background
subtraction algorithm. The image is segmented into blocks of
8 x 8 pixels, and projections based on CS are computed for
each block. Each projection value is modeled as a GMM to
determine if the block is classified as foreground. This makes
CS-MoG able to effectively eliminate background distur-
bances and correctly identify foreground regions. Meanwhile,
it also leads to some problems. For example, the foreground
masks are not accurate enough because of many holes and
fragments. Besides, we can see from the third foreground
mask in Figure 3(d) that vehicles with small size are omitted
because of the block-based processing. Third, for the first
two sequences, the results of ViBe look better. However, the
foreground extraction of ViBe evidently deteriorates when
there exist severe background disturbances. Fourth, KED and
GMM are more sensitive to illumination changes and cannot
deal with nonstatic scenes. From Figures 3(f) and 3(g), there

are a large number of background pixels incorrectly classified
as foreground under the condition of swaying tree and waves.
Comparatively, our method is stable and effective under
different illumination conditions and cluttered backgrounds.

Two metrics, the percentage of correct classification
(PCC) [8] and the average processing time (APT), are utilized
to quantitatively evaluate the six background subtraction
algorithms. Naturally, the higher the PCC, the more accurate
the foreground extraction; in the meanwhile, the less the APT,
the higher the computation efficiency. The comparison results
are computed as the mean of 50 consecutive frames. Figures 4
and 5 illustrate the PCCs and APTs of the six methods for
five sequences, respectively. We can see from Figure 4 that
the PCCs confirm the results illustrated in Figure 3. The
PCC of ARCS is very close to that of our method under
different scenarios. In most cases, our method has the best
performance and its PCC is higher than those of the others.
For one thing the PCC of ViBe is slightly greater than that of
our method for the first two sequences and for another the
PCC of ViBe reduces by an average of 7.48% in comparison
with our method for the rest sequences. Moreover, the PCC
of our method is 4.51 to 10.04% greater than that of CS-MoG.

Though our method and ARCS perform foreground
extraction by solving sparse recovery that is relatively time-
consuming, our method is faster than ARCS, as shown in
Figure 5. The reason for this is twofold. First, in our solution,
the image frame is processed in the form of subblocks of
pixels instead of a whole image so that the computation
efficiency of sparse recovery is improved. Second, we solve
the sparse recovery using DGS with lower computation
complexity and fewer measurements. As can be seen from
Figure 5, CS-MoG which uses random projections to reduce
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FIGURE 3: Comparative foreground masks of six methods. (a) Original frames, (b) our method, (c) ARCS, (d) CS-MoG, (e) ViBe, (f) KDE,

and (g) GMM.

data dimensionality is significantly faster than other pixel-
level techniques, that is, ViBe, KDE, and GMM. For KDE and
GMM, background models maintain complete information
on each pixel, which results in a considerable computa-
tion cost. For instance, for the first sequence, the APTs of
our method, ARCS, CS-MoG, ViBe, KDE, and GMM, are
90.91, 129.87, 52.37, 79.07, 154.46, and 122.78 ms, respectively.

Specifically, our method is approximately 42.7%, 69.7%, and
34.9% faster than ARCS, KDE, and GMM, respectively. On
the other side, our method obtains foreground by solving
optimization problem but CS-MoG and ViBe do not; there-
fore our method is 73.4% and 14.9% slower than CS-MoG and
ViBe, respectively. Furthermore, we further observe the time
consumption of our method. The test shows that the sparse
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recovery dominates the computation time and consumes as
much as approximately 85.2% of total computation time. In
comparison, the overhead introduced by background update
is 10.6% of total computation overhead.

From the foregoing, our method is slower than CS-MoG
and ViBe, while the foreground extraction accuracy of our
method is superior to those of two others. It can be concluded
that the proposed method achieves the best tradeoft between
the accuracy and computation efficiency.

5. Conclusions

In this paper, we propose a background subtraction method
based on CS and SR. Background is modeled as a sparse
representation of preceding backgrounds. Combining the
sparse representation of background with the sparsity of

foreground, we use a few compressive measurements to
recover background and the background subtracted image
within the CS framework. Moreover, we provide the back-
ground initialization and update scheme which improve the
robustness against the changes in the scenarios. According
to comparisons and analyses involving several challenging
sequences and five other state-of-the-art background sub-
traction algorithms, the experimental results clearly demon-
strate the effectiveness of the proposed method.
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