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A new approach to classify synthetic aperture radar (SAR) targets based on high range resolution profiles (HRRPs) is presented.
Features from each of the target HRRPs are extracted via the nonnegative matrix factorization (NMF) algorithm in time-frequency
domain represented by adaptive Gaussian representation (AGR). Firstly, SAR target images have been converted into HRRPs. And
the time-frequency matrix for each of HRRPs is obtained by using AGR. Secondly, the time-frequency feature vectors are extracted
from the time-frequency matrix utilizing NMF. Finally, hidden Markov models (HMMs) are employed to characterize the time-
frequency feature vectors corresponding to one target and are used to being the recognizer. To demonstrate the performance of the
proposed approach, experiments are performed in the 10-target MSTAR public dataset. The results support the effectiveness of the
proposed technique for SAR automatic target recognition (ATR).

1. Introduction

Automatic target recognition has become an important
research topic for military applications. It is important to
develop efficient and robust algorithms for automatic target
recognition (ATR), especially for ground target identification
in battle surveillance. In this paper, the problem of synthetic
aperture radar (SAR) ATR is focused on, which is widely
used in many surveillance tasks owing to its all-weather
ability and other advantages [1]. Different from passive vision
system, SAR images are formed by reflections of a coherent
source, which are difficult to be interpreted directly and their
characteristics vary quickly and abruptly with small change
in azimuth and depression. Due to the unique characteristics
of SAR image formation process, such as specular reflection
and multiple bounces, it is very difficult to extract effective
features for ATR as used in the optical image. For SAR
ATR, a broad class of feature extraction method is from two-
dimensional SAR images [2–4], while an alternative class
of feature extraction method is from one-dimensional high
range resolution profiles (HRRPs) obtained from SAR [5].
The latter have more advantages when SAR target images

are blurred due to target motion. However, due to the large
footprint of the SAR illuminating beam, it is very difficult to
separate target HRRPs directly from SAR raw echoes which
include a large amount of ground clutter. In contrast, HRRPs
can be converted from SAR images with ground clutter
removed by target segmentation in image domain [5, 6].

Features from HRRPs via Relax algorithm are investi-
gated for target recognition [5]. Power spectrum features
extracted from HRRPs are employed for SAR ATR [6].
HRRPs superresolution scattering centers features are also
used to recognize SAR targets [7]. In the HRRPs-based SAR
ATR approach, the key is to extract robust and effective
features of HRRPs.

In terms of HRRP feature extraction, it has been found
that the exploitation of target time-frequency signatures can
be effective for target discrimination. Kim et al. derived
geometrical moments features in joint T-F domain [8].
Raj et al. develop methods for the T-F analysis of human gait
radar signals [9]. T-F analysis techniques also successfully
apply to other radar applications as shown in [10–12].

The most critical issue when using time-frequency fea-
tures for radar target recognition is to reduce the dimension
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Figure 1: The procedure from a SAR image to HRRPs.

of the time-frequency plane data while preserving as much
discriminative information as possible. Our focus in this
paper concentrates on developing a new feature extraction
technique for T-F domain based on nonnegative matrix
factorization (NMF). Over the last decade, NMFhas emerged
as a useful feature extraction method in areas related to
speech recognition and image processing [13–15].

In this paper, we propose a new SAR ATR strategy
based on adaptive Gaussian representation (AGR) and NMF.
First, we propose to construct the time-frequency matrix
of HRRP by using AGR. Then, NMF is performed on
the time-frequency matrix to obtain the coefficient matrix
composed of spectral vectors and the base matrix composed
of temporal vectors. The nonnegative constraints of NMF
lead to part-based representation because they allow only
additive combination, which can get distinct information of
the time-frequency matrix. Finally, we extract several novel
features from the spectral and temporal vectors in a way that
they successfully represent joint time-frequency signatures of
the HRRP. Experiments based on the proposed approach are
performedwithHMMclassifier over 10-targetMSTARpublic
datasets.

2. SAR Images to HRRPs

TheMSTAR public SAR dataset is considered for the experi-
ments to evaluate the proposed algorithm. The data typically
consist of image chips. As discussed above, these image
chips have to be converted into HRRPs by several filtering
operations. The brief procedure of how MSTAR SAR image
chips are converted to HRRPs is provided here as follows [5],
which is summarized in Figure 1.

Consider a complex-valued SAR image I(𝑥, 𝑦), where 𝑥
reflects the downrange dimension and 𝑦 the cross range.
A two-dimensional (2D) inverse FFT is taken off I(𝑥, 𝑦)
to obtain the corresponding phase history data. Next, the
deconvolution of the weighting and removal of the zero-
padding is performed for the phase history data due to the
operation of window weighting and zero-padding in SAR
image formation.

Then, a 2D FFT is applied to produce a deconvolved and
Nyquist-sampled image I(𝑥, 𝑦). Note that both the target
and surrounding clutter exist in I(𝑥, 𝑦). So, to remove the
clutter, a target segmentation procedure is taken to image
I(𝑥, 𝑦). Then, an inverse FFT is performed in the cross range
dimension for all𝑥, fromwhich each 𝑥-dependent waveform,
for a fixed 𝑦, corresponds to a HRRP.

3. HRRP Time-Frequency
Representation by AGR

Time-frequency (T-F) analysis techniques have long been
used in the area of feature extraction, radar imaging, and
so forth. There are several T-F approaches, such as the
short-time Fourier transform (STFT), Wigner-Ville distribu-
tion (WVD), and adaptive Gaussian representation (AGR).
Compared to other T-F approaches, AGR can decompose
the backscattered signal into T-F centers corresponding
to scattering centers and local resonances with high T-F
resolutions. Up to now, AGR has been successfully applied in
ISAR imaging, complicated scattering diagnostic, and radar
target classification [8]. In this paper, we adopt AGR for T-F
feature extraction of HRRPs.

AGR expands a HRRP in time-domain ℎ(𝑡) in terms
of normalized Gaussian elementary functions 𝑔

𝑘
(𝑡) with an
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𝑘
, 𝑓
𝑘
) and a variance 𝛼
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where ℎ
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four parameters completely describe one Gaussian T-F basis
function at the 𝑘th iteration.

After 𝑘max stages of AGR decomposition, the following
relationships hold:
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Therefore, the AGR iteration in (4) continues until the
reconstruction error ‖ℎ

𝑘max+1(𝑡)‖
2 is sufficiently small; hence,

the upper limit 𝑘max is determined.
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, 𝑘 = 0, 1, 2, . . . , 𝑘max, are obtained

via AGRprocessing, the T-Fmatrix, which represents a signal
energy distribution in the joint T-F plane,𝑉(𝑡, 𝑓), is given by
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The dimension of each 𝑉(𝑡, 𝑓) is the same, which is
determined by time domain sample number of each HRRP
and frequency domain sample number in AGR. In this paper,
each𝑉(𝑡, 𝑓) is onematrix of 100×100. Compared to the well-
known WVD technique, T-F matrix by AGR can give a joint
T-F distribution that is nonnegative, cross-term interference
free [8]. As for comparison to the wavelet decomposition
which form a complete set, AGR is not restricted to a regular
sampling grid, and in addition, they are not subject to the
number of data samples. In radar target electromagnetic
feature extraction, the scattering mechanisms are usually too
complicated, and consequently, for accurate representation
of a radar signature, it is desirable to have the elementary
functions on a flexible sampling grid as in AGR processing
rather than the elementary functions on a regular grid as in
the wavelet decomposition methods mentioned above. The
advantage of AGR processing for radar applications has been
well described in [8]. In Figure 2, T-F matrices of several
HRRPs from different targets usingWVD are compared with
T-F matrices utilizing AGR technique, from which it can be
seen that AGR is superior to WVD especially in cross-term
interference.

4. Time-Frequency Matrix Feature
Extraction Using NMF

The next stage in this paper is to derive T-F features from
the T-F matrix of HRRPs. There are several matrix decom-
position techniques available, such as principal component
analysis (PCA), independent component analysis (ICA), and
NMF. Each of these techniques considers different sets of
criteria with some properties; for example, PCA finds a
set of orthogonal bases that minimizes the mean squared
error of the reconstructed data; ICA decomposes a dataset
into components that are as independent as possible; NMF

decomposes a nonnegative matrix to its nonnegative compo-
nents [16].

Compared to other matrix decomposition techniques,
NMF can obtain components in the original matrix with
a higher representation and localization property [17, 18].
Therefore, the features extracted from the HRRP T-F matrix
by NMF will represent a HRRP signature with a better time
and frequency localization. The basic principle of NMF for
the HRRP T-Fmatrix is to find a locally optimal factorization
of the matrix into two submatrices, of which the first one
named base matrix represents the spectra of the scattering
events in the HRRP and the second one named coefficient
matrix represents the temporal characteristic of the scattering
events in theHRRP. In the present paper, following theHRRP
T-F matrix decomposed by NMF, T-F features are extracted
from base matrix and coefficient matrix.

4.1. Definitions of NMF. Given a matrix V ∈ R𝑛×𝑚 and a
constant 𝑟 ∈ N, NMF computes two matricesW ∈ R𝑛×𝑟 and
H ∈ R𝑟×𝑚, such that

V ≈WH. (7)

4.2. NMF Factorization Algorithm. Factorization in NMF
approach is usually achieved by iterativeminimization of cost
functions. In this work, we choose the following function:
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The function 𝐷(W,H) has turned out to yield perceptu-
ally good results at a reasonable computational cost, which
can be minimized iteratively with the multiplicative update
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(9)

This factorization algorithm is the basis for several recent
NMF-based techniques [19]. The value of the parameter 𝑟 is
determined by the iteration number of NMF; here, 𝑟 is equal
to 10 according to the experiments. Figure 3 draws out vectors
of base matrix and the coefficient matrix obtained by NMF
corresponding to each AGR T-F matrix in Figure 2.

4.3. NMF Feature Extraction. In NMF feature extraction, we
assume a linear signal model for HRRP, the time-frequency
distribution of which can be expressed as linear combinations
of spectra of several distinct scattering centers with different
temporal characteristic.Thereby the coefficients are restricted
to be nonnegative. One can interpret the columns of W as
spectral components and the corresponding rows of H as
their time-varying gains.

For spectral vectors of the basis matrix W, features
are extracted utilizing several general spectral characteristic
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(a1) HRRP from BMP2 (a2) T-F matrix using WVD (a3) T-F matrix using AGR

(b1) HRRP from BTR70 (b2) T-F matrix using WVD (b3) T-F matrix using AGR

(c1) HRRP from T72 (c2) T-F matrix using WVD (c3) T-F matrix using AGR

Figure 2: Comparison between T-F matrices using WVD and T-F matrices using AGR.

parameterswhich include spectral centroid, spectral standard
deviation normalized by the centroid, skewness, and kurtosis.
For a given spectral vector w(𝑛) of basis matrix W, spectral
centroid 𝑐w, spectral standard deviation normalized by the
centroid 𝛽w, skewness skw, and kurtosis kuw are calculated
as follows, respectively:

𝑐w =
∑
𝑁

𝑖=1 𝑖w (𝑖)
∑
𝑁

𝑖=1 w (𝑖)
, (10)

where𝑁 is the dimension of w(𝑖),

𝛽w =
𝜎w
𝑐w
, (11)

where 𝜎w is the standard deviation of w(𝑖),

skw =
∑
𝑁

𝑖=1 [w (𝑖) − 𝐸 (w)]
3

(𝑁 − 1) 𝜎w3 , (12)

where 𝐸(w) is the mean of w(𝑛),

kuw =
∑
𝑁

𝑖=1 [w (𝑖) − 𝐸 (w)]
4

(𝑁 − 1) 𝜎4
. (13)

For feature extraction of temporal vectors, we calculate
several time domain parameters including the root of the
mean square (RMS) 𝜀h, standard deviation 𝜎h, skewness skh,
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Figure 3: NMF of three targets AGR matrices.

kurtosis kuh and shape factor sfh. The shape factor is defined
as follows:

sfh =
𝜀h

(1/𝑀)∑𝑀
𝑖=1 h (𝑖)

, (14)

where𝑀 is the dimension of h(𝑖).
There are nine T-F features proposed from the significant

T-F spectral and temporal components of a HRRP T-F
matrix. When 𝑟 = 10, both W matrix and H matrix are
composed of ten vectors.

5. HMM Classifier

We use HMMs as the classifier for SAR targets, whose states
represent the target orientation. Each of the states in the
HMM corresponds to a special cover of target orientations
and hence a special target feature varying with orientation.
Theparameters of theHMMspecify a statistical characteristic
of the target features. The number of HMM states needs to
be chosen large enough to model the variation of the special
range of target features but small enough to ensure that
enough training features are available.The angular resolution
corresponding to a state can be estimated from the ratio of
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Figure 4: Visible light images for 10-target in MSTAR database.

the range resolution to the maximum target dimension. For
MSTAR datasets, an angular resolution of 3∘ would thus lead
120 states in the HMM.

Let us assume that a target is partitioned into 𝐿 distinct
states, denoted by the set S = {𝑠1, 𝑠2, . . . , 𝑠𝐿}. As discussed
above, each state corresponds an azimuthal partitioning. The
state-transition probabilities of HMM are denoted by the
matrix A = {𝑎

𝑖𝑗
}, where 𝑎

𝑖𝑗
is the probability of transiting

from state 𝑖 to state 𝑗. Further, the initial-state probabilities
are denoted by the vector 𝜂 = {𝜂

𝑖
}, where 𝜂

𝑖
is the probability

of sampling state 𝑖 on the firstmeasurement. For the sequence
of HRR feature vectors, it is assumed that 𝛿𝜃 represents
the change in the target-sensor azimuthal orientation, upon
continuous measurements. Let 𝜃

𝑖
represent the azimuthal

angular range of state 𝑖. We assume 𝛿𝜃 < 𝜃
𝑖
, for all 𝑖,

implying that one of two continuous feature vectors may
stay in the same state or transition in an adjacent state. This
yields a tridiagonal state-transition matrix A. Based on the
previous assumptions with regard to 𝛿𝜃 and 𝜃

𝑖
, it can readily

be demonstrated the following estimations for 𝑎
𝑖𝑗
:

𝑎
𝑖,𝑖−1 = 𝑎𝑖,𝑖+1 =

𝛿𝜃

(2𝜃
𝑖
)
,

𝑎
𝑖,𝑖
=
(𝜃
𝑖
− 𝛿𝜃)

𝜃
𝑖

.

(15)

Moreover, it is assumed that initial target pose is uni-
formly distributed azimuthally, and we can have

𝜂
𝑖
=

𝜃
𝑖

∑
𝐿

𝑖=1 𝜃𝑖
. (16)

As discussed further below, (15) and (16) constitute initial
estimates for A and 𝜂, with these refined via Baum-Welch
training algorithm.

In order to identify a target from sequential feature
vectors, an HMM is designed for each target. A given set
of sequential feature vectors of test target data is submitted
to all HMMs and the likelihoods are computed. If the
𝑗th HMM yields the largest likelihood, then we declare

the sequential feature vectors are from the 𝑗th target. For
example, if we got the following observation sequence 𝜁 =
{𝜉1, 𝜉2, 𝜉3, . . . , 𝜉𝑀} that is associated with an unknown target
𝑇, then the probability of the observation sequence 𝜁 is given
by summing the joint probability 𝑃(𝜁 | S, 𝑇)𝑃(S | 𝑇) over all
possible state paths S:

𝑃 (𝜁 | 𝑇) = ∑
all 𝑠𝑖

𝑃 (𝜁 | 𝑠
𝑖
, 𝑇) 𝑃 (𝑠

𝑖
| 𝑇) . (17)

If the target 𝑇
𝑖
gives the maximum likelihood for the obser-

vation feature vector sequence 𝜁, that is,

𝑃 (𝜁 | 𝑇
𝑖
) ≥ 𝑃 (𝜁 | 𝑇

𝑘
) , ∀𝑇

𝑘
, (18)

then we declare the sequence 𝜁 to be from the target 𝑇
𝑖
.

For the SAR ATR problem considered here, continuous
HMMs are employed rather than discrete HMMs, because
the latter has the issue of well-known distortion inherent in
the quantization of feature vectors.

6. Experiments

6.1. Database and Evaluation Methodology. In this section,
we evaluate the classification performance of the proposed
approach using the MSTAR public database, which is a
standard dataset for evaluating ATR algorithms, consisting
of X-band SAR images with 1 ft × 1 ft resolution for multiple
targets [20, 21].These targets include several military vehicles
and a few civilian vehicles, and they have a very similar shape.
Some sample images are depicted in Figure 4with visible light
images. The data typically consist of image chips. For each
target, images were acquired at several different depression
angles over the full 360∘ aspect angles. These images have
been converted into sequences of HRR waveform through
several filtering operations as described in Section 2.

In the classification experiments, we analyze how the
HMM parameters affect the identification performance and
also explore how robust the proposed approach is to target
variable.
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Table 1: Confusion matrix for 10-target classification (3∘ aperture).

Test targets Recognized as Recognition rate (%)
BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 2S1

BMP2 168 1 4 2 0 6 12 0 1 1 86.15
BRDM2 5 249 6 8 1 1 2 1 2 1 90.87
BTR60 1 3 167 15 0 0 1 1 7 0 85.64
BTR70 1 6 22 163 0 2 0 1 0 0 83.16
D7 2 0 1 0 259 4 0 6 1 1 94.53
T62 1 8 3 7 1 233 12 5 2 2 85.35
T72 2 2 5 3 3 1 178 1 1 0 90.82
ZIL131 6 5 3 1 2 1 3 237 11 5 86.50
ZSU234 4 3 5 4 3 7 8 3 235 2 85.77
2S1 5 7 5 3 4 9 6 3 5 230 83.94
Average recognition rate (%) 87.27

Table 2: Confusion matrix for 10-target classification (6∘ aperture).

Test targets Recognized as Recognition rate (%)
BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 2S1

BMP2 177 1 3 1 0 5 6 0 1 1 90.76
BRDM2 2 267 1 2 0 1 0 1 0 0 97.45
BTR60 1 2 179 6 1 0 0 3 2 1 91.79
BTR70 1 1 8 180 0 2 0 1 0 3 91.84
D7 0 1 0 0 271 1 0 0 0 1 98.91
T62 1 3 3 2 1 258 3 0 2 0 94.51
T72 1 0 1 1 0 2 189 1 0 1 96.43
ZIL131 0 0 1 1 0 1 0 269 1 1 98.18
ZSU234 1 0 1 2 0 0 0 1 268 1 97.81
2S1 0 1 1 0 0 1 1 0 0 270 98.54
Average recognition rate (%) 95.62

6.2. HMM Training. For HMM-based classification used
here, there are many schemes of selecting the training
sequences. Here, we train the HMM from a long forward
sequence and a long backward sequence. A long forward
sequence is the sequence of feature vectors with azimuth
in ascending order while a long backward sequence is the
same feature vectors but with azimuth in descending order.
This arrangement captures all sequential information and
state statistics and yet allows fast training. An HMM is
trained using the training sequences from each of the ten
MSTAR targets and thus obtains ten different HMMmodels.
In the training, the Baum-Welch algorithm is employed to
reestimate theHMMparametersA and state density function
so that theHMMreflects the targetHRRPs scattering physics.
The initial state probability distribution 𝜂 is not reestimated
and remains as the geometric estimation. In essence, the
EM training can be viewed as an evolution of the state
decomposition; that is, as the training proceeds, each state has
more clearly defined boundaries.

The training set includes total 10-target SAR images at 17-
degree depression angle and is used to train ten HMMs.

6.3. HMM Classification. In the second stage of the HMM
classification, the unknown target feature vector sequences
are presented to the trained HMM models. For testing, we
use a separate set of SAR images of 10-target SAR images at
15-degree depression angle.

Table 1 shows the confusion-matrix of classifying all test
sequences of aperture 3 degrees from all the ten targets. We
find that theHMMwith the proposedNMF features yields an
average classification rate of 87.27%. InTable 2, the confusion-
matrix for 6-degree test sequences is shown. For the 6 degree
angular extent, an average classification rate of 95.62% is
obtained.The improvement of the classification performance
is due to the increased number of state transitions that can
occur in each test sequence.

Increasing the number of HMM states and Gaussian
mixtures theoretically results in a complex model that is
better able to model the target signature. However, if training
data is not sufficient relatively, HMM acquired by training
data will fail to generalize well to test data. Figure 5 shows
the test set correct recognition rate for the same 10-target
identification experiment using different number of HMM
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Figure 5: Comparison of correct recognition rate with 𝑆 = 30, 60, 120; 𝑤 = 1, 2 and 3.

states 𝑆 and Gaussian mixture components 𝑤. When 𝑆 = 60
the best performance is achieved with 𝑤 = 2 and degrades
for larger or smaller 𝑤 due to overtraining or insufficiently
modeling. So, in the remaining experiments we retained the
initial configuration of 𝑆 = 60 and 𝑤 = 2.

For comparison, we compare the proposed approach
with several state-of-the-art methods. The base line for the
SAR ATR performance comparison is the template matching
method [1]. For our approach, it can be seen that the correct
recognition rate of 95.6% is better than 91.8% by the template
matching method. However, it is noted that our method in
this paper does not require target pose estimation unlike
template matching.

The obtained recognition accuracy of the proposed
method is also competitive with the support vector machine
(SVM). In [20], on 3-class SAR ATR tasks they employed
SVM on SAR targets images to give the misclassification
error of 9.01%, worse than our results of 4.4% from Table 2.
For SAR ATR methods based on HRRPs, a comparison
can be made between the correct recognition rate of 92%
presented in the work of Liao et al. which used a Relax
feature extraction approach with a 10-target identification
experiment [5]. Another spectral feature extraction approach
achieved the correct recognition rate of 83.5% for SAR ATR
[6]. These clearly verify the superiority of the proposed
method.

6.4. Robustness to Variant Depression Angles. The robustness
of a recognition algorithm to depression angle is important to
the successful application of the algorithm for real scenarios,
where the test target images may have been acquired from
different depression angles. We will examine the invariance
to depression angle for the approach. Some statistics of the
variant depression angles dataset used in this experiment are
summarized in Table 3. This is a subset of the MSTAR public
database on 3 different targets (2S1, BRDM2, and ZSU234) at
4 different available depression angles (15∘, 17∘, 30∘, and 45∘).

Table 3: Variant depression angle dataset.

Depression angle BRDM2 ZSU234 2S1
Train 17∘ 298 299 299

Test
15∘ 274 274 274
30∘ 287 288 288
45∘ 303 288 288

The data collected at depression angle 17∘ are utilized for
training and other data for testing. The classification results
are summarized in Table 4. As can be seen from Table 4,
the approach performs robust when there is a large change
in depression angle (e.g., from 15∘ to 30∘). However, when
the change is very large, the performances of the approach
decrease due to the drastic change of the target signatures.

7. Conclusions

This paper has presented a novel feature extraction method
for SAR ATR based on HRRP sequences, which achieves
excellent performance on the MSTAR database. The method
characterizes the target HRRP time-frequency signature by
AGR and NMF. First, the AGR is applied to each HRRP
to acquire the corresponding time-frequency matrix. Then,
target time-frequency features are extracted by NMF.The use
of the AGR can be accurately represented by one HRRP’s
complex electromagnetic signature in the time-frequency
domain, which gets a time-frequency matrix. And the use of
NMF technique can get remarkable features extracted from
the time-frequency matrix. When performing classification
using HMMs, the target poses are unknown.

The approach was tested under MSTAR public release
datasets. Through experiments, an average correct classifi-
cation rate of 95% was achieved on a 10-target classification
task. It was assessed how the performance is affected by the
number of HMM states and the number of Gaussian mixture
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Table 4: Recognition results with variant depression angles dataset.

Depression angle Individual correct recognition rate (%) Average correct recognition rate (%)
BRDM2 ZSU234 2S1

15∘ 99.3 100.0 100.0 99.8
30∘ 92.1 96.5 95.8 94.8
45∘ 71.8 74.5 76.7 74.3

components.The robustness to variant depression angles was
also tested.

In summary, several experiments and the high classifica-
tion accuracies achieved by the proposed technique clearly
demonstrated the potential for radar target HRRP feature
extraction and SAR ATR.
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