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As a space-filling method, Voronoi Treemaps are used for showcasing hierarchies. Previously presented algorithms are limited
to visualize nonspatial data. The approach of spatial Voronoi Treemaps is proposed in this paper to eliminate these problems by
enabling the subdivisions for points, lines, and polygonswith spatial coordinates and references.The digital distance transformation
is recursively used to generate nested raster Voronoi polygons while the raster to vector conversion is used to create a vector-based
Treemap visualization in a GIS (geographic information system) environment. The objective is to establish a spatial data model to
better visualize and understand the hierarchies in the geographic field.

1. Introduction

As a well-known approach of visualizing hierarchical struc-
tures, Treemaps use recursive subdivision algorithms to
partition an 𝑛-dimensional plane into the nested regions
without producing holes or overlaps. The size of each region
corresponds to the value of a data element and the nesting
depth represents the depth of the data element in the
corresponding hierarchical data structure [1]. Treemaps were
first presented by Johnson and Shneiderman in 1991 designed
to visualize the files on a hard drive [2]. Nowadays, they have
beenwidely applied to a variety of domains, such as the sports
reporting [3], the photo management [4], the business data
visualization [5], and the repository search visualization [6].

Previously presented Treemap algorithms mainly focus
on displaying hierarchical data using the nested rectangles,
such as Slice-and-Dice Treemaps [7], Squarified Treemaps
[8], Strip Treemaps [4], Spiral Treemaps [9], and Spatially
Ordered Treemaps [10]. They have one thing in common:
their branches are all given rectangles which are tiled with
smaller rectangles in accordance with their respective gen-
eration norms. Subsequently, approaches to visualize the
hierarchies with the nonrectangular regions were addressed,
such as Voronoi Treemaps [11, 12], Jigsaw Treemaps [13], and
Circular Treemaps [14].

Voronoi Treemaps enable the two-dimensional subdi-
visions of the arbitrary polygons following the norms of
Treemaps and Voronoi diagrams within the areas of arbitrary
shapes. Since introduced by Balzer and Deussen [11, 12] to
visualize the software metrics, they have been used in many
applications ranging from the biodiversity exhibition [15] to
the gene expression [16]. But they are rarely used in the field
of geography, let alone integrated with the mainstream GIS
software. For better integration of Voronoi Treemaps and
GIS, we present an approach of generating spatial Voronoi
Treemaps for points, lines, and polygons to better visualize
the hierarchies in the geographic field. For simplicity, we use
the term “SVT” for the spatial Voronoi Treemaps for points,
lines, and polygons; except explicit specification is made.

In Section 2, the principles of the SVT and the relevant
concepts are introduced. Section 3 elaborates the imple-
mentation of the layout algorithm. Section 4 shows several
examples. Discussions and the conclusions are given in
Section 5.

2. Preliminary Knowledge

The SVT is a visualization method to create geographical
map-like representations of trees with ordinary or weighted
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Figure 1: An SVT and its corresponding tree.

Voronoi polygons (or called cells) from a set of generators,
such as points, lines, and polygons. As is shown in Figure 1,
an SVT is composed of nested cells and their corresponding
generators. A level 𝑖 cell contains all level 𝑖 + 1 generators that
are closer to that level 𝑖 generator than to any other (e.g., a
level 1 cell 𝑉(𝑒

1
) contains three level 2 generators 𝑒

4
, 𝑒
5
, and

𝑒
6
). Each cell in the hierarchy has a size that is the sum size

of its contained leaf cells (e.g., the size of 𝑉(𝑒
1
) is equal to

the total size of 𝑉(𝑒
4
), 𝑉(𝑒

5
), and 𝑉(𝑒

6
)) and a depth that

corresponds to its contained generator’s depth. The initial
boundary of all generators is regarded as the root node, which
has an arbitrary shape, mostly a rectangle.

As a combination of Voronoi Treemaps and Voronoi
diagrams, the SVT is motivated by the work of Balzer and
Deussen on Voronoi Treemaps [11, 12] and the work of Dong
onmultiplicativelyweightedVoronoi diagrams for point, line,
and polygon features [17]. Traditional Voronoi Treemaps con-
sist of nested cells without spatial information. Differently,
the nested cells and their corresponding generators, both of
which have spatial coordinates and references, are used by our
proposed Treemap layout to express hierarchies. Generators
can represent various kinds of geographic objects, such as
cities, railways, and lakes, and cells are their corresponding
dominant areas. Voronoi Treemap algorithms usually use
centroidal Voronoi tessellations to create nested polygonal
structures. In each recursion step, generators are generated
randomly and shift to the center of mass of its cell using
Lloyd’s method [18], whereas generators of different levels are
preset and fixed for an SVT. At each recursive subdivision
step, the cells are subdivided into smaller polygons from the
generators contained within.

Generators can be obtained from the files in shapefile
format for an SVT. The shapefile format is a popular geospa-
tial vector data format for GIS software, which is developed
and regulated by Environmental Systems Research Institute
(ESRI) as an open specification for data interoperability
among GIS software products. It can describe vector spatial
features (points, lines, and polygons) with spatial coordi-
nates and references. Each feature commonly has attributes
to describe itself, such as the name and the location. To
clearly convey the idea of the SVT, several key concepts are
introduced first.

2.1. Relevant Definitions

Definition 1 (see [19]). Let𝑝 be a point and let 𝑒 be a generator
(a point, line, or polygon) in 𝑅2; the distance between 𝑝 and
𝑒 is defined as below:

𝑑 (𝑝, 𝑒) = inf {𝑑 (𝑝, 𝑞) | 𝑞 ∈ 𝑒} , (1)

where the denotation 𝑑(𝑝, 𝑞) represents a specified distance
function between two points 𝑝(𝑥

𝑝
, 𝑦
𝑝
) and 𝑞(𝑥

𝑞
, 𝑦
𝑞
); mostly

the Euclidian metric is used, which is defined as

𝑑
𝑒
(𝑝, 𝑞) = √(𝑥

𝑝
− 𝑥
𝑞
)

2
+ (𝑦
𝑝
− 𝑦
𝑞
)

2
, (2)

but others, such as the Manhattan metric or the Chessboard
metric, are possible as well.

The Manhattan metric is

𝑑
𝑚
(𝑝, 𝑞) =






𝑥
𝑝
−𝑥
𝑞






+






𝑦
𝑝
−𝑦
𝑞






. (3)

The Chessboard metric is

𝑑
𝑐
(𝑝, 𝑞) = max (


𝑥
𝑝
−𝑥
𝑞






,






𝑦
𝑝
−𝑦
𝑞






) . (4)

In vector mode, 𝑥
𝑝
and 𝑥

𝑞
are 𝑥-coordinates and 𝑦

𝑝

and 𝑦
𝑞
are 𝑦-coordinates. In raster mode, the coordinates

are defined by integer numbers of row and column of raster
pixels. Figure 2 shows three distance metrics in raster mode.

Definition 2. Let 𝐸 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
} be a set of 𝑛 distinct

generators in 𝑅2. For each 𝑒
𝑖
∈ 𝐸, a weight 𝑤(𝑒

𝑖
) is assigned.

A weighted Voronoi diagram for points, lines, and polygons
𝑉(𝐸, 𝑤(𝐸)) = {𝑉(𝑒

1
, 𝑤(𝑒
1
)), 𝑉(𝑒

2
, 𝑤(𝑒
2
)), . . . , 𝑉(𝑒

𝑛
, 𝑤(𝑒
𝑛
))}

denotes a subdivision of 𝑅2 into 𝑛 cells with a property that a
point𝑝 lies in a cell𝑉(𝑒

𝑖
) if and only if𝑑

𝑚𝑤
(𝑝, 𝑒
𝑖
) < 𝑑
𝑚𝑤
(𝑝, 𝑒
𝑗
)

for each 𝑒
𝑖
, 𝑒
𝑗
∈ 𝐸 with 𝑖 ̸= 𝑗. The notation 𝑑

𝑚𝑤
(𝑝, 𝑒
𝑖
) is

defined as

𝑑
𝑚𝑤

(𝑝, 𝑒
𝑖
) =

𝑑 (𝑝, 𝑒
𝑖
)

𝑤 (𝑒
𝑖
)

, 𝑤 (𝑒
𝑖
) > 0. (5)

If 𝑤(𝑒1) = 𝑤(𝑒2) = ⋅ ⋅ ⋅ = 𝑤(𝑒
𝑛
), 𝑉(𝐸, 𝑤(𝐸)) is reduced to

an ordinary Voronoi diagram for points, lines, and polygons
𝑉(𝐸) = {𝑉(𝑒1), 𝑉(𝑒2), . . . , 𝑉(𝑒𝑛)}.
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Figure 2: The Euclidean, Manhattan, and Chessboard distance in raster mode. (a) A raster region of 𝑑
𝑒
≤ 3, (b) a raster region of 𝑑

𝑚
≤ 3,

and (c) a raster region of 𝑑
𝑐
≤ 3.

Definition 3. Let 𝑉(𝐸, 𝑤(𝐸)) = {𝑉(𝑒
1
, 𝑤(𝑒
1
)), 𝑉(𝑒

2
, 𝑤(𝑒
2
)),

. . . , 𝑉(𝑒
𝑛
, 𝑤(𝑒
𝑛
))} be a weighted Voronoi diagram for points,

lines, and polygons. 𝑉(𝑒
𝑖
, 𝑤(𝑒
𝑖
)) denotes the cell of the

generator 𝑒
𝑖
with a positive real weight 𝑤(𝑒

𝑖
). If there are any

weighted Voronoi diagrams 𝑉(𝐹
𝑖
, 𝑤(𝐹
𝑖
)) = {𝑉(𝑓

𝑥
, 𝑤(𝑓
𝑥
)) |

𝑉(𝑓
𝑥
, 𝑤(𝑓
𝑥
)) ⊂ 𝑉(𝑒

𝑖
, 𝑤(𝑒
𝑖
)), 𝑓
𝑥
∈ 𝑉(𝑒

𝑖
, 𝑤(𝑒
𝑖
)), 1 ≤ 𝑥 < ∞,

1 ≤ 𝑖 ≤ 𝑛} which could meet the criteria ∑𝑉(𝑓
𝑥
, 𝑤(𝑓
𝑥
))

≡ 𝑉(𝑒
𝑖
, 𝑤(𝑒
𝑖
)), then the expression 𝑉(𝐸, 𝑤(𝐸)) = {𝑉(𝐹

1
,

𝑤(𝐹
1
)), 𝑉(𝐹

2
, 𝑤(𝐹
2
)), . . . , 𝑉(𝐹

𝑛
, 𝑤(𝐹
𝑛
))} is called a weighted

SVT. Regardless of weights of generators, the expression
𝑉(𝐸) = {𝑉(𝐹

1
), 𝑉(𝐹

2
), . . . , 𝑉(𝐹

𝑛
)} is named as an ordinary

SVT. A weighted SVT is a special case of the ordinary
SVT that takes weights into consideration. Both of them are
collectively called the SVT.

2.2. Distance Transformation. It can be known from the
above contents that an SVT consists of layers of ordinary or
weighted Voronoi diagrams for points, lines, and polygons.
To construct an SVT, we need to generate its compositions
first. The Voronoi diagram or weighted Voronoi diagram
algorithms can be divided into two categories: vector-based
methods and raster-based methods. Vector-based methods
are suitable for point sets but not good for line and area
sets. By contrast, the computation of Voronoi diagrams or
weightedVoronoi diagrams for line andpolygon sets is as easy
as that for point sets in rastermode. Computation via distance
transformation is one of the important raster-basedmethods.

A distance transformation is a derived form of a digital
image. Supposing that the digital binary image consists of



4 Journal of Electrical and Computer Engineering

Input: a set of 𝑛 generators 𝐸 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
}meeting the criteria that each 𝑒

𝑘
∈ 𝐸 corresponds to an

unique identifier 𝑖(𝑒
𝑘
), a level 𝑙(𝑒

𝑘
) and a weight 𝑤(𝑒

𝑘
) with 𝑖(𝑒

𝑘
) > 0, 𝑤(𝑒

𝑘
) > 0 and 𝑙(𝑒

𝑘
) = 1, 2, . . . , ℎ;

𝑉
0
: the boundary of 𝐸; Height: the number of rows of the output image;Width: the number of columns of the output image
Output: an SVT {𝑉

1
, 𝑉
2
, . . . , 𝑉

ℎ
}

Begin
𝑧 =Width × Height
initialize 𝐶: a set of 𝑧 pixels for 𝑉

0

ℎ = max(𝑙(𝑒
1
), 𝑙(𝑒
2
), . . . , 𝑙(𝑒

𝑛
)) %Get the maximum level value of 𝐸

for 𝑖 := 1; step 1 until ℎ do
initialize 𝐺

𝑖
: a set of 𝑧 pixels for 𝑉

𝑖

𝐸
𝑖
= GetLevelGenerators(𝐸, 𝑖) %𝐸

𝑖
: an array for level 𝑖 set of generators.

PixelsAssignment(𝐺
𝑖
, 𝐸
𝑖
)

count = 0
while (𝑐𝑜𝑢𝑛𝑡 ̸= 𝑧) do
PixelsTransformation(𝐺

𝑖
)

PixelsUpdate(𝐺
𝑖
, 𝑐𝑜𝑢𝑛𝑡)

endwhile
𝐶 = 𝐺

𝑖

TreemapExport(𝐺
𝑖
)

endfor
End

Algorithm 1: SVT subdivision.

feature and nonfeature pixels and the features can be points,
lines, or polygons, the distance transformation is an operator
that converts this binary image to a grey-level image where
all pixels have a value corresponding to the distance to the
nearest feature pixel [20]. It uses only a structuring mask
at a time based on the following idea: global distances in
the image are approximated by propagating local distances
[20]. There are various types of distance transformations,
depending on which distance metric is used to determine
the distance between pixels. In this paper, three most basic
metrics are used. They are the Manhattan metric (a cross
shaped mask), the Chessboard metric (a 3 × 3 square mask),
and the Euclidean metric.

In a digital space, the fulfillment of Euclidean geometry
is a complex operation due to the discrete structure [21]. In
order to get a better approximation of Euclidean distance
transformation, several approaches are proposed, such as
chamfer distance algorithms [20], sequence algorithms [22,
23], and parallel algorithms [24]. To simplify the calculation,
octagonal distance is used to approximate Euclidean distance
transformation, which is an alternate usage of Chessboard
distance and Manhattan distance [20]. It needs to point out
that it is not our intention to acquire a better approximation
of Euclidean distance transformation. Such discussions will
be encouraged following this paper.

3. The SVT Algorithm

The SVT uses a recursive layout algorithm to segment a two-
dimensional plane into nested cells from a set of generators.
Generators can be points, lines, and polygons that represent
different forms of spatial objects in the real world, among
which points are abstracted as their locations, lines represent
their skeletons, and polygons depict their boundaries. Each

generator is assigned two initial parameters. One is “level”
that represents generator’s hierarchy and the other is “weight”
that reflects generator’s certain property.

The construction of SVTs is as follows: first, classify
generators into different sets in accordance with their level
values. Then, regard the initial boundary and its contained
level 1 set of generators as a digital image and process it
via distance transformation. The output is a set of raster
cells, which makes up a raster ordinary or weighted Voronoi
diagram of level 1. For the next hierarchy level, this procedure
is performed recursively for all level 𝑖 + 1 generators within
respective level 𝑖 cells. When the recursion ends, converting
the digital images to vector files and overlaying them, a
complete layout of SVT is obtained.

For simplicity, let 𝑉
𝑖
represent an ordinary Voronoi dia-

gram𝑉(𝐸) or aweightedVoronoi diagram𝑉(𝐸,𝑤(𝐸)) of level
𝑖 in the hierarchy, and let 𝑉

𝑖
(𝑗) denote an ordinary Voronoi

region𝑉
𝑖
(𝑒
𝑗
) or a weighted Voronoi region𝑉

𝑖
(𝑒
𝑗
, 𝑤(𝑒
𝑗
)) of 𝑒

𝑗
;

except explicit specification is made in this section.
In Algorithm 1, 𝐶 is a set of 𝑧 pixels determined by

𝑉
0
, Width, and Height. Each pixel 𝑐

𝑗
∈ 𝐶 corresponds to

five properties: an identifier 𝑖
𝑐
(𝑐
𝑗
), an identifier of the father

node 𝑖
𝑓
(𝑐
𝑗
), an original transformation speed 𝑡

𝑜
(𝑐
𝑗
), a current

transformation speed 𝑡
𝑐
(𝑐
𝑗
), and a status 𝑠(𝑐

𝑗
). Consider

𝑠(𝑐
𝑗
) ∈ {−1, 0, 1}, where “𝑠(𝑐

𝑗
) = −1” signifies that 𝑐

𝑗
is

waiting to be processed, “𝑠(𝑐
𝑗
) = 0” represents that 𝑐

𝑗
is being

processed, and “𝑠(𝑐
𝑗
) = 1” denotes that pixel 𝑐

𝑗
has been

processed. While initializing 𝐶 for an ordinary SVT, define
𝑖
𝑐
(𝑐
𝑗
) = −1, 𝑖

𝑓
(𝑐
𝑗
) = −1, and 𝑠(𝑐

𝑗
) = −1 for each 𝑐

𝑗
∈ 𝐶.

While initializing 𝐶 for a weighted SVT, define 𝑖
𝑐
(𝑐
𝑗
) = −1,

𝑖
𝑓
(𝑐
𝑗
) = −1, 𝑠(𝑐

𝑗
) = −1, 𝑡

𝑜
(𝑐
𝑗
) = 0, and 𝑡

𝑐
(𝑐
𝑗
) = 0 for each

𝑐
𝑗
∈ 𝐶. 𝐺

𝑖
is a set of 𝑧 pixels for 𝑉

𝑖
, in which each 𝑔

𝑗
∈ 𝐺
𝑖

has the same properties as 𝑐
𝑗
in 𝐶. While initializing 𝐺

𝑖
for

an ordinary SVT, define 𝑖
𝑐
(𝑔
𝑗
) = −1, 𝑖

𝑓
(𝑔
𝑗
) = 𝑖

𝑐
(𝑐
𝑗
), and
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Input: a set of 𝑛 generators 𝐸 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
}, a level value 𝑖

Output: the level 𝑖 set of generators 𝐸
𝑖

Begin
Initialize an array 𝐸

𝑖
for the level 𝑖 set of generators.

for 𝑗 := 1; step 1 until 𝑛 do
if (𝑙(𝑒

𝑗
) = 𝑖) then

𝐸
𝑖
← 𝑒
𝑗
%add 𝑒

𝑗
to 𝐸
𝑖

endif
endfor
End

Algorithm 2: GetLevelGenerators().

(a)
Input: a set of𝑚 generators 𝐸

𝑖
= {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑚
}, a set of pixels 𝐺

𝑖
= {𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑧
}

Output: a set of pixels 𝐺
𝑖
= {𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑧
}

Begin
for 𝑗 := 1; step 1 until 𝑧 do

for 𝑘 := 1; step 1 until 𝑚 do
if (𝑔
𝑗
∩ 𝑒
𝑘

̸= {}) then
𝑖
𝑐
(𝑔
𝑗
) = 𝑖(𝑒

𝑘
)

𝑠(𝑔
𝑗
) = 0

endif
endfor

endfor
End

(b)
Input: a set of𝑚 generators 𝐸

𝑖
= {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑚
}, a set of pixels 𝐺

𝑖
= {𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑧
}

Output: a set of pixels 𝐺
𝑖
= {𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑧
}

Begin
maxweight = max(𝑤(𝑒

1
), 𝑤(𝑒

2
), . . . , 𝑤(𝑒

𝑚
)) %Get the maximum weight of 𝐸

𝑖

for 𝑗 := 1; step 1 until 𝑧 do
for 𝑘 := 1; step 1 until 𝑚 do

if (𝑔
𝑗
∩ 𝑒
𝑘

̸= {}) then
𝑖
𝑐
(𝑔
𝑗
) = 𝑖(𝑒

𝑘
)

𝑡
𝑜
(𝑔
𝑗
) = 𝑤(𝑒

𝑘
)/𝑚𝑎𝑥𝑤𝑒𝑖𝑔ℎ𝑡

𝑡
𝑐
(𝑔
𝑗
) = 𝑡
𝑜
(𝑔
𝑗
)

𝑠(𝑔
𝑗
) = 0

endif
endfor

endfor
End

Algorithm 3: (a) PixelsAssignment() for an ordinary SVT. (b) PixelsAssignment() for a weighted SVT.

𝑠(𝑔
𝑗
) = −1 for each 𝑔

𝑗
∈ 𝐺
𝑖
. While initializing 𝐺

𝑖
for a

weighted SVT, define 𝑖
𝑐
(𝑔
𝑗
) = −1, 𝑖

𝑓
(𝑔
𝑗
) = 𝑖
𝑐
(𝑐
𝑗
), 𝑠(𝑔
𝑗
) = −1,

𝑡
𝑜
(𝑔
𝑗
) = 0, and 𝑡

𝑐
(𝑔
𝑗
) = 0 for each 𝑔

𝑗
∈ 𝐺
𝑖
. 𝐸
𝑖
is a subset of

𝐸 with 𝑙(𝑒
𝑘
) = 𝑖 for each 𝑒

𝑘
∈ 𝐸
𝑖
, which is obtained from the

function GetLevelGenerators(). count is the number of pixels
with 𝑠(𝑔

𝑗
) = 1 in 𝐺

𝑖
, which is obtained from the function

PixelsUpdate().
The function GetLevelGenerators() (Algorithm 2) is to

acquire a level 𝑖 set of generators from 𝐸.
A weighted SVT subdivides the two-dimensional space

recursively with consideration of both location and weight

of each generator, while an ordinary SVT partitions space
only considers generator’s location. The different division
approaches necessitate a different handling of the auxiliary
functions PixelsAssignment() and PixelsTransformation() in
Algorithm 1.

The function PixelsAssignment() ( Algorithm 3) is to
assign values of generators to pixels correspondingly if pixels
intersect with generators in the two-dimensional raster space,
which is a vector to raster conversion of spatial objects in
essence. Specifically speaking, assign 𝑖(𝑒

𝑘
) to 𝑖
𝑐
(𝑔
𝑗
) and set

𝑠(𝑔
𝑗
) to 0 if a pixel 𝑔

𝑗
intersects with a generator 𝑒

𝑘
. In
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(a)
Input: a set of pixels 𝐺

𝑖
= {𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑧
}

Output: a set of pixels 𝐺
𝑖
= {𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑧
}

Begin
for 𝑗 := 1; step 1 until 𝑧 do

if (𝑠(𝑔
𝑗
) = 0) then

initialize 𝑅: a set of 𝑥 pixels around 𝑔
𝑗

for 𝑘 := 1; step 1 until 𝑥 do
if (𝑖
𝑐
(𝑟
𝑘
) < 0 & 𝑖

𝑓
(𝑟
𝑘
) = 𝑖
𝑓
(𝑔
𝑗
)) then

𝑖
𝑐
(𝑟
𝑘
) = 𝑖
𝑐
(𝑔
𝑗
)

endif
endfor
𝑠(𝑔
𝑗
) = 1

endif
endfor
End

(b)
Input: a set of pixels 𝐺

𝑖
= {𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑧
}

Output: a set of pixels 𝐺
𝑖
= {𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑧
}

Begin
for 𝑗 := 1; step 1 until 𝑧 do

if (𝑠(𝑔
𝑗
) = 0) then

𝑡
𝑐
(𝑔
𝑗
) = 𝑡
𝑜
(𝑔
𝑗
) + 𝑡
𝑐
(𝑔
𝑗
)

if (𝑡
𝑐
(𝑔
𝑗
) ≥ 1) then

initialize 𝑅: a set of 𝑥 pixels around 𝑔
𝑗

for 𝑘 := 1; step 1 until 𝑘 do
if (𝑖
𝑐
(𝑟
𝑘
) < 0 & 𝑖

𝑓
(𝑟
𝑘
) = 𝑖
𝑓
(𝑔
𝑗
)) then

𝑖
𝑐
(𝑟
𝑘
) = 𝑖
𝑐
(𝑔
𝑗
)

𝑡
𝑜
(𝑟
𝑘
) = 𝑡
𝑜
(𝑔
𝑗
)

𝑡
𝑐
(𝑟
𝑘
) = 𝑡
𝑐
(𝑔
𝑗
) − 1

endif
endfor
𝑠(𝑔
𝑗
) = 1

endif
endif

endfor
End

Algorithm 4: (a) PixelsTransformation() for an ordinary SVT. (b)
PixelsTransformation() for a weighted SVT.

addition, 𝑡
𝑜
(𝑔
𝑗
) is set to 𝑤(𝑒

𝑘
)/max(𝑤(𝐸

𝑖
)) for a weighted

SVT. It can be known that 𝑡
𝑜
(𝑔
𝑗
) ∈ (0, 1], which determines

the speed of distance transformation of pixel 𝑔
𝑗
. 𝑡
𝑐
(𝑔
𝑗
) is

an accumulator of 𝑡
𝑜
(𝑔
𝑗
). In this function, define 𝑡

𝑐
(𝑔
𝑗
) =

𝑡
𝑜
(𝑔
𝑗
). Figures 3(a) and 3(b) describe the variations of pixel

properties for a weighted SVT after executing the function
PixelsAssignment().

The function PixelsTransformation() (Algorithm 4) is to
create a raster Voronoi diagram orweightedVoronoi diagram
via distance transformation. For an ordinary SVT, each pixel
𝑔
𝑗
with 𝑠(𝑔

𝑗
) = 0 will propagate in each loop in accordance

with a structuring mask 𝑅, which can be a cross shaped mask
(theManhattanmetric), a 3 × 3 square mask (the Chessboard
metric), a disk shaped mask (the Euclidean metric), and so
forth. Once a pixel 𝑔

𝑗
propagates, its state 𝑠(𝑔

𝑗
) will change

to 1, which means that this pixel will cease to be processed in

Input: a set of pixels 𝐺
𝑖
= {𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑧
}, count

Output: a set of pixels 𝐺
𝑖
= {𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑧
}, count

Begin
for 𝑗 := 1; step 1 until 𝑧 do

if (𝑖
𝑐
(𝑔
𝑗
) > 0) then

if (𝑠(𝑔
𝑗
) = −1) then

𝑠(𝑔
𝑗
) = 0

endif
if (𝑠(𝑔

𝑗
) = 1) then

count ++
endif

endif
endfor
End

Algorithm 5: PixelsUpdate().

the next loop. If 𝑔
𝑗
’s neighbor 𝑥 pixels 𝑟

𝑘
(𝑘 ∈ [1, 𝑥]) own the

same father node with 𝑔
𝑗
(𝑖
𝑓
(𝑟
𝑘
) = 𝑖
𝑓
(𝑔
𝑗
)) and have not been

processed (𝑖
𝑐
(𝑟
𝑘
) < 0), assign 𝑖

𝑐
(𝑔
𝑗
) to 𝑖
𝑐
(𝑟
𝑘
).

For a weighted SVT, we use the property 𝑡
𝑐
(𝑔
𝑗
) to control

whether a pixel 𝑔
𝑗
with 𝑠(𝑔

𝑗
) = 0 propagates in each loop.

If 𝑡
𝑐
(𝑔
𝑗
) is less than an established threshold, it continues to

execute accumulation. Once it exceeds the threshold, 𝑔
𝑗
will

propagate and its state 𝑠(𝑔
𝑗
) will change to 1. In Algorithm 4,

as the maximum of original transformation speed is 1, so the
threshold is set to 1. If 𝑔

𝑗
’s neighbor 𝑥 pixels 𝑟

𝑘
(𝑘 ∈ [1, 𝑥])

own the same father node with 𝑔
𝑗
(𝑖
𝑓
(𝑟
𝑘
) = 𝑖
𝑓
(𝑔
𝑗
)) and have

not been processed (𝑖
𝑐
(𝑟
𝑘
) < 0), the properties of 𝑟

𝑘
will be

assigned as follows: 𝑖
𝑐
(𝑟
𝑘
) = 𝑖
𝑐
(𝑔
𝑗
), 𝑡
𝑜
(𝑟
𝑘
) = 𝑡
𝑜
(𝑔
𝑗
) and 𝑡

𝑐
(𝑟
𝑘
) =

𝑡
𝑐
(𝑔
𝑗
)−1. It can be known fromAlgorithm 4 that a pixel with a

higher original transformation speed owns a higher priority
to execute distance transformation. For example, a pixel 𝑔

𝑎

with 𝑡
𝑜
(𝑔
𝑎
) = 1 will propagate every time and a pixel 𝑔

𝑏
with

𝑡
𝑜
(𝑔
𝑏
) = 0.5 will propagate every two times. From the point

of view of vector space, it means that a generator with a bigger
weight will dominate more area. Figures 3(d), 3(e), and 3(f)
describe the first three steps of distance transformation for
a raster layer of a weighted SVT and the variations of pixel
properties.

The function PixelsUpdate() (Algorithm 5) is to update
the status of pixels and calculate the parameter count. In each
loop, if a pixel 𝑔

𝑗
has been assigned values by a neighbor pixel

(𝑖
𝑐
(𝑔
𝑗
) > 0) yet has not executed distance transformation

(𝑠(𝑔
𝑗
) = −1), set 𝑠(𝑔

𝑗
) to 0, which means that this pixel will

participate in the next distance transformation. Figures 3(c)
and 3(d) show an instance of the function PixelsUpdate() and
the variations of pixel properties.

The function TreemapExport() specifies the output
mode of SVTs: for each level set of generators 𝐸

𝑖
=

{𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑚
} (𝑖 = 1, 2, . . . , ℎ), a level 𝑖 set of pixels 𝐺

𝑖
=

{𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑧
} that represents a raster ordinary or weighted

Voronoi diagram for points, lines, and polygons is exported
correspondingly. Pixels that have the same identifier will
be converted to a vector ordinary or weighted Voronoi
polygon 𝑉

𝑖
(𝑗) (𝑗 = 1, 2, . . . , 𝑚) through a raster to vector

conversion. Then, a vector file in shapefile format 𝑉
𝑖
with
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Figure 3: The core process of the subdivision for a raster layer of a weighted SVT: (a) three generators 𝑒
1
, 𝑒
2
, and 𝑒

3
within a 10 × 10 binary

image, where 𝑒
1
is a square with 𝑤(𝑒

1
) = 10, 𝑒

2
is a line with 𝑤(𝑒

2
) = 6, and 𝑒

3
is a point with 𝑤(𝑒

3
) = 4; (b) pixels assignment for 𝑒

1
,

𝑒
2
, and 𝑒

3
. A pixel 𝑔

𝑗
(𝑗 = 1, 2, . . . , 100) will be marked with a sign “𝑡

𝑐
(𝑔
𝑗
)/𝑠(𝑔
𝑗
)” if it intersects with a generator, in which 𝑡

𝑐
(𝑔
𝑗
) is the

current transformation speed of the pixel and 𝑠(𝑔
𝑗
) is the status. Blank pixels are marked with “0/ − 1” in default. (c)TheManhattan distance

transformation for 𝑒
1
, 𝑒
2
, and 𝑒

3
for the first time. If 𝑡

𝑐
(𝑔
𝑗
) < 1, it continues to execute accumulation, else 𝑔

𝑗
will propagate and 𝑠(𝑔

𝑗
) will

change to 1. (d) Pixels update for 𝑒
1
, 𝑒
2
, and 𝑒

3
for the first time. The state 𝑠(𝑔

𝑗
) of the pixel 𝑔

𝑗
will change to 0 if 𝑔

𝑗
has been assigned values

yet has not executed distance transformation (𝑠(𝑔
𝑗
) = −1). (e) TheManhattan distance transformation and pixels update for 𝑒

1
, 𝑒
2
, and 𝑒

3
for

the second time. (f) The Manhattan distance transformation and pixels update for 𝑒
1
, 𝑒
2
, and 𝑒

3
for the third time.
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Figure 4: Different types of SVTs. (a) An ordinary SVT for points based on the Manhattan metric; (b) an ordinary SVT for lines based on
Chessboard metric; (c) a weighted SVT for polygons based on the Euclidean metric; (d) a weighted SVT for points, lines, and polygons based
on the Euclidean metric.

spatial coordinates and references can be obtained. Overlay-
ing 𝐸
1
, 𝐸
2
, . . . , 𝐸

ℎ
with𝑉

1
, 𝑉
2
, . . . , 𝑉

ℎ
, we can construct a final

hierarchical layout suitable for GIS environment.

4. Examples

Four Treemap layouts shown in Figure 4, respectively, use
the data set with 200, 130, 100, and 130 generators that are

randomly generated without spatial references at 4 hierarchy
levels. Figure 4(a) is an ordinary SVT for points based on the
Manhattan metric; Figure 4(b) is an ordinary SVT for lines
based on the Chessboard metric; Figure 4(c) is a weighted
SVT for polygons based on the Euclidean metric; Figure 4(d)
is a weighted SVT for points, lines, and polygons based on
the Euclidean metric. Different legend symbols represent
different sets of generators. Border thickness expresses the
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Table 1: Urban hierarchy by population in China.

Category Population size The number of cities Level
Mega ≥10,000,000 13 1
Macro 5,000,000–10,000,000 76 2
Large/Middle/Micro 0–5,000,000 253 3

different levels of cells. The coarser boundaries indicate a
higher hierarchical level of cells in the Treemap layout.

We implemented the SVT algorithm in C# and used
ArcGIS Engine (a complete library of embeddable GIS com-
ponents) to read shapefile and execute conversions between
vector and raster data. The hardware of our experiments is
an Intel Pentium Dual-Core E5800 3.2GHz and 4G RAM,
running under MicrosoftWindows 7. In this experiment, the
program is running in single thread mode using one core of
the CPU.The computations of four layouts shown in Figure 4
require 1.80min, 1.88min, 1.99min, and 2.13min, respec-
tively. For many GIS applications, the speed is acceptable.

To better visualize the spatial hierarchies in the real world,
we use the SVT to express the spatial pattern of the population
landscape as shown in Figure 5, which is motivated by
the research of Mu and Wang [25]. The point generators
are abstracted as the locations of cities that are municipal
level and above in China (342 cities in all, not including
Zhoushan, Hong Kong, Macau, the Hainan Province, and
Taiwan Province of China). The boundary is the inland
border of China. They are, respectively, obtained from a
point file and a polygon file in shapefile format at a scale of
1 : 100,000, that is, the Lambert projection-based maps.

According to [25], we only choose population as the
weight of each city. The population data were obtained
from the Tabulation on the 2010 Population Census of
the People’s Republic of China by Township. In China,
cities can be divided into five categories based on the
urban concentration of the population. They are “Mega”
city, “Macro” city, “Large” city, “Middle” city, and “Micro”
city. Their population sizes are “10,000,000 and above,”
“5,000,000–10,000,000,” “1,000,000–5,000,000,” “500,000–
1,000,000,” and “1–500,000,” respectively. As the proportion
of “Middle” and “Micro” city is small (“Mega”: 13, “Macro”:
76, “Large”: 213, “Middle”: 19, and “Micro”: 21), we combined
them with the 213 “Large” cities. Thus, an urban population
hierarchy can be defined as in Table 1.

Using the SVT subdivision algorithm, we can get a spatial
Voronoi Treemap that represents the population landscape
pattern of urban hierarchy (Figure 5). In Algorithm 1, the
generators 𝐸 = {𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
} denote the cities in China and

𝑛 = 342. For each 𝑒
𝑘
∈ 𝐸, the unique identifier 𝑖(𝑒

𝑘
) is set to

𝑘, the level 𝑙(𝑒
𝑘
) corresponds to the value in field “Level” in

Table 1, and the weight𝑤(𝑒
𝑘
) is equal to the population of the

city. 𝑉
0
is the inland border of China.

5. Discussions and Conclusions

This paper presents an approach for the generation of SVTs.
Contrary to the existent Voronoi Treemaps that are used to
visualize hierarchical nonspatial objects, our proposed layout

0 31
0

62
0

15
5

(km)

Mega
Macro
Rest

Mega_landscape
Macro_landscape
Rest_landscape

Figure 5: The population landscape pattern of urban hierarchy for
China based on the Manhattan metric.

algorithm allows to createVoronoi Treemap visualizations for
geographical objects with spatial coordinates and references,
which can serve as a spatial data model to express urban
hierarchies, organization structures, region differences, and
so forth.

The SVT approach accepts point, line, and polygon files
in shapefile format, classifies generators into different groups
according to their level values in their attribute tables, uses a
vector to raster conversion to create an initial raster layer, and
then generates raster images using distance transformation.
Through a raster to vector conversion, layers of ordinary
or weighted Voronoi diagrams in shapefile format can be
generated to construct a Treemap layout, which can be
applied in mainstream GIS software. Input generators and
output Treemap layers can be stored together in geodatabase
and flexibly change their styles. All GIS symbols and layout
styles can be used to enhance the visual effect of Treemaps
and to support the user in the perception and interpretation
of the Treemap visualizations; for example, Figure 4(a) uses
star, square, triangle, and circle symbols to depict different
levels of point features.

The layout algorithm needs to loop through all generators
one by one to generate an SVT, so the process may be
relatively slow while facing massive input features. Because
the major processing steps are raster-based, it is possible
that an input generator does not have an output Voronoi
polygon if that generator is very close to others and raster cell
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size is not small enough. This problem can be eliminated by
reducing the cell size.

In future work, the efficiencies and applications of the
presented layout method will be studied extensively.
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