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As a machine learning method, AdaBoost is widely applied to data classification and object detection because of its robustness and
efficiency. AdaBoost constructs a global and optimal combination of weak classifiers based on a sample reweighting. It is known that
this kind of combination improves the classification performance tremendously. As the popularity of AdaBoost increases, many
variants have been proposed to improve the performance of AdaBoost. Then, a lot of comparison and review studies for AdaBoost
variants have also been published. Some researchers compared different AdaBoost variants by experiments in their own fields, and
others reviewed various AdaBoost variants by basically introducing these algorithms. However, there is a lack of mathematical
analysis of the generalization abilities for different AdaBoost variants. In this paper, we analyze the generalization abilities of six
AdaBoost variants in terms of classification margins. The six compared variants are Real AdaBoost, Gentle AdaBoost, Modest
AdaBoost, Parameterized AdaBoost, Margin-pruning Boost, and Penalized AdaBoost. Finally, we use experiments to verify our
analyses.

1. Introduction

In the last two decades, AdaBoost and its variants were
used in various fields, such as face detection [1, 2], hands
detection [3, 4], and human detection [5]. AdaBoost was
first introduced to the machine learning literature by Freund
and Schapire [6]; and it has obtained tremendous success
in classification. AdaBoost is proved efficient in increasing
the classification margins of training data [7]. To describe
AdaBoost mathematically, Schapire and Singer proposed
Real AdaBoost, which is a generalized version of AdaBoost
[8]. Real AdaBoost calculates its weak hypotheses by directly
optimizing the upper bounds of training errors. Therefore,
it converges faster than AdaBoost in the training [9]. To
improve the training speed of Real AdaBoost, Wu and Naga-
hashi devised Parameterized AdaBoost which utilizes a new
weight adjustment policy [10]. In 2000, Friedman et al. used

additive logistic models to explain AdaBoost and proposed
Gentle AdaBoost which computes weak hypotheses by mini-
mizing the least square errors [11]. Friedman et al. also proved
that Gentle AdaBoost is more robust than AdaBoost and
Real AdaBoost [11]. For reducing the generalization error of
Gentle AdaBoost, A. Vezhnevets andV.Vezhnevets suggested
Modest AdaBoost which highlights weak classifiers that work
well on difficult-to-classify instances [12]. Modest AdaBoost
achieves better generalization errors than Gentle AdaBoost
in some data sets [13]. However, its performance is unstable
because the accuracy drops occasionally. For the same pur-
pose, Wu and Nagahashi devised Margin-pruning Boost [14]
and Penalized AdaBoost [15]. Margin-pruning Boost applies
a weight reinitialization approach to reduce the influence
from noise-like data, while Penalized AdaBoost improves
Margin-pruning Boost by introducing an adaptive weight
resetting policy. Moreover, it utilizes a margin distribution to
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penalize the misclassification of small-margin instances. Fre-
und created BrownBoost to reduce the influence of outliers in
training [16]. LPBoost was introduced to optimize the min-
imal margin of training data by using linear programming
[17]. However, a comparison showed that LPBoost overall
performs worse than AdaBoost [18]. Similarly to Margin-
pruningBoost,MadaBoost and SmoothBoostwere devised to
increase the robustness against malicious noise data [19, 20].
Some AdaBoost variants such as AdaCost, AdaC1, AdaC2,
AdaC3, CSB0, CSB1, CSB2, and RareBoost assign weights
to positive training instances and negative training instances
differently to obtain a better performance on imbalanced data
sets [21–24]. While others trade off the integrity of training
data for a faster training [25–28]. In 2004, AdaTree was
proposed to speed up the training process. It utilizes the same
way as in AdaBoost to select weak classifiers but combines
them in a nonlinearmanner [29]. Filterboost andRegularized
AdaBoost were proposed to solve overfitting problem [30, 31].
Filterboost is based on a new logistic regression technique
whereas Regularized AdaBoost requires validation subsets
to identify and correct the overfitting iteratively. FloatBoost
and FM-AdaBoost filter the less effective weak classifiers so
that they can outperformAdaBoost when they have the same
number of weak classifiers asAdaBoost [32, 33]. Nevertheless,
they require more training cycles than AdaBoost. Nowadays,
many novel AdaBoost variants were devised to improve the
generalization ability such as SoftBoost, Interactive Boost-
ing, ReweightBoost, Soft-LPBoost, andRobustBoost [34–39].
SoftBoostmaximizes a softmargin instead of the hardmargin
used in AdaBoost [34, 36]. Interactive Boosting gives weights
to both features and training instances [37]. ReweightBoost
builds a tree structure by reusing the selected weak classifiers.
Nevertheless, it can only use stump decision trees as its
weak classifiers [38]. Soft-LPBoost combines SoftBoost with
LPBoost [39]. While RobustBoost is an extension of Brown-
Boost [35]. All the five AdaBoost variants can achieve better
generalization errors than AdaBoost. However, they suffered
from a lot of complicated calculations which may lead to a
longer training time. In the last few years, A novel approach
called SemiBoost has been developed rapidly. It combines
supervised learning with semisupervised learning by using
both the labelled and unlabelled training instances [40].
The purpose of SemiBoost is to increase the generalization
ability when the labelled training instances are insufficient
[41]. In addition, AdaBoost.M1, Conservative.2 AdaBoost,
andAggressiveAdaBoost are AdaBoost variants proposed for
multiple classification problems [42].

With the proposals of many AdaBoost variants, a lot
of surveys and comparison studies based on these variants
were published. Miao and Heaton compared AdaBoost with
Random Forest in ecosystem classification problems and
showed that AdaBoost overall outperforms Random Forest
[43]. Another comparison of AdaBoost and neural networks
proved that AdaBoost ensemble of trees performs better than
an individual neural network in experiments using cross val-
idations [44]. Research in [45] applied AdaBoost and SVM to
the Synthetic Aperture Radar Automatic Target Recognition
Systems and found that AdaBoost is more robust than SVM.
Ferreira briefly introduced many boosting algorithms and

labelled them as “supervised learning” or “semisupervised
learning” [46]. Seiffert et al. compared resampling boost
algorithmswith reweighting boost algorithms on imbalanced
data sets and summarized that boosting by resampling gener-
ally outperforms boosting by reweighting [47]. A comparison
of LPBoost and AdaBoost based on the experimental results
of UCI repository was also conducted in [18]. Hegazy and
Denzler evaluated AdaBoost and SoftBoost in generic object
recognition and concluded that AdaBoost is more suitable
for low-noise data sets while SoftBoost is more suitable for
high-noise data sets [48]. Another study which compares
AdaBoost with AdaTree was accomplished by Drauschke and
Forstner [49]. Its experimental results showed that AdaTree
usually performs better than AdaBoost but is prone to
overfitting due to its tree-like structure. Jurić-Kavelj and
Petrović evaluated threeAdaBoost variants (Real, Gentle, and
Modest AdaBoost) based on experiments in leg detection and
found that Modest AdaBoost can not reduce the error rate as
the number of iterations increases [50]. Sun et al. compared
Discrete, Real, and Gentle AdaBoost by analyzing the exper-
imental results in license plate detection and explained that
Gentle AdaBoost achieves better performance than the other
twomethods [51]. Comparison in [52] focused on comparing
weak classifiers of AdaBoost constructed by Bayes net, naive
Bayes, and decision trees, and it showed that decision trees
are the best. A review systematically introduced AdaBoost
variants proposed during 1999 to 2012. Nevertheless, there
is a lack of comparison between different AdaBoost variants
[53].

In general, the above surveys and comparison studies
either introduce the basic ideas of AdaBoost variants or
compare different AdaBoost variants by experiments in a
specific research. Differently from these studies, we compare
the generalization abilities of six AdaBoost variants (Real
AdaBoost, Gentle AdaBoost, Modest AdaBoost, Parame-
terized AdaBoost, Margin-pruning Boost, and Penalized
AdaBoost) by analyzing the classification margins. The
remainder of this paper is organized as follows. Section 2
explains the materials and methods. Section 3 shows exper-
imental results. Section 4 draws a conclusion.

2. Materials and Methods

This section describes the training data and weak classifiers
used in our research. It also explains the basic ideas of the
six compared AdaBoost variants and their generalization
abilities in terms of the classification margins.

2.1. Training Data and Weak Classifiers. Here we give a brief
introduction of the training data. Given 𝑆 = {(𝑥
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be 1 if 𝑥

𝑖
is positive, or −1 if 𝑥

𝑖
is

negative. In this paper, we only discuss binary classification
problems. We use CART as weak classifiers [54]. As shown
in Figure 1, a CART is a decision tree whose leaves output
the classification results and inner nodes split the tree to
minimize its error rate. In Figure 1,𝑋
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Figure 1: An example of classification and regression tree.

2.2. Different AdaBoost Variants

2.2.1. AdaBoost and Real AdaBoost. AdaBoost is a machine
learning method. At each round, it increases the weights
of misclassified instances and decreases the weights of cor-
rectly classified instances. The weight adjustment policy is
most important because AdaBoost can focus on difficult-to-
classify instances. A generalized version of AdaBoost which
is called Real AdaBoost is described as follows.

Algorithm 1 (Real AdaBoost). (1) Set the initial weights𝑤
𝑖,1
=

1/𝑁, where 𝑖 = 1, 2, . . . , 𝑁.
(2) Do the following tasks for 𝑡 = 1, 2, . . . , 𝑇.
(a) Train aweak classifier based on theweighted instances

to divide the training set 𝑆 into 𝐶 partitions. Each leaf of the
CART represents a partition. For any partition 𝑆𝑗

𝑡
where 𝑗 ∈

{1, 2, . . . , 𝐶}, calculate𝑊𝑗
𝑡+
and𝑊𝑗

𝑡−
as follows:
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(b) Compute the weak hypothesis for each partition 𝑆𝑗
𝑡
:

𝑓
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𝑖
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(3) Let 𝐹
𝑇
(𝑥
𝑖
) = ∑

𝑇

𝑡=1
𝑓
𝑡
(𝑥
𝑖
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sifier𝐻(𝑥
𝑖
) = sign[𝐹

𝑇
(𝑥
𝑖
)].

In AdaBoost, the values of weak hypotheses are +1 or −1.
But in Real AdaBoost, they are real numbers.The sign of each
weak hypothesis 𝑓𝑗

𝑡
(𝑥) stands for the class of the weighted

majority of instances falls into the partition 𝑆
𝑗

𝑡
, and the

absolute value of 𝑓𝑗
𝑡
(𝑥) represents a predication confidence.

2.2.2. Gentle AdaBoost. Gentle AdaBoost utilizes the same
weight adjustment policy as Real AdaBoost does. However,
it computes the weak hypotheses in a different way. Next we
introduce Gentle AdaBoost as follows.

Algorithm 2 (Gentle AdaBoost). (1) Set the initial weights
𝑤
𝑖,1
= 1/𝑁, where 𝑖 = 1, 2, . . . , 𝑁.
(2) Do the following tasks for 𝑡 = 1, 2, . . . , 𝑇.
(a) Train aweak classifier based on theweighted instances

and then calculate𝑊𝑗
𝑡+
and𝑊𝑗

𝑡−
for each partition 𝑆𝑗

𝑡
the same

as in Step (2)(a) of Algorithm 1.
(b) Compute the weak hypothesis for each partition 𝑆𝑗

𝑡
:

𝑓
𝑗

𝑡
(𝑥) =

(𝑊
𝑗

𝑡+
−𝑊
𝑗

𝑡−
)

(𝑊
𝑗

𝑡+
+𝑊
𝑗

𝑡−
)
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For any training instance 𝑥
𝑖
, its weak hypothesis𝑓

𝑡
(𝑥
𝑖
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𝑓
𝑗

𝑡
(𝑥), where 𝑗 is the index of partition that 𝑥

𝑖
belongs to.

(c) Update instances’ weights by (3).
(3) Let 𝐹

𝑇
(𝑥
𝑖
) = ∑

𝑇

𝑡=1
𝑓
𝑡
(𝑥
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In Algorithm 2, the weak hypotheses are calculated by
optimizing the weighted least square errors. Thus, it is more
robust and stable than AdaBoost [11].

2.2.3. Modest AdaBoost. Modest AdaBoost was proposed to
suppress the generalization error of Gentle AdaBoost. It is
explained by Algorithm 3.

Algorithm 3 (Modest AdaBoost). (1) Set the initial weights
𝑤
𝑖,1
= 1/𝑁, where 𝑖 = 1, 2, . . . , 𝑁.
(2) Do the following tasks for 𝑡 = 1, 2, . . . , 𝑇.
(a) Train aweak classifier based on theweighted instances

and then calculate𝑊𝑗
𝑡+
and𝑊𝑗

𝑡−
for each partition 𝑆𝑗

𝑡
the same

as in Step (2)(a) of Algorithm 1.
(b) Calculate an inverted weight 𝑤
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(c) Compute the weak hypothesis for every partition 𝑆𝑗
𝑡
:

𝑓
𝑗
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𝑖
, its weak hypothesis 𝑓

𝑡
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𝑖
) equals 𝑓𝑗

𝑡
(𝑥),

where 𝑗 is the index of partition that 𝑥
𝑖
belongs to.

(c) Update instances’ weights by (3).
(3) Let 𝐹

𝑇
(𝑥
𝑖
) = ∑
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𝑡=1
𝑓
𝑡
(𝑥
𝑖
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𝑖
) = sign[𝐹

𝑇
(𝑥
𝑖
)].

Modest AdaBoost uses an “inverted” distribution to
decrease the contribution of weak hypotheses that only work
well on instances with small weights [12].

2.2.4. Parameterized AdaBoost. Parameterized AdaBoost is
shown by Algorithm 4. Its purpose is to speed up the training
process of Real AdaBoost.

Algorithm 4 (Parameterized AdaBoost). (1) Set the initial
conditions in this step by letting 𝑤

𝑖,1
= 1/𝑁 and 𝐹

0
(𝑥
𝑖
) = 0,

where 𝑖 = 1, 2, . . . , 𝑁.
(2) Do the following tasks for 𝑡 = 1, 2, . . . , 𝑇.
(a) Train aweak classifier based on theweighted instances

and then calculate𝑊𝑗
𝑡+
and𝑊𝑗

𝑡−
for each partition 𝑆𝑗

𝑡
the same

as in Step (2)(a) of Algorithm 1.
(b) Calculate the weak hypotheses by (2).
(c) Let 𝐹

𝑡
(𝑥
𝑖
) = 𝐹

𝑡−1
(𝑥
𝑖
) + 𝑓
𝑡
(𝑥
𝑖
) and 𝛼 ∈ (0, 1). Then

update the weights of instances by

𝑤
𝑖,𝑡+1

=
exp [−𝑦

𝑖
𝐹
𝑡
(𝑥
𝑖
) − 𝛼

𝑦𝑖𝐹𝑡 (𝑥𝑖)
]
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, (8)

𝑍
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𝑖

exp [−𝑦
𝑖
𝐹
𝑡
(𝑥
𝑖
) − 𝛼

𝑦𝑖𝐹𝑡 (𝑥𝑖)
] . (9)

(3) Output the strong classifier𝐻(𝑥
𝑖
) = sign[𝐹

𝑇
(𝑥
𝑖
)].

For tuning parameter 𝛼, the training and generalization
errors on a data set Gamma Telescope which includes nearly
20000 instances weremeasured for 𝛼 = {0.1, 0.3, 0.5, 0.7, 0.9}.
The results showed that 𝛼 = 0.5 has the best overall
performance, so 𝛼 is set to be 0.5 [10].

The difference between Real and Parameterized Ada-
Boost is the weight updating policy. In Step (2)(c), Parame-
terized AdaBoost adds a parameter and an absolute item to
emphasize the instances whose margins are near 0 [10].

2.2.5. Margin-Pruning Boost. Margin-pruning Boost was
designed to decrease the influence of noise-like instances.
Next we describe this approach as follows.

Algorithm 5 (Margin-pruning Boost). (1) Set the initial
weights 𝑤

𝑖,1
= 1/𝑁, where 𝑖 = 1, 2, . . . , 𝑁.

(2) Do the following tasks for 𝑡 = 1, 2, . . . , 𝑇.
(a) Train aweak classifier based on theweighted instances

and then calculate𝑊𝑗
𝑡+
and𝑊𝑗

𝑡−
for each partition 𝑆𝑗

𝑡
the same

as in Step (2)(a) of Algorithm 1.
(b) Compute the weak hypothesis for each partition 𝑆𝑗

𝑡
by

(4).

(c) Update the weights of instances as

𝑤
𝑖,𝑡+1

= exp[−𝑦
𝑖
∑

𝑡

𝑓
𝑡
(𝑥
𝑖
)] . (10)

(d) Set a threshold 𝑄
𝑡+1

by the following equation:

𝑄
𝑡+1

= max
𝑖

{𝑤
𝑖,𝑡+1

} −
max
𝑖
{𝑤
𝑖,𝑡+1

} −min
𝑖
{𝑤
𝑖,𝑡+1

}

50
. (11)

For any instance 𝑥
𝑖
, if 𝑤
𝑖,𝑡+1

> 𝑄
𝑡+1

, reset 𝑤
𝑖,𝑡+1

= 1 and
∑
𝑡
𝑓
𝑡
(𝑥
𝑖
) = 0. Compute𝑍

𝑡
= ∑
𝑖
𝑤
𝑖,𝑡+1

; then do normalization
by letting 𝑤

𝑖,𝑡+1
= 𝑤
𝑖,𝑡+1

/𝑍
𝑡
.

(3) Let 𝐹
𝑇
(𝑥
𝑖
) = ∑

𝑇

𝑡=1
𝑓
𝑡
(𝑥
𝑖
) and output the strong

classifier𝐻(𝑥
𝑖
) = sign[𝐹

𝑇
(𝑥
𝑖
)].

Margin-pruning Boost restrains the weight increase of
potential noise instances by resetting their weights and
summed weak hypotheses [14]. Here the resetting of the
sum of weak hypotheses can keep the weights of noise-like
instances small. On the other hand, the resetting means that
the combination of theseweak hypotheses (the current strong
hypothesis) for these noise-like instances is reset to be 0
because it can not correctly classify these instances.

2.2.6. Penalized AdaBoost. Penalized AdaBoost is an exten-
sion of Margin-pruning Boost. It introduces a margin dis-
tribution to penalize the misclassification of small-margin
instances. Before introducing Penalized AdaBoost, we first
explain the classification margins. The classification margin
of an instance 𝑥

𝑖
shows the difference between prediction

confidence of weak hypotheses providing correct classifica-
tion and that of weak hypotheses leading to misclassification
[7]. It is in the range [−1, 1], and the instance 𝑥

𝑖
is correctly

classified if and only if its margin is positive [7]. Therefore,
the margin of instance 𝑥

𝑖
is defined as [10]

Margin
𝑇
(𝑥
𝑖
) =

∑
𝑇

𝑡=1
𝑦
𝑖
𝑓
𝑡
(𝑥
𝑖
)

∑
𝑇

𝑡=1

𝑓𝑡 (𝑥𝑖)


, (12)

where 𝑓
𝑡
(𝑥
𝑖
) denotes the weak hypothesis for instance 𝑥

𝑖
at

round 𝑡 and 𝑇 is the number of total iterations. Next we
explain Penalized AdaBoost by the following algorithm.

Algorithm 6 (Penalized AdaBoost). (1) Set the initial weights
𝑤
𝑖,1
= 1/𝑁, where 𝑖 = 1, 2, . . . , 𝑁.
(2) Do the following tasks for 𝑡 = 1, 2, . . . , 𝑇.
(a) Train aweak classifier based on theweighted instances

and then calculate𝑊𝑗
𝑡+
and𝑊𝑗

𝑡−
for each partition 𝑆𝑗

𝑡
the same

as in Step (2)(a) of Algorithm 1.
(b) Calculate a margin feedback factor𝑚

𝑖,𝑡
as shown in

𝑚
𝑖,𝑡
=
exp (−Margin

𝑡−1
(𝑥
𝑖
))

𝐷
𝑡

, (13)
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Figure 2: Margin distributions using CART-1 at iteration 200.
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Figure 3: Generalization errors using CART-1.

where𝐷
𝑡
equals∑

𝑖
exp(−Margin

𝑡−1
(𝑥
𝑖
)). Then compute𝑀𝑗

𝑡+

and𝑀𝑗
𝑡−
of every partition 𝑆𝑗

𝑡
by

𝑀
𝑗

𝑡+
= ∑

𝑖:𝑥𝑖∈𝑆
𝑗

𝑡
∧𝑦𝑖=1

𝑚
𝑖,𝑡
,

𝑀
𝑗

𝑡−
= ∑

𝑖:𝑥𝑖∈𝑆
𝑗

𝑡
∧𝑦𝑖=−1

𝑚
𝑖,𝑡
.
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Figure 4: Margin distributions using CART-2 at iteration 200.
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Figure 5: Generalization errors using CART-2.

(c) Compute the weak hypothesis for each 𝑆𝑗
𝑡
as

𝑓
𝑗

𝑡
(𝑥) = {

(𝑊
𝑗

𝑡+
−𝑊
𝑗

𝑡−
) (1 −𝑀

𝑗

𝑡−
) , if 𝑊𝑗

𝑡+
> 𝑊
𝑗

𝑡−

(𝑊
𝑗

𝑡+
−𝑊
𝑗

𝑡−
) (1 −𝑀

𝑗

𝑡+
) , otherwise.

(15)

For each instance𝑥
𝑖
, set its weak hypothesis𝑓

𝑡
(𝑥
𝑖
) to be𝑓𝑗

𝑡
(𝑥),

where 𝑗 is the index of partition which 𝑥
𝑖
falls into.
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Figure 6: Margin distributions using CART-3 at iteration 10.
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Figure 7: Margin distributions using CART-3 at iteration 100.

(d) Update all instance weights by

𝑤
𝑖,𝑡+1

= exp[−𝑦
𝑖
∑

𝑡

𝑓
𝑡
(𝑥
𝑖
)] . (16)

(e) For each instance𝑥
𝑖
, if𝑤
𝑖,𝑡+1

> 𝑄
𝑡+1

andMargin
𝑡
(𝑥
𝑖
) <

0, reinitialize instance 𝑥
𝑖
as follows:

𝑤
𝑖,𝑡+1

= 1, ∑

𝑡

𝑓
𝑡
(𝑥
𝑖
) = 0. (17)

𝑄
𝑡+1

= max
𝑖

{𝑤
𝑖,𝑡+1

} −
max
𝑖
{𝑤
𝑖,𝑡+1

} −min
𝑖
{𝑤
𝑖,𝑡+1

}

𝛽
. (18)

Then normalize 𝑤
𝑖,𝑡+1

by letting∑
𝑖
𝑤
𝑖,𝑡+1

= 1.
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Figure 8: Margin distributions using CART-3 at iteration 1000.
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Figure 9: Generalization errors using CART-3.

(3) Set 𝐹
𝑇
(𝑥) = ∑

𝑇

𝑡=1
𝑓
𝑡
(𝑥) and output the strong classifier

𝐻(𝑥) = sign[𝐹
𝑇
(𝑥)].

Penalized AdaBoost calculates its weak hypotheses by
introducing a margin feedback factor in Steps (2)(b) and
(2)(c). Moreover, it improves the thresholding of Margin-
pruning Boost in Step (2)(e).The parameter 𝛽 in (18) is tuned
by the following steps: first the classification performances on
5 data sets with different values of 𝛽 (𝛽 = 10; 30; 50; 70; 90)
are evaluated, and then the value with the best performance
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Figure 10: Continued.
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Figure 10: Margin distributions at iteration 200.

is assigned to 𝛽 [15]. Then we will analyze the generalization
abilities of the six variants in the next section.

2.3. Generalization Ability Analysis. In this section, we ana-
lyze the generalization abilities of the six AdaBoost variants
by comparing their weak hypotheses and weight updating
policies.

2.3.1. Real and Gentle AdaBoost. The difference between
Real and Gentle AdaBoost is how they calculate their weak
hypotheses. Real AdaBoost computes the weak hypothesis
by minimizing the upper bound of training error in each
loop [8]. Gentle AdaBoost calculates its weak hypothesis by
optimizing the weighted least square error iteratively [11].
Real AdaBoost tries to decrease the training error whereas
Gentle AdaBoost aims at reducing the variance of its weak
hypotheses. Thus, in most cases, Real AdaBoost converges
faster thanGentleAdaBoost in training, butGentleAdaBoost

is more stable than Real AdaBoost with respect to the gen-
eralization error.

2.3.2. Real and Parameterized AdaBoost. Comparing Step
(2)(c) inRealAdaBoostwith that in ParameterizedAdaBoost,
we find that the weight updating policies of the two variants
are different. From (12), we know that the training error
converges to 0 if and only if the margins of all training
instances are increased to be positive. In Step (2)(c) of Real
AdaBoost, instances with small margins obtain more weights
so that they are more likely correctly classified in future iter-
ations. However, as Real AdaBoost focuses on instances with
small margins, it may lead to an increase of instances whose
margins are near 0; that is, these instances change the sign of
theirmargins back and forth in the boosting process. Here we
call them “swinging instances.”These swinging instances slow
the convergence of training error. To decrease the number
of swinging instances, Parameterized AdaBoost introduces
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Figure 11: Continued.
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Figure 11: Margin distributions at iteration 200.

parameter 𝛼 to give them larger weights. From (8), we can
see that𝛼×|𝑦

𝑖
𝐹
𝑡
(𝑥
𝑖
)| reducesmoreweight for instanceswhose

margins are far from 0 and less weight for swinging instances.
Therefore, swinging instances obtain more attention than
nonswinging ones. ParameterizedAdaBoost aims at reducing
the number of swinging instances by trying to correctly
classify them in the early training phase.Thus, Parameterized
AdaBoost can converge faster than Real AdaBoost in train-
ing. With respect to the generalization error, Parameterized
AdaBoost is more prone to overfitting than Real AdaBoost
especially when the CART used as weak classifiers has more
inner nodes. The reason is that it focuses more on swinging
instances at the cost of focusing less on instances with mini-
mal margins. However, it can perform similarly to or slightly
better than Real AdaBoost if it uses simple weak classifiers
such as stump decision trees because stump trees are more
resistant to overfitting than CART with many inner nodes.

2.3.3. Gentle and Modest AdaBoost. Modest AdaBoost uti-
lizes an inverted weight distribution to highlight weak

hypotheses that can correctly classify instances with small
margins. Nevertheless, the performance of Modest AdaBoost
is not stable. Here we give an example to explain the reason.
We suppose 𝑊𝑗

𝑡+
> 𝑊
𝑗

𝑡−
; if 𝑊𝑗
𝑡+
(1 − 𝑊

𝑗

𝑡+
) is also larger than

𝑊
𝑗

𝑡−
(1 − 𝑊

𝑗

𝑡−
), the factor (1 − 𝑊

𝑗

𝑡+
) assigns higher predic-

tion confidence to weak hypotheses that correctly classify
small-margin instances. At the same time, the factor (1 −

𝑊
𝑗

𝑡−
) reduces the prediction confidence for weak hypotheses

misclassifying small-margin instances. In this case, Modest
AdaBoost outperformsGentle AdaBoost. However, if𝑊𝑗

𝑡+
(1−

𝑊
𝑗

𝑡+
) is smaller than𝑊𝑗

𝑡−
(1 −𝑊

𝑗

𝑡−
) in the case𝑊𝑗

𝑡+
> 𝑊
𝑗

𝑡−
, the

sign of the weak hypothesis will be negative. This means the
factor (1 − 𝑊𝑗

𝑡−
) reduces the prediction confidence for weak

hypotheses that correctly classify small-margin instances.
Meanwhile, (1 − 𝑊

𝑗

𝑡+
) increases the prediction confidence

of weak hypothesesmisclassifying small-margin instances. In
this case, Modest AdaBoost performs far worse than Gentle
AdaBoost.
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Table 1: Test results at iteration 200 using CART-1.

Data sets: 25 RAB GAB MAB PAAB MPB PAB
Australian 0.1536 0.1435 0.1435 0.1449 0.1391 0.1304
Blood Transfusion 0.2392 0.2312 0.2352 0.2392 0.2218 0.2298
Banana 0.2732 0.2713 0.2804 0.2672 0.2526 0.2809
Banknote 0.0029 0.0022 0.0372 0.0015 0.0058 0.0080
Breast Cancer 0.0281 0.0246 0.0422 0.0299 0.0669 0.0281
Climate model 0.0704 0.0593 0.0963 0.0759 0.0704 0.0630
Gamma Telescope 0.1525 0.1546 0.2297 0.1489 0.1454 0.1548
German 0.2560 0.2580 0.2950 0.2490 0.2470 0.2450
Heart Disease 0.2259 0.2333 0.1704 0.2185 0.2000 0.1630
Hepatitis 0.2200 0.2130 0.2515 0.2065 0.2129 0.1869
Indian Diabetes 0.2448 0.2578 0.2383 0.2539 0.2318 0.2253
Indian Liver 0.3074 0.3005 0.3230 0.3092 0.2850 0.3126
Image Segment 0.0061 0.0045 0.0076 0.0061 0.0106 0.0061
Parkinson’s 0.0872 0.0872 0.1692 0.0923 0.0974 0.0923
Planning Relax 0.4286 0.4012 0.3519 0.4448 0.4175 0.3186
Ring Norm 0.0269 0.0268 0.0470 0.0293 0.0277 0.0509
Sonar 0.1445 0.1589 0.1637 0.1540 0.2117 0.1734
Spambase 0.0580 0.0546 0.0895 0.0554 0.0528 0.0617
SPECTF Heart 0.2097 0.2285 0.2472 0.2172 0.2584 0.1985
Splice 0.0675 0.0675 0.0919 0.0685 0.0612 0.0639
Steel Plates 0.2277 0.2324 0.2751 0.2344 0.2318 0.2421
Twonorm 0.0303 0.0305 0.0315 0.0324 0.0292 0.0304
Waveform 0.0993 0.0975 0.0962 0.0996 0.0917 0.0853
WBPC 0.2475 0.2727 0.3030 0.2879 0.3081 0.2323
Wine Quality 0.0055 0.0054 0.0240 0.0062 0.0052 0.0054

Sum 3.8128 3.8170 4.2405 3.8727 3.8820 3.5887
VS.GAB −0.0042 0.0000 0.4235 0.0557 0.0650 −0.2283
No.Best 3 5 0 1 8 9
No.To.GAB 11 — 5 9 15 13

2.3.4. Gentle and Margin-Pruning Boost. At each round of
Gentle AdaBoost, the weights of misclassified instances are
increasedwhereas theweights of correctly classified instances
are decreased. This will lead to the phenomenon that the
weights of difficult-to-classify instances are increased too
large. If these instances are noise data or outliers, the
performance of the final strong classifier will be degraded. To
solve this problem,Margin-pruningBoost utilizes a threshold
to filter instances whose weights are too large and then resets
their weights to be 1.

Margin-pruning Boost reduces the influence from noise-
like instances effectively in the early training phase by
restraining the weight increase of filtered instances [14].
However, as the number of iterations increases, the weights
of instances filtered by thresholding become smaller and
smaller. In the late training phase, the weights of these filtered
instances are probably reduced smaller than 1. In that case,
resetting their weights to be 1 actually increases the influence
of these instances.Thus, the performance of Margin-pruning
Boost drops when the number of loops increases.

2.3.5. Margin-Pruning Boost and Penalized AdaBoost. Penal-
ized AdaBoost is an improvement of Margin-pruning Boost.
First it introduces a margin feedback factor to assign higher
prediction confidence to weak hypotheses that can correctly
classify small-margin instances. From (13), (14), and (15), we
can see that (1 − 𝑀

𝑗

𝑡−
) and (1 − 𝑀

𝑗

𝑡+
) are proportional to

the margins, and they are computed from the sum of margin
feedback factors of misclassified instances. This means that
misclassifying small-margin instances will lead to small (1 −
𝑀
𝑗

𝑡−
) and (1 − 𝑀𝑗

𝑡+
). Therefore, the prediction confidence of

weak hypotheses which misclassify small-margin instances
will be degraded. Compared with Gentle AdaBoost andMar-
gin pruning Boost, Penalized AdaBoost can stand out more
competent weak hypotheses.Therefore, it is more robust than
the other two variants. Modest AdaBoost highlights more
competent weak hypotheses in some cases but downplays
these weak hypotheses in other cases. By contrast, Penalized
AdaBoost attaches importance to thesemore competentweak
hypotheses under any circumstance. Thus it is more stable
than Modest AdaBoost.
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Table 2: Test results at iteration 500 using CART-1.

Data sets: 25 RAB GAB MAB PAAB MPB PAB
Australian 0.1681 0.1638 0.1435 0.1638 0.1377 0.1333
Blood Transfusion 0.2446 0.2540 0.2352 0.2500 0.2272 0.2258
Banana 0.2734 0.2725 0.2804 0.2662 0.2547 0.2738
Banknote 0.0029 0.0036 0.0372 0.0022 0.0058 0.0058
Breast Cancer 0.0281 0.0246 0.0369 0.0264 0.0756 0.0246
Climate Model 0.0704 0.0648 0.0963 0.0741 0.0722 0.0593
Gamma Telescope 0.1522 0.1519 0.2292 0.1479 0.1424 0.1473
German 0.2700 0.2730 0.2950 0.2710 0.2490 0.2430
Heart Disease 0.2481 0.2481 0.1704 0.2333 0.2000 0.1852
Hepatitis 0.2262 0.2130 0.2515 0.2132 0.2129 0.2128
Indian Diabetes 0.2487 0.2526 0.2383 0.2565 0.2409 0.2266
Indian Liver 0.3005 0.3074 0.3558 0.2971 0.2953 0.3057
Image Segment 0.0045 0.0045 0.0045 0.0030 0.0061 0.0030
Parkinson’s 0.0821 0.0974 0.1641 0.0923 0.0974 0.0872
Planning Relax 0.4342 0.4397 0.3519 0.4064 0.4175 0.3462
Ring Norm 0.0264 0.0249 0.0309 0.0280 0.0251 0.0318
Sonar 0.1446 0.1638 0.1589 0.1684 0.2548 0.1734
Spambase 0.0593 0.0574 0.0895 0.0578 0.0517 0.0572
SPECTF Heart 0.2097 0.2285 0.2584 0.2060 0.2772 0.2022
Splice 0.0726 0.0746 0.0919 0.0752 0.0622 0.0605
Steel Plates 0.2318 0.2293 0.2777 0.2339 0.2267 0.2334
Twonorm 0.0291 0.0296 0.0286 0.0326 0.0296 0.0276
Waveform 0.0990 0.0984 0.0962 0.1038 0.0950 0.0881
WBPC 0.2475 0.2828 0.3030 0.2424 0.3081 0.2374
Wine Quality 0.0060 0.0054 0.0231 0.0054 0.0060 0.0051

Sum 3.8800 3.9656 4.2484 3.8569 3.9711 3.5963
VS.GAB −0.0856 0.0000 0.2828 −0.1087 0.0055 −0.3693
No.Best 2 2 1 2 5 15
No.To.GAB 14 — 9 14 16 20

Furthermore, Penalized AdaBoost solves the problem of
Margin-pruning Boost by utilizing a more adaptive thresh-
olding method. Penalized AdaBoost also uses the threshold-
ing to filter the large-weight instances similarly to Margin-
pruning Boost. However, it only resets the weights of filtered
instances with negative margins. This technique guarantees
that the reset weights are always smaller than the original
ones. For these noise-like instances, PenalizedAdaBoost does
not completely exclude them because they are not definitely
noise. Nevertheless, Penalized AdaBoost keeps their weights
small to reduce their influence on the final strong classifier.
Thereby, it has better generalization ability than Margin-
pruning Boost.

2.4. Margin Distribution Comparison. In this section, we
compare the generalization abilities of the six different vari-
ants by analyzing their margin distributions. Li and Shen
showed that reducing the minimal margin of training data
plays little role in improving the generalization ability [18].
However, enlarging the whole margin distribution to obtain
a balance between the training error and complexity is crucial
to the generalization ability [18]. Here we use three kinds

of CART as weak classifiers to evaluate the six AdaBoost
variants. The three kinds of CART are CART-1 (CART with
one inner node), CART-2 (CART with two inner nodes),
and CART-3 (CART with three inner nodes). To get the
cumulative margin distributions, for each data set, we use
2/3 of its data to train the final strong classifiers. Figure 2
shows the cumulative margin distributions based on CART-
1 in data set German at iteration 200. Figure 3 shows the
generalization errors of the same data set with respect to
Figure 2. In Figure 2, Penalized AdaBoost enlarges the whole
margin distribution more than the other variants so that
it achieves the best generalization error in Figure 3. Real
AdaBoost, Gentle AdaBoost, Parameterized AdaBoost, and
Margin-pruning Boost perform similarly on the margins. So
their generalization errors are also similar when the number
of iterations reaches to 200. The margin curve of Modest
AdaBoost in Figure 2 is not smooth. That may explain why
its generalization error in Figure 3 is not changed gradually.

Margin distributions based on CART-2 in the same data
set at iteration 200 are shown in Figure 4. Figure 5 shows the
generalization errors with respect to Figure 4. From Figures 4
and 5, we notice that the generalization abilities of the
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Table 3: Test results at iteration 800 using CART-1.

Data sets: 25 RAB GAB MAB PAAB MPB PAB
Australian 0.1754 0.1696 0.1435 0.1899 0.1362 0.1348
Blood Transfusion 0.2487 0.2473 0.2379 0.2527 0.2272 0.2218
Banana 0.2740 0.2753 0.2804 0.2687 0.2530 0.2709
Banknote 0.0036 0.0044 0.0372 0.0022 0.0058 0.0036
Breast Cancer 0.0246 0.0281 0.0369 0.0246 0.0774 0.0246
Climate Model 0.0759 0.0685 0.0963 0.0722 0.0722 0.0611
Gamma Telescope 0.1530 0.1531 0.2290 0.1485 0.1425 0.1448
German 0.2800 0.2770 0.2950 0.2780 0.2550 0.2430
Heart Disease 0.2519 0.2333 0.1704 0.2519 0.2000 0.2111
Hepatitis 0.2197 0.2195 0.2646 0.2068 0.2129 0.2000
Indian Diabetes 0.2513 0.2513 0.2396 0.2591 0.2396 0.2305
Indian Liver 0.2971 0.3005 0.3592 0.2988 0.3022 0.2936
Image Segment 0.0045 0.0045 0.0045 0.0030 0.0061 0.0030
Parkinson’s 0.0872 0.1026 0.1641 0.0821 0.0974 0.0923
Planning Relax 0.4669 0.4287 0.3519 0.4230 0.4175 0.3737
Ring Norm 0.0258 0.0235 0.0273 0.0288 0.0262 0.0288
Sonar 0.1493 0.1542 0.1638 0.1732 0.2500 0.1685
Spambase 0.0593 0.0563 0.0880 0.0572 0.0517 0.0561
SPECTF Heart 0.2172 0.2247 0.2697 0.2060 0.2734 0.2135
Splice 0.0766 0.0772 0.0919 0.0772 0.0642 0.0598
Steel Plates 0.2303 0.2303 0.2736 0.2349 0.2262 0.2318
Twonorm 0.0301 0.0300 0.0286 0.0315 0.0309 0.0269
Waveform 0.0987 0.0981 0.0962 0.1065 0.0956 0.0902
WBPC 0.2424 0.2828 0.2980 0.2475 0.3081 0.2273
Wine Quality 0.0057 0.0058 0.0235 0.0055 0.0072 0.0046

Sum 3.9492 3.9466 4.2711 3.9298 3.9785 3.6163
VS.GAB 0.0026 0.0000 0.3245 −0.0168 0.0319 −0.3303
No.Best 2 1 2 5 4 14
No.To.GAB 14 — 8 13 14 22

six variants are consistent with their performance on the
margins. We also evaluate margin distributions using CART-
3 on the data set German. Margin curves at iterations 10,
100, and 1000 are shown by Figures 6, 7, and 8, respectively.
Comparing the three figures, we find that the margins are
enlarged gradually as the number of iterations increases.
Furthermore, we notice that Margin-pruning Boost out-
performs Gentle AdaBoost in Figures 6 and 7. However
it performs worse than Gentle AdaBoost in Figure 8. This
demonstrates that the performance ofMargin-pruning Boost
drops as the number of iterations increases. Differently from
Margin-pruning Boost, Penalized AdaBoost outperforms
others at most cases. Thus it is most robust and stable.
Figure 9 shows the generalization errors of the six variants
which use CART-3 as their weak classifiers. In Figure 9,
Margin-pruning Boost obtains lower generalization errors
than Gentle AdaBoost before iteration 500. Unfortunately, it
leads to severe overfitting after iteration 500.

Figures 10 and 11 show margin distributions of other data
sets. From these margin curves, we can conclude that Penal-
ized AdaBoost generally outperforms the other five vari-
ants on enlarging the whole margin distributions. Real and

Gentle AdaBoost perform very similarly, and Parameterized
AdaBoost is slightly worse than Real AdaBoost when it uses
CART-2 and CART-3. Margin-pruning Boost is better than
Gentle AdaBoost if the number of iterations is small, While
the margin curves of Modest AdaBoost are not smooth,
they may lead to an unstable performance on generalization
errors.

3. Experiments

In this section, we compare the six AdaBoost variants using
25 binary classification data sets from UCI [55]. For every
data set, we used Matlab AdaBoost Toolbox [54] and 3-fold
cross validation. First we measure the generalization errors
(estimated by the classification error on the test set) of the six
variants based on CART-1. Table 1 summarizes the results of
the six variants using CART-1 at iteration 200. Tables 2 and
3 show their generalization errors using CART-1 at iterations
500 and 800, respectively.We also compare the generalization
errors of the six variants based on CART-2 and CART-3.
Table 4 shows the comparison results using CART-2, and
Table 5 compares the six variants using CART-3.
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Table 4: Test results at iteration 200 using CART-2.

Data sets: 25 RAB GAB MAB PAAB MPB PAB
Australian 0.1449 0.1478 0.1420 0.1580 0.1420 0.1246
Blood Transfusion 0.2581 0.2540 0.2366 0.2608 0.2419 0.2204
Banana 0.1021 0.1002 0.2430 0.1006 0.1045 0.1479
Banknote 0.0051 0.0022 0.0058 0.0022 0.0044 0.0029
Breast Cancer 0.0264 0.0229 0.0387 0.0299 0.0316 0.0246
Climate Model 0.0574 0.0574 0.0944 0.0593 0.1019 0.0519
Gamma Telescope 0.1301 0.1317 0.2006 0.1295 0.1320 0.1426
German 0.2710 0.2690 0.2890 0.2850 0.2580 0.2380
Heart Disease 0.2667 0.2000 0.2074 0.2556 0.2889 0.2037
Hepatitis 0.1934 0.2001 0.2320 0.1675 0.2709 0.1934
Indian Diabetes 0.2591 0.2682 0.2357 0.2839 0.2500 0.2370
Indian Liver 0.2953 0.2815 0.3592 0.3005 0.2694 0.3057
Image Segment 0.0091 0.0061 0.0045 0.0045 0.0091 0.0045
Parkinson’s 0.0667 0.0564 0.1385 0.0667 0.0974 0.0769
Planning Relax 0.4117 0.3791 0.3352 0.3731 0.4392 0.3573
Ring Norm 0.0288 0.0284 0.0312 0.0311 0.0276 0.0343
Sonar 0.1396 0.1397 0.1493 0.1443 0.1395 0.1491
Spambase 0.0511 0.0506 0.0798 0.0550 0.0476 0.0546
SPECTF Heart 0.2060 0.2135 0.2472 0.2060 0.2434 0.2135
Splice 0.0431 0.0408 0.0368 0.0481 0.0408 0.0381
Steel Plates 0.2102 0.2020 0.2694 0.2184 0.1999 0.2123
Twonorm 0.0300 0.0303 0.0297 0.0342 0.0288 0.0270
Waveform 0.0908 0.1008 0.0920 0.1032 0.0935 0.0860
WBPC 0.2424 0.2424 0.3030 0.2374 0.2525 0.2222
Wine Quality 0.0051 0.0038 0.0149 0.0042 0.0060 0.0045

Sum 3.5442 3.4289 4.0159 3.5590 3.7208 3.3730
VS.GAB 0.1153 0.0000 0.5870 0.1301 0.2919 −0.0559
No.Best 1 6 4 5 5 8
No.To.GAB 10 — 8 7 12 13

In Tables 1, 2, 3, 4, and 5, RAB, GAB, MAB, PAAB, MPB,
and PAB denote Real AdaBoost, Gentle AdaBoost, Modest
AdaBoost, Parameterized AdaBoost, Margin-pruning Boost,
and Penalized AdaBoost separately. The row of VS.GAB
shows the residues that the sum of generalization errors
of other variants subtracts that of Gentle AdaBoost. Here
the bold values show the best performance and No.Best
means the number of best generalization errors. No.To.GAB
denotes the number of data sets in which Gentle AdaBoost
is outperformed by others. From Tables 1, 2, and 3, we can
conclude that Real, Gentle, and Parameterized AdaBoost
perform similarly when using CART-1 as weak classifiers.
Modest AdaBoost performs worse than other variants at
most cases. Moreover, its error rates are rarely changed even
when the number of loops increases. Comparing No.Best of
Margin-pruning Boost in Tables 1, 2, and 3, we find that its
performance drops as the number of iterations increases. We
can also see that Penalized AdaBoost generally outperforms
other variants from VS.GAB, No.Best, and No.To.GAB in
Tables 1, 2, and 3. Comparing Tables 1, 4, and 5, we can
conclude that increasing the inner nodes of CART is impor-
tant to reduce the generalization errors. In Tables 4 and 5,

we can see that Gentle AdaBoost is slightly better than
Real AdaBoost. However, the performance of Parameterized
AdaBoost and Margin-pruning Boost drops sharply. This
means the two variants are more suitable for CART-1. On
the other hand, Modest AdaBoost using CART-2 or CART-
3 performs better than that using CART-1. This suggests
that Modest AdaBoost is suitable for CART with more inner
nodes. From all tables, we notice that the performance of
Gentle and Penalized AdaBoost is not degraded neither by
the number of inner nodes in CART nor by the number of
iterations. Nevertheless, Penalized AdaBoost shows stronger
robustness when compared with Gentle AdaBoost.

4. Conclusion

This paper analyzes the generalization abilities of six Ada-
Boost variantsmathematically.Thenovel contributions of our
work are listed as follows.

(1) There are many comparison studies of AdaBoost
variants. However, we compare three new proposed
variants (Parameterized AdaBoost, Margin-pruning
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Table 5: Test results at iteration 200 using CART-3.

Data sets: 25 RAB GAB MAB PAAB MPB PAB
Australian 0.1478 0.1536 0.1333 0.1594 0.1522 0.1203
Blood Transfusion 0.2863 0.2715 0.2392 0.2984 0.2527 0.2245
Banana 0.1040 0.1028 0.2142 0.1047 0.1002 0.1132
Banknote 0.0036 0.0022 0.0029 0.0015 0.0051 0.0022
Breast Cancer 0.0334 0.0281 0.0246 0.0281 0.0281 0.0281
Climate Model 0.0611 0.0519 0.0944 0.0593 0.0722 0.0500
Gamma Telescope 0.1300 0.1305 0.1770 0.1316 0.1278 0.1360
German 0.2870 0.2660 0.2780 0.2920 0.2750 0.2440
Heart Disease 0.2074 0.2185 0.2074 0.2074 0.2593 0.2000
Hepatitis 0.1932 0.1933 0.2252 0.1998 0.1934 0.2127
Indian Diabetes 0.2513 0.2552 0.2357 0.2695 0.2643 0.2344
Indian Liver 0.2781 0.2781 0.3437 0.3092 0.2867 0.2971
Image Segment 0.0015 0.0015 0.0030 0.0030 0.0061 0.0030
Parkinson’s 0.0718 0.0615 0.1026 0.0821 0.0769 0.0769
Planning Relax 0.3514 0.3844 0.3518 0.3459 0.3899 0.3682
Ring Norm 0.0277 0.0266 0.0296 0.0295 0.0296 0.0309
Sonar 0.1202 0.1395 0.1637 0.1636 0.1347 0.1349
Spambase 0.0528 0.0454 0.0728 0.0519 0.0476 0.0500
SPECTF Heart 0.2210 0.2022 0.2472 0.1948 0.2285 0.1948
Splice 0.0321 0.0361 0.0294 0.0428 0.0428 0.0308
Steel Plates 0.2030 0.2020 0.2653 0.2138 0.2035 0.1999
Twonorm 0.0319 0.0301 0.0288 0.0299 0.0304 0.0265
Waveform 0.1029 0.0972 0.0890 0.1053 0.1038 0.0872
WBPC 0.2323 0.2172 0.3030 0.2525 0.2273 0.2172
Wine Quality 0.0051 0.0038 0.0125 0.0048 0.0042 0.0038

Sum 3.4369 3.3992 3.8743 3.5808 3.5423 3.2866
VS.GAB 0.0377 0.0000 0.4751 0.1816 0.1431 −0.1126
No.Best 4 7 2 3 2 12
No.To.GAB 10 — 9 6 6 17

Boost, and Penalized AdaBoost) with three tradi-
tional variants (Real, Gentle, and Modest AdaBoost).
This kind of comparison is new in the machine learn-
ing studies.

(2) Differently from conventional comparison works that
draw conclusion from experimental results, we ana-
lyze the generalization abilities of the six variants by
comparing their classification margins.

(3) We design experiments to verify our analyses. The
experimental results are consistent with our analyses.

In general, the analyses and comparison in this paper are
useful for researchers who want to improve the classification
performance by switching to a new AdaBoost variant. In our
current research, we focus on two classification problems.
In our future work, we want to extend our analyses to mul-
ticlassification problems. In addition, we will compare more
kinds of weak classifiers such as SVM and ANN to find out
which kind of weak classifiers is suitable for which AdaBoost
variant.
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