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Functional verification has become one of the main bottlenecks in the cost-effective design of embedded systems, particularly for
symmetric multiprocessors. It is estimated that verification in its entirety accounts for up to 60% of design resources, including
duration, computer resources, and total personnel. Simulation-based verification is a long-standing approach used to locate design
errors in the symmetric multiprocessor verification. The greatest challenge of simulation-based verification is the creation of the
referencemodel of the symmetric multiprocessor. In this paper, we propose an efficient symmetric multiprocessor referencemodel,
Hybrid Model, written with SystemC. SystemC can provide a high-level simulation environment and is faster than the traditional
hardware description languages. Hybrid Model has been implemented in an efficient 32-bit symmetric multiprocessor verification.
Experimental results show our proposed model is a fast, accurate, and efficient symmetric multiprocessor reference model and it
is able to help designers to locate design errors easily and accurately.

1. Introduction

Recently, the symmetric multiprocessor (SMP) has become
a leading trend in the development of advanced embed-
ded systems. Meanwhile, with the rapid improvement of
the hardware manufacturing technologies and the help of
computer-aided design (CAD) tools, SMP systems become
more andmore powerful and complex. As a result, the design
verification of SMP systems takes up a large part of the total
design period. The verification method directly determines
the efficiency of SMP system verification and even the whole
design cycle.

A variety of techniques have been deployed to efficiently
and effectively detect design errors in SMP systems. These
techniques can be divided into three categories: formal ver-
ification, simulation-based verification, and hardware emu-
lation [1–3]. Various formal verification methodologies with
the relevant environment setup have been proposed and
used [4–9]. Formal verification, such as model checking and
theorem proving, takes advantage of mathematical methods
to judge whether the behavior of the design follows the rules
instituted by designers. With the increasing size of system

design, the space needed by formal verification is beyond
the ability of tools and the process of formal verification is
slow. As a result, the formal verification is not appropriate
in large-scale system verification, such as the SMP system
verification. Hardware emulation maps a gate level model of
the design onto Field-Programmable Gate Array (FPGA) on
the emulation system. It is much faster than the simulation-
based verification. The main disadvantage of the hardware
emulation is that it is difficult to debug when an error
takes place. Simulation-based verification [10–14] is the most
used method to verify the function of the SMP systems. It
generates instruction sequences that are then fed in parallel
to the design under test (DUT) and its reference model. Any
discrepancy between the twomodels indicates a design error.
Simulation-based verification is able to locate the errors easily
and rapidly, and it is not limited by the size of system. As a
result, it is widely used in SMP system verification.

Themajor drawback of themainstream simulation-based
approach is the difficulty of creating an efficient reference
model of the DUT in a short time.The success of simulation-
based verification depends on the accuracy and the quality
of the reference model in use. An efficient and accurate
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reference model is able to help designers locate errors easily
and quickly. Many researchers have already proposed various
reference models of the processor at presilicon. During the
simulation-based verification, most processors regard the
simulator as the reference model. These simulators are nor-
mally obtained from earlier stage in processor development,
in which simulators are used for performance evaluation
under benchmark [15]. Some of these simulators cannot
support SMP verification, such as SimpleScalar [16]. Some
other simulators, such as MARSS [17] and PTLsim [18],
can be implemented to verify SMP systems. However, these
simulators are usually timing-accurate; it is time-consuming
for design verification by using these simulators to act as
the reference model. In addition, the verification of these
simulators themselves is often very complicated due to their
architectural complexity [19]. As these models are usually
timing-accurate, they are called timing-accurate models
(TMs). The other type of reference model is Instruction Set
Simulator (ISS) that is function-accurate. ISS only cares about
the system function and its architecture is simple. These
simulators are relatively easy to ensure due to their simpler
architectures.This enables them to be used as referencemodel
in the functional verification of the single-core processors.
However, as they have no ability to sequence the out-of-order
load/store transactions amongCPUs perfectly, they cannot be
used to verify the SMP system efficiently. As these models are
function-accurate, they are called function-accurate models
(FMs). It is difficult to test the function of the SMP system
by using the timing-accurate models and function-accurate
models efficiently. Such difficulties prompt us to create an
efficient SMP reference model that is called Hybrid Model
(HM). This model is simpler and faster than the timing-
accuratemodel andmore accurate than the function-accurate
model. SystemC can be very effective in describing the
system architecture and functionality to support high-level
simulation. So SystemC can be used to obtain the efficient
HM. When the reference model has been created, tests are
fed in parallel to the DUT and its reference model to check
design correctness.

In a simulation process, function coverage analysis is
needed to check and show the quality of testing. It helps the
verification team to check whether the function points that
they want to simulate are covered during the testing phase.
Sometime, some direct tests written by hands are neededwith
the help of function coverage analysis to cover the missing
cases.The function coverage analysis is usually achieved from
the RTL (Register Transfer Level) code and indicated by one
signal or a set of signals. As the verification team is unfamiliar
with the RTL code, it is difficult for them to observe the
function points in RTL code, especially if the signals needed
by the function points do not exist in the RTL code and
the verification team has to turn to the designers for help.
It is necessary for the designers to add these signals that
are useless to the system function. In this way, the function
coverage analysis needs the interaction of the verification
team and the designers, so it is error-prone. However, the
verification team is familiar with the reference model that
is created by them. So if they achieve the function coverage
analysis from the reference model rather than from the RTL

code, the function coverage result can be more accurate. And
the direct tests are able to be written by the verification team
more effectively.

The main contribution of our work is that an efficient
SMP reference model is proposed. It is written with SystemC.
Acting as the SMP reference model, HM is simpler and faster
than TM and more accurate than FM. The second contribu-
tion is that we define a timing sequence called Dependent
Timing Sequence (DTS). The function of DTS is the timing
interface between two models. The final contribution is that
the function coverage analysis is able to be obtained from
HM. In this way, the verification team can achieve more
accurate coverage result quickly. Then the direct tests can be
written by them more effectively.

2. Hybrid Model

As shown in Figure 1, the Hybrid Model (HM) consists of
CPU Pipeline Model (CPM) and Cache Coherence Model
(CCM). A common SMP consists of CPU pipelines, Load
Store Units (LSUs), caches, and the interconnection between
CPUs. The interconnection is responsible for maintaining
the cache coherence between CPUs. The reference model
of CPU pipeline is the function-accurate CPM. As the
interconnection, LSU, and cache are related to load/store
transactions, they are called Load Store Module (LSM).
LSM is closely related to cache coherence and its reference
model is the timing-accurate CCM. CPM and CCM are
connected through DTS. The whole SMP system can be
verified efficiently with the cooperation of CPM and CCM.

In the validation process, when a test case is stressed on
the SMP system and HM simultaneously, the SMP system
executes and HM simulates the instructions in this test case
one by one. For each single instruction, the CPU pipeline
executes it and the execution results of the CPU pipeline
are obtained. If this instruction is a load/store instruction,
the CPU pipeline needs to send this instruction to LSM.
Then LSM executes this instruction and the execution results
of the LSM are obtained. In this way, the execution results
of the whole SMP system are obtained. On the HM side,
first CPM simulates this instruction and the simulation
results of CPU pipeline are achieved. If this instruction is a
load/store instruction, CPM has to pipe its timing stream to
CCM via DTS accordingly. The timing stream makes CCM
begin to simulate and the simulation results of LSM are
achieved by CCM. In this way, the simulation results of the
whole SMP system are achieved. At this time, the tool will
compare the execution results with the simulation results to
check the correctness. Once any discrepancy occurs, the tool
stops the simulation immediately. Then the tool will collect
the information of this instruction such as its execution
results and simulation results for the verification team. It is
convenient for the verification team to locate errors with the
help of these messages.

2.1. CPU Pipeline Model. An important part of HM is CPU
Pipeline Model (CPM) that is function-accurate. It can be
used to act as the reference model of CPU pipeline. CPM
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Figure 1: Efficient symmetric multiprocessor verification.
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only cares about the function of CPU pipeline rather than
its timing information. As shown in Figure 2, three impor-
tant modules of CPM are Loader, Decode, and Simulator.
When CPM receives a test case needed to be simulated,
Loader fetches the instructions in this test case one by one
from memory according to the program counter (PC) first.
Then Decode is responsible for decoding and interpreting
these instructions. The Simulator is implemented with non-
pipeline and it simulates these instructions directly. No
matter whether instructions in the SMP system are in-
order executed or out-of-order executed, they are retired
one by one sequentially. As a result, the simulation results
achieved by the nonpipeline Simulator directly are the same
as the execution results obtained by the processor after going
through complex CPU pipeline. For the instructions that are
not load/store transactions, there is no need for them to be
sent to LSM, as they are irrelevant to the cache coherence.
For these transactions, all the simulation results of them

can be achieved by CPM and the simulation is over after
updating the value of registers. For load/store transactions,
they need not only to go through CPU pipeline but also
be sent to LSM. CPM is responsible for piping the timing
stream of load/store instructions to CCM via DTS when it
has finished its simulation of these instructions. The timing
streammakesCCMbegin to simulate.The simulation process
of a load/store instruction is finished when CPM gets the
response from CCM and the value of registers is updated. If
an interrupt is found in this process, CPM needs to jump to
interrupt handler.

The simulation results of CPU pipeline can be obtained
rapidly, including much key information of the SMP system,
for example, PC, the value of registers, and the state of the
target processor. The tool compares these simulation results
achieved by CPM with the execution results obtained by
DUT. And any discrepancy indicates an error of the DUT. If
no discrepancy occurs and the simulating instruction is not
a load/store instruction, the simulation of this instruction is
finished successfully. If this instruction is a load/store instruc-
tion, CPM has to send the complete timing information of
this instruction to CCM via DTS. If an error occurs, the
simulation will be stopped at once and the simulation results
and the execution results are obtained directly to help the
verification team to locate and fix this error.

2.2. Cache CoherenceModel. Theother important part ofHM
is Cache Coherence Model (CCM) that is timing-accurate.
CCM is the reference model of LSM. As CCM is timing-
accurate, it needs to care about the details of LSM. However,
only the details that have an effect on the function points
that the verification team wants to simulate are considerable.
The function points are defined manually by the verification
team, and they are the combination of the characteristics
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of the DUT and a series of events that must be verified. In
the application, these events are analyzed by observing the
signals and states of the DUT.When the verification team has
finished listing these events, they would serialize the events
that have close relationship and outline their features. Finally
the events that have close data relationship are put in one
process according to the serialized events and the relationship
of data structure between these events. As a result, these
processes can be implemented with SystemC and run in
parallel. And the processes communicate with each other by
FIFO.

Figure 3 shows the common block diagram of the
interconnection, cache, and LSU of the SMP system. The
load/store transactions are first preserved in the Request
Buffer (RB) in LSU.Then these transactions are sent to cache
to decide whether the cache lines they want to access are
located in cache. Further, they are sent to the appropriate
buffers to wait for the chance to access the interconnection.
The store miss transactions are sent toWrite Buffer (WB), the
load miss transactions are sent to Load Buffer (LB), and the
store hit transactions are sent to Store Queue (STQ). Then
they are sent to the interconnection when they have obtained
the permission. The Coherence Unit (COHU) would main-
tain cache coherence between cores and handle the trans-
actions related to cache coherence. The address domains
of these transactions are cacheable and shareable. On the
contrary, the function of Noncoherence Unit (NCOHU) is
to deal with the transactions unrelated to cache coherence.
The address domains of these transactions are other domains.
The framework of the LSM is so complex; it is difficult
and time-consuming for CCM to be created the same as
the hardware. Some unnecessary hardware architectures can
be abstracted due to the relationship between the hardware
architectures and the function points the verification team
wants to simulate. If the abstraction of some hardware

architectures has no effect on the function points and the
accuracy, these hardware architectures can be removed in
CCM. When the number of cores in the multiprocessor
system has been changed, the designers would modify some
details of the interconnection according to the specification.

As themainmemory has a lower load/store speed, buffers
are utilized in the NCOHU to save load/store transactions
unrelated to cache coherence. However, it is fast to access
softwarememory.As a result, there is noneed to create buffers
for memory access in CCM. And sometimes more than one
transaction attempts to access cache, whereas cache is a one-
port element. So buffers are needed to save the outstanding
requests to cache. However, CCM can accept and execute
all the requests simultaneously, so no buffer is needed to
save these transactions to cache in CCM. The abstraction
of these buffers not only has an effect on the function, but
also can reduce the implementation time of CCM. However,
some hardware architectures cannot be abstracted; even any
discrepancy between the hardware and CCMmay cause fatal
functional mistakes.

The interconnection usually works faster thanCPU; some
of the transactions related to cache coherence need to be
saved inCOHU.Theorder of these transactions ismaintained
by COHU in order to achieve accurate execution results.
CCM has to deal with these load/store transactions in the
same way with hardware to obtain the right simulation
results. Figure 4 shows the different simulation results caused
by the different orders of store transactions. A certain cache
line is located in both CPU0 and CPU1 cache. At cycle A,
CPU0 and CPU1 send store requests to the interconnection
simultaneously. As shown in Figure 4(a), as the arbitration
result of these two store transactions is that CPU0 could
execute the store transaction before CPU1, the store trans-
action of CPU0 is accepted by the interconnection at cycle
A; however, the store transaction of CPU1 is not accepted
which is indicated by the symbol∗.Then the store transaction
of CPU1 is accepted by the interconnection at cycle B. At
cycle C, the cache line in CPU1 cache is invalidated by the
interconnection and the state of the store transaction of CPU1
is modified from store hit to store miss. At cycle D, the
interconnection accepts the load transaction of CPU2, and
the data CPU2 loads is 2. On the other hand, as shown
in Figure 4(b), if the arbitration result of these two store
transactions is that CPU1 could execute the store transaction
before CPU0, the data CPU2 loads would be 1 at cycle D.The
dataCPU2 gets highly depends on the arbitration of these two
store transactions of CPU0 and CPU1. Different execution
orders lead to different results; hence, CCM has to achieve
timing-accurate for these transactions to avoid errors.

Figure 5 shows the block diagram of CCM. The function
ofNCOHU is the same as that of SMP. But there are no buffers
in NCOHU of CCM.The COHU of CCM is the same as that
of SMP, not only their functions but also timing. No buffer
is needed for cache in CCM. When the number of cores in
the multiprocessor system has been changed, the verification
team would modify some details of CCM according to the
hardware changes made by the designers. Hence, HM can go
to perform well even when the number of cores increases to
hundreds.
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2.3. Dependent Timing Sequence. Dependent Timing
Sequence (DTS) is the timing interface between CPM and
CCM. For every single instruction, CPM simulation and
CPU pipeline execution proceed simultaneously. The tool
compares the simulation results with execution results all the
time. If no error is found in CPU pipeline and the simulating
instruction is a load/store transaction, CPM is responsible
for delivering the timing information of this transaction to

DTS. CPM is aware of all the timing information of this
transaction except for the cycle number whose function
is to notify CCM when to begin its simulation. However,
CPM can find this information from the execution results
of hardware. In this way, the complete timing sequence
of this transaction can be obtained and piped to DTS by
CPM. DTS includes all the timing information CCM needs.
Then CCM reads the timing information from DTS and
begins its simulation. Figure 6 shows the timing information
in a simulation process. Transaction type indicates the
type of this transaction. Transaction size indicates the byte
amount in this transaction. Data means the data CPU stores
and x indicates that this transaction is a load transaction.
Coherence indicates whether this transaction relates to cache
coherence or not. As shown in Figure 6, at cycle number
21, CPU0 stores 1 into address 0x1fff fee8, and CPU1 stores
2 into the same address. If these two store transactions are
both store hit transactions, the condition is similar to what is
shown in Figure 4.

As different kinds of CCMs may need different timing
information, the information in DTS should be adjusted to
meet the timing requirements of CCM.

2.4. Function Coverage Analysis. As HM is written by ver-
ification team and only includes the considerable function
points, it is fast to obtain the function coverage report. More-
over, the isolation between system design and verification
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due to the proposed function coverage analysis approach can
avoid many unnecessary errors in function coverage report
and make the analysis more accurate.

3. Experimental Results

3.1. Verification Platform. We selected the CK810MP of
Hangzhou C-SKY Microsystems Co., Ltd., to evaluate the
feasibility of HM. As shown in Figure 7, CK810MP system
consists of several modified CK810 processors, intercon-
nection, and memory. CK810 is a high-performance 32-bit
embedded processor based on CSKY v2 instruction set and
its LSU is modified to support cache coherence according
to the specification. A number of CK810 processors are
connected by a bus-based interconnection that is responsible
for maintaining cache coherence and dealing with requests
to memory. The data channel and instruction channel are
separate to increase bandwidth. Finally, an efficient SMP,
CK810MP, is obtained with the addition of memory. We
made extensive experiments with a CK810 quad-processor
system, as the quad-processor is the mainstream of the
embedded systems currently, such as mobile phones and
personal computers. In addition, the quad-processor can
meet the performance requirement of most of embedded

applications, and it is a good tradeoff between performance
and power.We chose SystemC to act as our program language
and created a timing-accurate model (TM), a function-
accurate model (FM), and a Hybrid Model (HM) to act as
the referencemodels of CK810 quad-processor. As FM is only
interested in the design function and easy to be created, it
tookmore than 20 days to complete thismodel. It took almost
6 months to achieve the TM, as it cares about the majority of
details of the target CK810 quad-processor. As the HM pays
attention to a part of the details of the target processor, it took
almost a month to obtain HM. To compare our proposed
model with state-of-the-art simulation models, we selected
GEM5 [20], which is a popular open-source timing-accurate
multiprocessor simulator, to act as the reference model of
the target CK810 quad-processor. GEM5 simulator supports
a wide range of processor instruction set architectures (ISA),
such as Alpha, ARM,MIPS, PowerPC, and x86. However, the
GEM5 simulator cannot support the CSKY v2 instruction set.
TheCSKY v2 instruction set ismuch less complex thanARM.
Moreover, the similar instructions can be found in ARM
instruction set for most of the instructions of the CSKY v2
instruction set. Hence, we can use CSKY-to-ARM instruction
translation to make GEM5 support the CSKY v2 instruction
set and act as the reference model of CK810MP system.

Figure 8 shows the verification platform of CK810MP.
DMA (Directly Memory Access) is able to help improve the
system performance effectively. TLB (Translation Lookaside
Buffer) translates virtual addresses to physical addresses.
Each test was generated by a test generator based on random
selection from more than 20 types of instructions, such as
math, logic, load, store, and jump supported by the CK810
core. The generated tests were stressed on CK810MP system
and its four reference models, respectively. The function
coverage analysis was performed to direct the verification
effort. We obtained four comparison results by comparing
execution results of CK810MP system with the simula-
tion results of these four reference models. According to
these four comparison results, errors of CK810MP were
discovered.
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3.2. Simulation Speed. The test generator generated 4000
tests each with 100 instructions, including the boot sequence
used to initialize the CK810 core. In the first experiment,
we compared the simulation speeds of these four models
of CK810MP. To obtain the differential results, these 4000
tests were divided into 10 test groups randomly and each test
group has various numbers of tests. The numbers of tests
included by these 10 groups gradually increased from the
first one to the tenth one. Then these test groups were fed
to the reference models of CK810 quad-processor system,
respectively, to compare their simulation speeds. Figure 9
shows the average simulation time of these four reference
models stressed by these test groups. As shown in Figure 9,
the simulation speeds of TM and GEM5 are similar, and they
are the slowest in these four referencemodels as they are both
timing-accurate. The simulation speed of FM is about 600
times those of TM and GEM5, and it is the fastest in these
four reference models. The simulation speed of HM is about
30 times those of TM and GEM5. In comparison to FM, HM
is slower, but it has a much better performance than TM and
GEM5 in speed.

Further, we focused on the functional design of CPU
pipeline in HM (denoted as CP-FM) and the timing-accurate
model of CPU pipeline in TM (denoted as CP-TM) to explain
why HM has obvious speed advantages comparing with TM.
The test groups were fed to CP-FM and CP-TM to compare
their simulation speed. Figure 10 shows the comparison of
simulation speeds of CP-FM and CP-TM. The simulation
speed of CP-FM is about 720 times as that of CP-TM. This
means the speed advantage of HM comes from the functional
model of the CPU pipeline.

3.3. Accuracy. In the second experiment, we compared the
accuracy of these four models indicated by the number of
errors found by them. The 4000 tests in the simulation
environment were divided into 10 test groups each with
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400 tests randomly. Then these test groups were stressed on
CK810MP system and its four reference models, respectively.
Figure 11 shows the number of the errors found by these
10 test groups and accumulated errors found by these four
reference models. As shown in Figure 11, the abilities of TM
and HM to find errors are similar and stronger than those
of GEM5 and FM. The accumulated errors found by HM
are about 1.5 times as many as those found by GEM5. And
the accumulated errors found by HM are about four times
as many as those found by FM. The ability of FM to find
errors is the weakest in these four reference models. As the
GEM5 simulator is developed specifically to evaluate the
performance of embedded systems, its details could not be
the same as the details of the CK810 quad-processor system.
Therefore, the accumulated errors found by GEM5 are much
less than those found by TM and HM.



8 Journal of Electrical and Computer Engineering

1

10

100

1000

10000

100000

1s
t

gr
ou

p

2n
d

gr
ou

p

3r
d

gr
ou

p

4t
h

gr
ou

p

5t
h

gr
ou

p

6t
h

gr
ou

p

7t
h

gr
ou

p

8t
h

gr
ou

p

9t
h

gr
ou

p

10
th

gr
ou

p

Si
m

ul
at

io
n 

tim
e (

s)

CP-TM
CP-FM

Figure 10: Comparison of simulation speeds of the function-
accurate model and timing-accurate model of CPU pipeline.

0

10

20

30

40

50

60

Er
ro

r n
um

be
r

1s
t

gr
ou

p

2n
d

gr
ou

p

3r
d

gr
ou

p

4t
h

gr
ou

p

5t
h

gr
ou

p

6t
h

gr
ou

p

7t
h

gr
ou

p

8t
h

gr
ou

p

9t
h

gr
ou

p

10
th

gr
ou

p

GEM5
TM

HM
FM

(a)

0

50

100

150

200

250

300

Er
ro

r n
um

be
r

Simulation time

GEM5
TM

HM
FM

(b)

Figure 11: (a) Error number found by test groups; (b) accumulated
errors.

Time

LDEX @A

STEX @A (Y)

STEX @B (N)

(a)

LDEX @A

STEX @C (N)

STEX @B (N)

(b)

LDEX @A

STEX @B (N)

STEX @A (N)

(c)

Figure 12: An example of exclusive transactions. (a) The correct
implementation. (b) The wrong execution result caused by a design
error. (c) The wrong simulation result caused by the timing incon-
sistency.

As soon as these four reference models’ writing is
finished, they are put into operation in the CK810 quad-
processor verification. However, here these models are not
exactly the correct golden models defined by the specifica-
tion, especially the TM.TheCPUpipeline of the CK810 quad-
processor is a complex dual-emission superscalar 10-stage
pipeline; hence some inconsistency between TM and the cor-
rect timing-accurate model is unavoidable at the beginning
of simulation. The elimination of the inconsistency needs to
take a lot of time. Before the TM becomes a correct timing-
accurate model, it may obtain wrong simulation results
because of some timing inconsistency, whereas the processor
achieves the wrong execution results caused by a design error.
If the wrong simulation results and the wrong results are
the same, unfortunately, TM would take the attitude that
the hardware is infallible. Figure 12 shows a simple example,
where the results of store exclusive transactions are shown in
brackets in red. Y indicates that the store exclusive transaction
succeeds, while N shows that the store exclusive transaction
fails. Figure 12(a) shows the correct implementation of three
exclusive transactions, consisting of a load exclusive trans-
action and two store exclusive transactions. The first store
exclusive transaction is executed successfully, as the exclusive
transaction before this store exclusive transaction is a load
exclusive transaction and they have the same address. The
second store exclusive transaction fails. However, the address
of the first store exclusive transaction is modified by a design
error in CPU pipeline from address A to address C, as shown
in Figure 12(b). As a result, the first store exclusive transaction
fails. At the same time, as shown in Figure 12(c), TM inverts
the order of two store exclusive transactions and these two
store exclusive transactions both fail. In this way, TM cannot
find this design error of CPU pipeline. However, HM is able
to discover this design error as it can simulate these three
exclusive transactions in the right order and obtain the right
simulation results as shown in Figure 12(a). Hence, the design
errors found by theHMaremore than those found by the TM
when the first two test groups are simulated.

As the simulation goes on, these models are all modi-
fied by the verification team to become the correct golden
models gradually. At this time, if some timing errors of CPU
pipeline do not influence the function of the CK810 quad-
processor, the TM can discover these timing errors but the
HM cannot. As an example, the interval between the load
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Figure 13: Coverage of function points.

exclusive transaction and the first store exclusive transaction
in Figure 12 should be 10 cycles according to plan. However,
the store exclusive transaction executed 2 cycles in advance
because of the inappropriate change of a request pointer.This
store exclusive transaction still succeeds.HMcannot discover
this timing error but TM can, as the interval between these
two exclusive transactions is ten cycles in TM. As a result, the
design errors found by the TM are more than those found
by the HM when the last eight test groups are simulated.
And the accumulated errors found by the TM are more than
those found by the HM at the end of simulation. However,
the design errors that HM cannot discover have no effect on
the function of processor andmost of them can be discovered
with the help of assertion checkers.

To compare the accuracy of four referencemodels further,
we analyzed the coverage of function points that we want
to simulate. Figure 13 shows the coverage of function points
in these four reference models. The interconnection, cache,
and LSU have 253 function points. HM and TM are capable
of covering all the function points basically and the GEM5
simulator can cover partial function points. However, FM can
only cover a few of function points.

Further, we focused on CP-FM and CP-TM to compare
their accuracy and explain why HM has obvious speed
advantages comparing with TM, while maintaining similar
accuracy, by using the test groups used in Figure 11. Figure 14
shows the design errors found by these 10 test groups and the
comparison of the accumulated errors found by CP-FM and
CP-TM. As shown in Figure 14, 60 to 70 percent of design
errors of the CK810 quad-processor are in the CPU pipeline,
and the abilities of CP-FM and CP-TM to find errors are
similar. The accumulated errors found by CP-TM are a little
more than those found by CP-FM, as CP-TM can find the
timing errors of CPU pipeline but CP-FM cannot. However,
these errors are not functional errors and most of them can
be discovered by assertion checkers.The experimental results
in Figures 10 and 14 show that the function-accurate model

0

5

10

15

20

25

30

35

40

Er
ro

r n
um

be
r

CP-TM
CP-FM

1s
t

gr
ou

p

2n
d

gr
ou

p

3r
d

gr
ou

p

4t
h

gr
ou

p

5t
h

gr
ou

p

6t
h

gr
ou

p

7t
h

gr
ou

p

8t
h

gr
ou

p

9t
h

gr
ou

p

10
th

gr
ou

p

(a)

0

20

40

60

80

100

120

140

160

180

Er
ro

r n
um

be
r

Simulation time

CP-TM
CP-FM

(b)

Figure 14: (a) Error number found by test groups; (b) accumulated
errors found by the function-accurate model and timing-accurate
model of CPU pipeline.

of the CPU pipeline is much faster than the timing-accurate
model of the CPU pipeline, while the accumulated errors
found by them are similar. This means the advantages of HM
come from the functional design of the CPU pipeline model.

4. Conclusion

Anaccurate and efficient symmetricmultiprocessor reference
model is proposed in this paper. The function coverage
analysis is able to be achieved from it to help the verification
team to write direct tests more accurately. This reference
model has been implemented for a 32-bit symmetric mul-
tiprocessor verification. The experimental results show that
the number of errors found by our proposed model is
about 4 times that found by a function-accurate model. Our
proposed model has a better performance in finding errors
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than the function-accurate model. The simulation speed of
our proposed model is about 30 times as high as that of a
timing-accurate model in the same condition. In comparison
to the timing-accurate model, our proposed model is easier
to create and faster, whereas their abilities to find errors are
similar. The advantages of the proposed model come from
the functional design of the CPU pipeline model. With the
help of our proposed model, the verification team can locate
design errors more quickly and verify the interconnection
more efficiently. The time for symmetric multiprocessor
verification can be shortened obviously with our proposed
model.
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[5] M.Amrani, L. Lúcio, G. Selim et al., “A tridimensional approach
for studying the formal verification of model transformations,”
in Proceedings of the 5th IEEE International Conference on
Software Testing, Verification and Validation (ICST ’12), pp. 921–
928, IEEE, Montreal, Canada, April 2012.

[6] S. F. Siegel and T. K. Zirkel, “Automatic formal verification of
MPI-based parallel programs,” in Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming
(PPoPP ’11), pp. 309–310, San Antonio, Tex, USA, February 2011.

[7] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu, “Using for-
mal verification to evaluate human-automation interaction: a
review,” IEEE Transactions on Systems, Man, and Cybernetics
Part A: Systems and Humans, vol. 43, no. 3, pp. 488–503, 2013.

[8] R. Zhou, R. Min, Q. Yi, C. Li, and Y. Sheng, “Formal ver-
ification of fault-tolerant and recovery mechanisms for safe
node sequence protocol,” in Proceedings of the 28th IEEE
International Conference on Advanced Information Networking

andApplications (AINA ’14), pp. 813–820,Victoria, Canada,May
2014.

[9] H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo,
“Incremental formal verification of hardware,” in Proceedings
of the Formal Methods in Computer-Aided Design (FMCAD ’11),
pp. 135–143, Austin, Tex, USA, October 2011.

[10] E. Guralnik, M. Aharoni, A. J. Birnbaum, and A. Koyfman,
“Simulation-based verification of floating-point division,” Insti-
tute of Electrical and Electronics Engineers. Transactions on
Computers, vol. 60, no. 2, pp. 176–188, 2011.

[11] S. Seidel, U. Donath, and J. Haufe, “Approach to a simulation-
based verification environment for material handling systems,”
in Proceedings of the IEEE 17th International Conference on
Emerging Technologies & Factory Automation (ETFA ’12), pp. 1–
4, Krakow, Poland, September 2012.

[12] A. Braun, O. Bringmann, D. Lettnin, and W. Rosenstiel,
“Simulation-based verification of the MOST netinterface spec-
ification revision 3.0,” in Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition (DATE ’10), pp.
538–543, Leuven, Belgium, March 2010.

[13] A. S. Kamkin and M. M. Chupilko, “Survey of modern
technologies of simulation-based verification of hardware,”
Programming and Computer Software, vol. 37, no. 3, pp. 147–152,
2011.
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