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This paper proposes a two-stage method for hand depth image denoising and superresolution, using bilateral filters and learned
dictionaries via noise-aware orthogonal matching pursuit (NAOMP) based K-SVD. The bilateral filtering phase recovers singular
points and removes artifacts on silhouettes by averaging depth data using neighborhood pixels on which both depth difference
and RGB similarity restrictions are imposed.The dictionary learning phase uses NAOMP for training dictionaries which separates
faithful depth from noisy data. Compared with traditional OMP, NAOMP adds a residual reduction step which effectively weakens
the noise term within the residual during the residual decomposition in terms of atoms. Experimental results demonstrate that the
bilateral phase and theNAOMP-based learning dictionaries phase corporately denoise both virtual and real depth images effectively.

1. Introduction

With the development of 3D range imaging devices such
as laser scanner, Kinect sensor, and Time-of-Flight (ToF)
cameras, depth images are widely used in various research
fields including computer vision, computer graphics, vir-
tual reality, and human computer interaction. While laser
scanners provide 3D measurements with precise accuracy,
Kinect sensor and ToF cameras provide a convenient way to
accomplish 3D range imaging in faithful time, which facilitate
many applications with high requirement of efficiency and
convenience.

However, depth images provided by Kinect sensor or
ToF cameras, either in structured light principle or in ToF
principle, suffer from lower quality and resolutions because
of the deficiency of received light speckles and the noise
incurred from ranging environment. Typically, depth images
produce holes, missing regions, or unstable boundaries and
nonzero-mean Gaussian noise (see Figure 1).

The research work devoted to enhancement of depth
images, including superresolution of depth images and
denoising depth images, can be roughly divided into three
categories: filtering methods, probabilistic methods, and

sparse representation methods. In general, filtering methods
[1–6] perform depth enhancement by using filters, based
on the assumption that faithful depth data and noise be
separable in frequency domains; probabilisticmethods [7–12]
formulate the depth enhancement as the uncertainty problem
of depthmeasurement and use probabilistic graphicalmodels
to resolve; sparse representation methods [13–18] model the
depth enhancement problem as a sparse optimization by
assuming that faithful depth data have an underlying sparse
or low-rank structure.

Hand depth image denoising and superresolution are
important for hand-based human-machine interaction.
Although many research works have been proposed for
RGB/depth image denoising and superresolution, conven-
tional approaches do not work well for hand depth images.
This is because the resolutions of depth images captured
from Kinect sensor are 512 × 424, where the hand takes only
a very small subregion (typically 170 × 150 in our experi-
ments). Thus traditional approaches usually confuse depth
with noise and are unsuitable for such small scale depth data.

This paper proposes hand depth image denoising and
superresolution using bilateral filters and NAOMP-based
dictionaries. The bilateral filtering phase recovers singular
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Figure 1: Color/depth images of human hands captured from Kinect sensor v2.

points and removes artifacts on silhouettes by averaging
depth data with restrictions of both depth difference and
RGB similarity. The dictionary learning phase uses the K-
SVD method with the NAOMP for training dictionaries to
separate faithful depth from noisy data. While traditional
orthogonal matching pursuit (OMP) works well for training
dictionaries to denoise RGB images, the performance of
denoising depth images deteriorates badly as depth images
involve nonzero-meanGaussian noise. As a result, traditional
dictionary learning algorithm (e.g., OMP-based K-SVD)
cannot prevent noisy data from penetrating dictionaries
which results in an unsatisfied denoising effect. To improve
traditional OMP-based K-SVD for fitting nonzero-mean
Gaussian noise which frequently appears in depth data, we
propose NAOMP for replacing traditional OMP in K-SVD,
where the noise term within residuals is weakened in each
atom updating step. Such a modification gives dictionaries
capable of representing faithful depth data in a more pre-
cise fashion. Experimental results show that the proposed
bilateral filters and NAOMP-based dictionaries corporately
give promising results for denoising both virtual and real
depth data, compared with traditional bilateral filters and
traditional OMP-based dictionaries.

This paper is organized as follows. Section 2 reviews pre-
vious work on enhancing depth images. Section 3 proposes
the bilateral filtering phase using RGBD data, which first

recovers singular points and then removes incorrect points
over silhouettes and finally removes nonsingular points
over nonsilhouette regions. Sections 4 and 5 propose depth
image denoising and superresolution, respectively, both using
learning dictionaries via NAOMP-based K-SVD. Section 6
shows experimental results with both virtual and real hand
depth images.

2. Previous Work

Previous work on enhancing depth images is reviewed in
this section, including superresolution of depth images and
denoising depth images in the following three categories.

2.1. Filtering Methods. Yang et al. [1] construct a 3D volume
of depth probability, impose a bilateral filter over the volume
iteratively, and obtain high-resolution depth images by taking
the winner-takes-all approach on the weighted volume and
a subpixel refinement afterward. Huhle et al. [2] present a
two-stage depth enhancement method, which first removes
outliers from depth data and then performs smoothing via a
nonlocal means filter which uses the similarity of both color
and intrapatch of depth. Wasza et al. [3] propose a GPU-
based depth image preprocessing, including a normalized
convolution for restoring depth images, a bilateral temporal
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averaging for dynamic scenes, and a guided filter for edge-
preserving denoising.Min et al. [4] propose a joint histogram
of depth maps for measuring color similarity between refer-
ence and neighboring pixels and find a global mode solution
via ℓ
1
-norm minimization for depth video enhancement. Fu

et al. [5] propose a spatial-temporal denoising algorithm
which exploits both the intraframe spatial correlation and
the interframe temporal correlation to fill the depth hole
and suppress the depth noise. Camplani and Salgado [6]
propose a joint-bilateral filtering framework for denoising
depth images, by evaluating missing depth values with a filter
to neighboring pixels involving both spatial and temporal
information, with the filter weights selected as a function of a
photometric similarity measure of the neighbor pixels.

2.2. Probabilistic Methods. Mac Aodha et al. [7] explore the
height field of patches of low-resolution depth images and
select high-resolution candidate depth patches by solving
a Markov Random Field (MRF) labeling problem. Shen
and Cheung [8] use depth layers to account for the differ-
ences between foreground objects and background scene,
the missing depth value phenomenon, and the correlation
between color and depth channels and consider the depth
layer labeling as amaximum a posteriori estimation problem.
Wang et al. [9] evaluate the confidence of depth map for
adaptive weighting of MRF energy terms and introduce a
guided depth recovering method in the framework of MRF
optimization for handling large holes across multiple image
regions. Li et al. [10] segment the input low-resolution depth
image into several regions with different labels which corre-
spond to a high-resolution counterpart on training images
and formulate the depth superresolution as an MRF-based
patchwork assembly problem. Hui and Ngan [11] propose
a variational-based depth map enhancement by fusing the
depthmaps from the active sensor of a moving RGBD system
and the depth cues from an induced optical flow. Yang et al.
[12] propose a regressionmethod for enhancing depth images
using RGB-D data, which first fits the regression model
for depth images and then designs pixel-wise regression
predictors using the similarity of depth images and the
accompanied color images.

2.3. Sparse Representation Methods. Schuon et al. [13] com-
bine several low-resolution noisy depth images of a static
scene from slightly displaced viewpoints and merge them
into a high-resolution depth image with ToF calibration
data. The depth superresolution problem is formulated as an
optimization of a data reconstruction term plus a sparsity
term of spatial gradient for separating noise from features.
Li et al. [14] propose a novel joint example-based depth map
superresolution method which reconstructs high-resolution
depth images by learning a mapping function from a set
of training samples of an image database. Kiechle et al.
[15] propose a joint intensity and depth cosparse model for
depth map superresolution, by assuming that the cosupports
of corresponding intensity and depth image structures be
aligned. Zheng et al. [16] propose constructing multiple
dictionaries with different structures and different number
of atoms for sparse representing each low-resolution patch of

depth images. Xie et al. [17] learn a coupled dictionary with
local coordinate constraints and incorporate an adaptively
regularized shock filter to sharpen the edges and implement
both depth superresolution and depth denoising. Lu et al. [18]
assemble similar RGBD patches into a low-rank matrix in
order to prevent the noise or weak correlation between color
and depth.

3. RGBD-Based Bilateral Filters

This section proposes the bilateral filtering phase, which
preprocesses depth images by using bilateral filters with
both depth and RGB restrictions. The phase includes the
following three steps. The depth of each singular point of
depth images is corrected by averaging depths over the
neighborhood according to a rule of both RGB comparison
and depth histogram difference; the depth of each point
over silhouettes is corrected by averaging depths over the
neighborhood according to a rule of both RGB comparison
and depth difference; the depth of other points is corrected
using traditional bilateral filters, that is, by averaging depths
over spatial neighborhood.

Let 𝐼
𝑞
be the intensity values/depth value at the pixel 𝑞 of

an intensity/depth image. Traditional filters at the pixel𝑝with
respect to its neighborhoodΩ

𝑝
are given by
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where Ω
𝑝
= {𝑞 ∈ N2 : |𝑝(1) − 𝑞(1)| ≤ 𝜖, |𝑝(2) − 𝑞(2)| ≤ 𝜖}

denotes an 𝜖 × 𝜖 spatial neighborhood of 𝑝 with 𝑝(1), 𝑝(2)
representing the row index, the column index of 𝑝 within
images, respectively, 𝑘

𝑝
denotes the normalization term,

𝑓(𝑝, 𝑞) is the 2D Gaussian smoothing kernel (known as the
domain term)whichmeasures the closeness of the pixels, and
𝑔(‖𝐼
𝑝
− 𝐼
𝑞
‖
2
) is the 1D Gaussian smoothing kernel (known as

the range term) which measures the similarity of RGB/depth
values of the pixels in RGB/depth images.

3.1. Recovering Singular Points. The singular points of a depth
image are referred to as the points whose depth is undetected.
For each singular point 𝑝 of depth images, we first set an
initial depth value 𝐷initial

𝑝
at 𝑝 as the average of depths which

are no smaller than (1/2)𝐷Ωmax in the neighborhood Ω
𝑝
of 𝑝

(choosing such an initial value because experimental results
indicate that the depths over the neighborhood of a singular
point belong to two regions generally: an interval determined
by the depths of the target hand and an interval determined
by the depths of the background. Experimental results show
that (1/2)𝐷Ωmax separates two intervals well and hence gives
an initial approximation of depth at 𝑝), where 𝐷Ωmax is the
maximum depth over Ω

𝑝
, and then choose a suitable subset

of Ω
𝑝
whose histogram of depth is much greater than the

histogram of depth at 𝑝 (choosing such a subregion of the
neighborhood of 𝑝 overcomes directly choosing a spatial
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Figure 2: Left to right: noisy depth images, images preprocessed by traditional filters, images preprocessed by the proposed filters (2)–(4),
and comparison details. One can check from details that the proposed filters (2)–(4) make artifacts on silhouettes either removed or remained
with a small number while traditional filters turn artifacts into a shadow effect. Although those shadow artifacts give smaller depth values,
the continuous region where the artifacts locate make them difficult to be removed in the dictionary learning phase.

neighborhood of 𝑝, because the RGB comparison improves
the confidence of the pixels and because the histogram of the
depth avoids producing shadows within the silhouette. We
illustrate this improvement in Figure 2). Finally we select the
filtered value of the depth at the pixel𝑝 by averaging the depth
data with respect to both the domain term and the range term
provided that the confidence pixels are enough; otherwise
the singular points remain as the same value (such untreated
singular points are much less than before and are dispersed
within the depth image and can hence easily be treated in the
second phase). That is,
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image, respectively, 𝑘
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𝐷
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= 𝑑}| denoting the number of pixels within Ω whose
depth value is equal to 𝑑.

3.2. Removing Incorrect Points on Silhouettes. For all non-
singular points 𝑝 located the silhouettes of depth images,
we modify its depth value at the pixel 𝑝 by first choosing
a suitable subset of Ω

𝑝
whose depth is much greater than

the depth of 𝑝 and whose RGB values are similar to 𝑝’s and
then averaging the depth data within the background domain
(corresponding to the restriction of depth difference) with
similar RGB values at 𝑝, provided that such suitable pixels
are enough. That is,
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denotes the confidence subset of a square neighborhood Ω
𝑝

of 𝑝 with both a depth difference restriction and an intensity
similarity restriction.

3.3. Removing Other Incorrect Points. For all other nonsingu-
lar points 𝑝 of depth images, we treat them with a smoothing
filter based on the similarity of both depth value and RGB
values. That is,
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7
× 𝜖
7
square neighborhood of 𝑝 (different

from subtle filtering (2) and (3) where both of the neighbor-
hoods are determined by a depth difference restriction and an
intensity similarity restriction, the filtering (4) simply selects
a square neighborhood without additional restrictions. This
is because the filtering (2) and (3) treats singular points
and incorrect points on silhouettes which require careful
treatment, whereas the filtering (4) performs a smoothing
effect over the whole square neighborhood of the point which
needs smoothing.).

Figures 2 and 3 show some comparison results of depth
images using traditional filters [6] and the proposed filters
(2)–(4). In a word, the proposed filters recover singular
points using neighboring points with a quantity restriction
(2) and correct artifacts using neighboring points with an
intensity restriction (3), while traditional bilateral filters
accomplish such tasks by directly averaging points within
spatial neighborhood. Therefore, traditional filters always
produce new artifacts while the proposed filters either correct
the artifacts over silhouettes or suppress them in a small
number without creating new ones, so that they can be easily
treated in the next dictionary learning phase.
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Figure 3: Bilateral filters on hand depth images. Left: noisy depth
images. Middle: depth images with bilateral filters (1). Right: depth
images with bilateral filters (2)–(4).

4. Hand Depth Denoising Using
Noise-Aware Dictionaries

This section proposes the dictionary-based denoising phase,
followed by the bilateral filtering phase given in Section 3.
Recovering the original image from a degraded image with
additive white Gaussian noise can be modelled by solving the
ill-posed system Y = X + k, where Y denotes the degraded
image, X denotes the original image, and k denotes the noise
term. Sparse representation is an important tool for solving
such an ill-posed system. According to sparse representation,
natural images can be represented by a linear combination of

a series of overcomplete basis (known as a dictionary) with
very few nonzero combinational coefficients. Therefore, by
denoting D ∈ R𝑛×𝐾 to be such a dictionary whose columns
are basis vectors (known as atoms) with 𝐾 ≫ 𝑛, the original
image can be obtained by imposing an ℓ

0
-norm constraint of

the coefficients 𝛼 over the system Y = D𝛼 + k. In particular,
we select image patches of size√𝑛×√𝑛 pixels randomly from
Y as training data and order each patch lexicographically as
column vectorsY

𝑖𝑗
∈ R𝑛.Thenwe obtain a trained dictionary

D and sparse coefficients 𝛼
𝑖𝑗
simultaneously via the following

ℓ
0
-minimization of all coefficients of training data:

min
D,{𝛼𝑖𝑗}

∑
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𝑖𝑗

∀ (𝑖, 𝑗) ∈ Ωtrain,

(5)

whereΩtrain denotes the training set of indices of patches ofY
we randomly select. The original image X is finally recon-
structed by assembling all image patches X

𝑖𝑗
= D𝛼
𝑖𝑗
with 𝛼

𝑖𝑗

given by

min
𝛼𝑖𝑗∈R

𝐾


𝛼
𝑖𝑗

0

s.t. D𝛼
𝑖𝑗
≈ Y
𝑖𝑗

∀ (𝑖, 𝑗) .

(6)

Because (5) and (6) are both nonconvex systems involving
the ℓ
0
-norm minimization, developing efficient algorithms

for solving them is an important task. Elad and Aharon [19]
propose the K-SVD algorithm to solve (5), by constructing
a dictionary iteratively from training signals with a sparse
coding phase and an atom update phase. Within the sparse
coding phase of K-SVD and the optimization problem (6),
OMP is a greedy algorithm frequently used for solving the
ℓ
0
-norm minimization.
While traditional K-SVD denoises traditional images

well for zero-mean Gaussian additive noise, it is not well
suited for denoising depth images with nonzero-mean noise
because traditional OMP can hardly separate noise data from
noiseless image when the amplitude of noise has an irregular
distribution. To remove such noise from depth images in
a more effective fashion, traditional OMP is improved by
modifying the amplitude of entries of residual whenever such
entries have large amplitude and a small quantity. Figure 4
helps readers understand how this idea works. The 𝑦-axis
represents the value of each component of residuals while the
𝑥-axis represents the index of each component of residuals.
Let 𝑟
𝑠−1

be the residual obtained in an iteration of OMP.
The left subfigure of Figure 4 shows how traditional OMP
represents residuals when the noise is zero-mean Gaussian.
While 𝑟

𝑠−1
contains four components heavily contaminated

by noise (denoted by blue cubes, i.e., the original training
data Y has noise terms in the positions of those four com-
ponents), the least square fitting, obtained when computing
the sparse coefficients, approximates noiseless components
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Figure 4: The difference between how OMP and NAOMP work on decompositions of residuals with nonzero-mean noise. Left: traditional
OMP for zero-mean Gaussian noise. Middle: traditional OMP for nonzero-mean noise. Right: NAOMP for nonzero-mean noise. The 𝑥-axis:
the index of each component of the residual; the 𝑦-axis: the value of each component of the residual. The residual in this figure is a vector of
length sixteen. From top to bottom: a procedure for updating a residual and an atom.

well and hence makes most of noiseless components vanish
at the next iteration before the decomposition of the noise
terms with respect to current atoms, because the stopping
criteria of the number of sparse coefficients are satisfied. The
middle subfigure of Figure 4 shows how traditional OMP
fails to remove noise from depth images when the noise is
nonzero-mean. In this case, the least square fitting deviates
from most noiseless terms and hence the noisy terms begin
decomposition in the next iteration, because neither the
criteria of the number of sparse coefficients nor the criteria
of the residual amplitude are satisfied. From this step, the
new atoms obtained shall be contaminated by noise.The right
subfigure of Figure 4 shows howNAOMP improves this issue.
When the current residual 𝑟

𝑠−1
contains greater-magnitude

entries and those entries have a relatively small number, it
is reasonably believed that those entries correspond to the
noisy components of training data. In this case, each of
those components of 𝑟

𝑠−1
is modified by reevaluating it as

the amplitude of corresponding component within the fitting
line. Then the updated residual is redecomposed over atoms.
By doing so, the least square fitting approximates noiseless
terms of residuals and weakens the effect of noisy terms. We
illustrate the idea using numerical examples in Appendix.

The NAOMP algorithm is illustrated in Algorithm 3.
After performing traditional OMP (lines (4)–(9)), the num-
ber of components which is relatively greater than others is
checked. Once the number is smaller, the current residual is
reevaluated (line (12)) so that the values of greater compo-
nents approach those of other components. Then the atom
and the residual are reupdated as in OMP (lines (13)–(17)).
Detailed parameter setting shall be given in Section 6.

5. Hand Depth Image Superresolution Using
Noise-Aware Dictionaries

We apply NAOMP to hand depth image superresolution,
where we useNAOMP for joint dictionary training.Themain
idea is similar to the work of [20]; hence we only give the
different part of our work (which is the dictionary training
algorithm) without giving details. We randomly select
patches of virtual hand depth images as a training set, each of
which is stacked as a vector, denoted by 𝑋

𝑖
, 𝑖 ∈ Ωtrain. Then

we obtain its corresponding downsampled version 𝑌
𝑖
and

form pairwise training sets {(𝑋
𝑖
, 𝑌
𝑖
) : 𝑖 ∈ Ωtrain}. We denote

D
ℎ
and D

𝑙
to be the joint dictionary, which is the sparse

representations for high-resolution and low-resolution image
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patches, respectively. The joint dictionary is given by the fol-
lowing optimization:

min
Dℎ,D𝑙 ,{𝑧𝑖}

∑

𝑖∈Ωtrain

(
1

𝑁

𝑋𝑖 −D
ℎ
𝑧
𝑖



2

2
+

1

𝑀

𝑌𝑖 −D
𝑙
𝑧
𝑖



2

2
+ 𝜆(

1

𝑁
+

1

𝑀
)
𝑧𝑖
0
) . (7)

By rewriting the first and the second terms in a single term
of 2-norm, we obtain the optimization model similar to the
last section and solve it using the NAOMP-based K-SVD
algorithm. To recover the high-resolution patch of an input
image Y, we find a sparse representation of each patch of Y
with respect to D

𝑙
and then obtain the corresponding high-

resolution patch by combining the high-resolution atomsD
ℎ

with the same sparse coefficients with respect toD
𝑙
.

6. Experimental Results

The experimental results are given in this section.The exper-
iments are run on Core� 2 Quad Q6600 2.4GHz machine
with 2GBRAMusingVisual Studio 2010.Theproposed filters
are given by (2)–(4), and theNAOMP is given byAlgorithm3.
All the parameters in traditional filters [6], the proposed
filters (2)–(4), OMP-based K-SVD [19] (Algorithms 1 and
2), and NAOMP-based K-SVD (Algorithms 1 and 3) are
given in Table 1, respectively. One can see from Table 1 that
traditional OMP-based K-SVD has to select different values
for the residual threshold 𝜀 according to the intensity of
noise, while NAOMP-based K-SVD selects a single value. In
fact, according to [19], the denoising effect heavily depends
on the choice of the residual threshold. Such a threshold
is difficult to determine for OMP-based K-SVD when no a
priori information of noise is given, while this threshold is
fixed and easily determined in NAOMP-based K-SVD.

6.1. Denoising Virtual Hand Depth Images. Artificial Gaus-
sian noise is added on three virtual hand models and the
images are denoised using OMP-based K-SVD andNAOMP-
based K-SVD, both without filter preprocessing. Qualitative
results are given in Figure 5 (with 0.5%, 2%, and 5% of noise)
and quantitative results are given in Table 2. We see that
traditionalOMP fails to recover thewrist part ofmodelswhile
NAOMP treats them well. Moreover, within all cases, the
proposedmethod provides higher PSNR thanOMP-basedK-
SVD except for the first example with 0.5% noise.

6.2. Denoising Hand Depth Images Obtained from Kinect v2.
We show qualitative results of denoising and superresolution
of six hand depth images obtained from Kinect sensor v2
in Figure 6 and give the average running time of different
approaches in Table 3. The comparison results include five
approaches: traditional bilateral filters [6], OMP-based K-
SVD [19], NAOMP-based K-SVD, the bilateral filters (2)–(4)
plus OMP-based K-SVD, and the bilateral filters (2)–(4) plus
NAOMP-based K-SVD.

In general, both bilateral filters preprocess depth images
well in that singular points are removed (the different effect

of two filters is given in Section 3 using Figures 2 and 3).
Moreover, one can see from the fifth column and the sixth col-
umn thatNAOMP-basedK-SVDproduces clearer silhouettes
than OMP-based K-SVD, as the trained dictionaries from
NAOMP remove noisy terms well.

6.3. Discussions. The two-stage depth image denoising and
superresolution enhance hand depth images well mainly
because of the following two reasons. For one thing, the
proposed bilateral filter functions choose suitable neigh-
borhood pixels with exquisite depth and RGB restrictions
than traditional filters. For another, the NAOMP modifies
the noisy terms of the residual in each atom updating step
so that they are reevaluated with closed values to noiseless
terms. This enables the residual to decompose in a more
noiseless fashion and results in dictionaries which are less
contaminated by noise.

It should be noted that the proposed method may fail
in denoising and superresolution of depth images of objects
other than human hands. This is because while the skin of
human hands shares RGB data in a small range, other objects
do not show such an advantage, which make the proposed
bilateral filters fail to select suitable neighborhood for filter
functions.

In future work, the proposed image denoising and
superresolution framework shall be developed for enhancing
depth images of more complex objects or scenes. More
accurate RGB/depth restrictions can be designed for filter
functions to preprocess depth images, so that the singular
points and artifacts remain in a more dispersing fashion.
Furthermore, the modification of residuals within NAOMP
can be improved so that the updated atom can represent the
noiseless data more precisely.

Appendix

A. OMP versus NAOMP: The First Example

Let

Y = X + k = (𝑘 + 1, 𝑘, 𝑘)
⊤
,

X = (𝑘, 𝑘, 𝑘)
⊤

(A.1)

be an input signal, a faithful signal, respectively, where
k = (1, 0, 0)

⊤ denotes the noise term, 𝑘 ≫ 1, and let
the atom number be one. Without loss of generality we
assume that both traditional K-SVD and NAOMP-based K-
SVD return the same DCT dictionary (the expression of the
trained dictionary depends on the training set and residual
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input: training data Y
𝑖𝑗
∈ R𝑛, (𝑖, 𝑗) ∈ Ωtrain, residual threshold 𝜀, and iteration number 𝐽

output: a dictionaryD ∈ R𝑛×𝐾

(1) InitializeD(1) as overcomplete DCT dictionary;
(2) for 𝑚 = 1, . . . , 𝐽 do
(3) foreach (𝑖, 𝑗) ∈ Ωtrain do /∗ sparse coding phase ∗/
(4) Using the OMP (Algorithm 2 or Algorithm 3) to solve

min
𝛼𝑖𝑗
‖𝛼
𝑖𝑗
‖
0
s.t. ‖Y

𝑖𝑗
−D(𝑚)𝛼

𝑖𝑗
‖
2
≤ 𝜀;

(5) end
(6) for 𝑘 = 1, . . . , 𝐾 do /∗ atom update phase ∗/
(7) Find the set of patches which use the 𝑘th atom

𝜔
𝑘
← {(𝑖, 𝑗) ∈ Ωtrain : 𝛼𝑖𝑗(𝑘) ̸= 0};

(8) foreach (𝑖, 𝑗) ∈ 𝜔
𝑘
do

(9) e𝑘
𝑖𝑗
← Y
𝑖𝑗
− ∑
𝑙 ̸=𝑘

d
𝑙
𝛼
𝑖𝑗
(𝑙); /∗ d

𝑙
denotes the 𝑙th column of D(𝑚) ∗/

(10) end
(11) Set E

𝑘
∈ R𝑛×|𝜔𝑘 | as the matrix whose columns are {e𝑘

𝑖𝑗
}
(𝑖,𝑗)∈𝜔𝑘

;
(12) Apply SVD decomposition E

𝑘
= UΔV⊤;

(13) Update the 𝑘th column of dictionaryD(𝑚) by d
𝑘
← the first column of U;

(14) Update the coefficient values {𝛼
𝑖𝑗
(𝑘)}
(𝑖,𝑗)∈𝜔𝑘

to be the first column of Vmultiplied by Δ(1, 1);
(15) end
(16) end

Algorithm 1: The K-SVD algorithm [19].

input: vector Y ∈ R𝑛, dictionaryD ∈ R𝑛×𝐾, sparsity 𝑆
output: sparse coefficient 𝛼 ∈ R𝐾 of Y with respect toD

(1) Initialize residual 𝑟
0
← Y, index set Λ

0
← ⌀,D(0) ← ⌀;

(2) for 𝑠 = 1, . . . , 𝑆 do
(3) Denote d

𝑗
, 𝑗 = 1, . . . , 𝐾 to be all columns of D;

(4) 𝜆
𝑠
← argmax

𝑗=1,...,𝐾
|⟨𝑟
𝑠−1
, d
𝑗
⟩|;

(5) Update the index set Λ
𝑠
← Λ
𝑠−1

∪ {𝜆
𝑠
};

(6) Update the atom matrixD(𝑠) ← [D(𝑠−1), d
𝜆𝑠
];

(7) 𝛼 ← argmin
𝑥
‖Y −D(𝑠)𝑥‖

2
;

(8) Update residual 𝑟
𝑠
← Y −D(𝑠)𝛼;

(9) end

Algorithm 2: The orthogonal matching pursuit.

threshold we choose. Here we make this assumption so that
the dictionary can exactly represent the faithful signal):

D = (

1

1

1

) . (A.2)

After the dictionary is obtained, we recover the signal
using OMP and NAOMP, respectively. OMP obtains sparse
coefficients and the reconstruction signal as follows:

𝛼 = argmin
𝑥∈R

𝑟0 −D𝑥2 = argmin
𝑥∈R

‖Y −D𝑥‖2

= 𝑘 +
1

3
,

XOMP = D𝛼 = (𝑘 +
1

3
, 𝑘 +

1

3
, 𝑘 +

1

3
)

⊤

.

(A.3)

Nevertheless, NAOMP obtains the same sparse coefficients
𝛼 = 𝑘 + 1/3 and finds that the first component of the residual
𝑟
1
= (2/3, −1/3, −1/3)

⊤ is relatively greater than the second
and the third ones. As a result, the residual is modified as
𝑟


0
(1) ← 𝑟

0
(1) − 𝑟

1
(1) (noticing that 𝑟

0
= Y holds in the first

step). Thus the sparse coefficients are recomputed by

𝛼 = argmin
𝑥∈R


𝑟


0
−D𝑥2 = 𝑘 +

1

9
, (A.4)

where 𝑟
0
= (𝑘 + 1/3, 𝑘, 𝑘)

⊤ is the modified residual term, and
the reconstruction signal is given by

XNAOMP = D𝛼 = (𝑘 +
1

9
, 𝑘 +

1

9
, 𝑘 +

1

9
)

⊤

(A.5)

which approximates the faithful signal compared with Xomp.
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input: vector Y ∈ R𝑛, dictionaryD ∈ R𝑛×𝐾, sparsity 𝑆, residual threshold �̂�, noise index threshold �̂�
output: sparse coefficient 𝛼 ∈ R𝐾 of Y with respect toD

(1) Initialize residual 𝑟
0
← Y, index set Λ

0
← ⌀,D(0) ← ⌀;

(2) for 𝑠 = 1, . . . , 𝑆 do
(3) Denote d

𝑗
, 𝑗 = 1, . . . , 𝐾 to be all columns of D;

(4) 𝜆
𝑠
← argmax

𝑗=1,...,𝐾
|⟨𝑟
𝑠−1
, d
𝑗
⟩|;

(5) Update the index set Λ
𝑠
← Λ
𝑠−1

∪ {𝜆
𝑠
};

(6) Update the atom matrixD(𝑠) ← [D(𝑠−1), d
𝜆𝑠
];

(7) 𝛼 ← argmin
𝑥
‖Y −D(𝑠)𝑥‖

2
;

(8) Update residual 𝑟
𝑠
← Y −D(𝑠)𝛼;

(9) 𝐿 ← {1 ≤ 𝑙 ≤ 𝑛 : |𝑟
𝑠
(𝑙)| ≥ �̂�}; /∗ collect all indices of great components of residual 𝑟

𝑠

∗/
(10) if |𝐿| ≤ �̂� then /∗ when 𝑟

𝑠
has only a small number of great components, we re-update the atom by removing those

components from 𝑟
𝑠−1

∗/
(11) foreach 𝑙 ∈ 𝐿 do 𝑟

𝑠−1
(𝑙) ← 𝑟

𝑠−1
(𝑙) − 𝑟

𝑠
(𝑙);

(12) 𝜆


𝑠
← argmax

𝑗=1,...,𝐾
|⟨𝑟
𝑠−1
, d
𝑗
⟩|;

(13) Re-update the index set Λ
𝑠
← Λ
𝑠−1

∪ {𝜆


𝑠
};

(14) Re-update the atom matrixD(𝑠) ← [D(𝑠−1), d
𝜆

𝑠
];

(15) 𝛼 ← argmin
𝑥
‖Y −D(𝑠)𝑥‖

2
;

(16) Re-update residual 𝑟
𝑠
← Y −D(𝑠)𝛼;

(17) end
(18) end

Algorithm 3: The noise-aware orthogonal matching pursuit.

B. OMP versus NAOMP: The Second Example

Let

Y = X + k = ((𝑘 + 1) 𝑐
2
+ 𝑐, 𝑐
2
+ 𝑐, 𝑐
2
, 𝑐
2
)
⊤

,

X = (𝑐
2
+ 𝑐, 𝑐
2
+ 𝑐, 𝑐
2
, 𝑐
2
)
⊤

= 𝑐
2d1 + 𝑐d3

(B.1)

be an input signal, a faithful signal, respectively, where k =

(𝑘𝑐
2
, 0, 0, 0)

⊤ denotes the noise term and where d1, d3 are
atoms of the following dictionary:

D = (d1, d2, d3, d4) = (

1 1 1 1

1 1 1 0

1 1 0 0

1 0 0 0

). (B.2)

According to the expression of X, the best choice of atoms is
{d1, d3}. Suppose that 2 < 𝑘𝑐 < 10, 𝑐 > 0. Let us recover the
signal using OMP and NAOMP, respectively, both with two
iteration steps. For OMP, in the first step, the atom which
takes the maximum inner product with 𝑟

0
= Y is d1, and the

residual is accordingly given by

𝑟
1
= 𝑟
0
− 𝛼
1
d1 = (

3

4
𝑘𝑐
2
+
1

2
𝑐, −

1

4
𝑘𝑐
2
+
1

2
𝑐, −

1

4
𝑘𝑐
2

−
1

2
𝑐, −

1

4
𝑘𝑐
2
−
1

2
𝑐)

⊤

,

(B.3)

where 𝛼
1
= argmin

𝛼∈R‖𝑟0 − 𝛼d1‖2. In the second step, using
simple calculation and the inequalities 𝑘𝑐 > 2, 𝑐 > 0, the atom

which takes themaximum inner product with 𝑟
1
is d4. Finally

we recover the signal by

XOMP = (𝑐
2
+
1

3
𝑐) d1 + (𝑘𝑐

2
+
2

3
𝑐) d4 (B.4)

with the coefficients given by

[𝑐
2
+
1

3
𝑐, 𝑘𝑐
2
+
2

3
𝑐] = arg min

𝛼,𝛽∈R

Y − 𝛼d1 − 𝛽d4
2
. (B.5)

Thus the reconstruction error is given by

XOMP − X2 = √𝑘
2
𝑐
4
+
2

3
𝑐
2
. (B.6)

For NAOMP, the first step finds the same atom d1 and the
same residual 𝑟

1
as in OMP. Using 𝑘𝑐 > 2 we can see that

the first component of 𝑟
1
is greater than the other three

components and hence we modified the residual by 𝑟
0
(1) ←

𝑟
0
(1) − 𝑟

1
(1), which gives

𝑟


0
= ((

1

4
𝑘 + 1) 𝑐

2
+
1

2
𝑐, 𝑐
2
+ 𝑐, 𝑐
2
, 𝑐
2
)

⊤

. (B.7)

We reselect the atom taking themaximum inner product with
𝑟


0
which is still d1 and the residual is given by

𝑟
1
= (

3

16
𝑘𝑐
2
+
1

8
𝑐, −

1

16
𝑘𝑐
2
+
5

8
𝑐, −

1

16
𝑘𝑐
2
−
3

8
𝑐,

−
1

16
𝑘𝑐
2
−
3

8
𝑐)

⊤

.

(B.8)
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Figure 5: Denoising additive Gaussian noise using traditional
OMP and NAOMP (both without the filtering phase). Left: hand
depth images with artificial noise. Middle: denoised images using
traditional OMP. Right: denoised images using NAOMP. Rows 1–3:
0.5%, 2%, and 5% of noise for hand 1; rows 4–6: 0.5%, 2%, and 5% of
noise for hand 2; rows 7–9: 0.5%, 2%, and 5% of noise for hand 3.

Table 1: Parameter setting in filters [6], filters (2)–(4), OMP-based
K-SVD, and NAOMP-based K-SVD.

Stages Parameters Values

Traditional bilateral
filters [6]

𝜎 for 𝑓(⋅, ⋅) 4
𝜎 for 𝑔(⋅) 15

𝜖 3

Bilateral filters (2)–(4)

𝜎 for 𝑓(⋅, ⋅) 4
𝜎 for 𝑔(⋅) 15

𝜖
1

5
𝜖
2

30
𝜖
3

5
𝜖
4

25
𝜖
5

30
𝜖
6

6
𝜖
7

3

OMP-based K-SVD
([19], Algorithms 1
and 2)

𝑛 64
𝐾 512
𝐽 10
𝑆 30

𝜀 for Figure 6 10
5

𝜀 for Figure 5 (0.5% noise) 5 ∗ 10
4

𝜀 for Figure 5 (2% noise) 1.2 ∗ 10
5

𝜀 for Figure 5 (5% noise) 2 ∗ 10
6

NAOMP-based
K-SVD (Algorithms 1
and 3)

𝑛 64
𝐾 512
𝐽 10
𝑆 30
𝜀 10

3

�̂� 30

�̂� 15

NAOMP-based
superresolution (7)

𝑁 25
𝑀 100
𝜆 0.15

In the second step, using simple calculation and the relation-
ship 𝑘𝑐 < 10, the atom taking the maximum inner product
with 𝑟

1
is d3. Then we update the residual by

𝑟
2
= (

1

2
𝑘𝑐
2
, −
1

2
𝑘𝑐
2
, 0, 0)

⊤

. (B.9)

Because no single component has a relatively great magni-
tude, we do not implement the modification step and hence
return the reconstruction signal by

XNAOMP = 𝑐
2d1 + (

1

2
𝑘𝑐
2
+ 𝑐) d3 (B.10)

with the coefficients given by

[𝑐
2
,
1

2
𝑘𝑐
2
+ 𝑐] = arg min

𝛼,𝛽∈R

Y − 𝛼d1 − 𝛽d3
2
. (B.11)
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Figure 6: Denoising Gaussian noise from hand depth images captured by Kinect sensor v2. Columns 1–3 are three examples of hand depth
images. Row 1 left: noisy depth images of resolutions 150 × 150. Row 1 right: denoised images using bilateral filters [6]. Row 2 left: denoised
images usingOMP-based K-SVD [19]. Row 2 right: denoised images usingNAOMP-based K-SVD. Row 3 left: denoised images using bilateral
filters (2)–(4) plus OMP-based K-SVD [19]. Row 3 right: denoised images using the proposed filters (2)–(4) plus NAOMP-based K-SVD. Row
4: amplified comparison details of images of row 3. Row 5: superresolution of denoised images of left subfigure of row three via OMP-based
K-SVD. Row 6: superresolution of denoised images of right subfigure of row three via NAOMP-based K-SVD.

Table 2: PSNR (unit: dB) comparison of three models in Figure 5.

Noise percent PSNR (hand 1) PSNR (hand 2) PSNR (hand 3)
OMP NAOMP OMP NAOMP OMP NAOMP

0.5% 40.2939 39.8312 39.7280 39.7308 39.7076 41.4870
2% 37.6736 39.6812 37.5300 39.5911 37.0001 41.1889
5% 35.4332 39.4074 35.5310 39.3932 35.0824 40.9597

Table 3: Average running time comparison of six models in
Figure 6.

Methods Time (s)
Filters [6] 19.644
Filters (2)–(4) 9.444
K-SVD [19] 85.848
NAOMP K-SVD (Algorithms 1 and 3) 95.163
Filters [6] + K-SVD [19] 105.492
Filters (2)–(4) + NAOMP K-SVD 104.607

The reconstruction error is given by


XNAOMP − X2 =

1

√2

𝑘𝑐
2 (B.12)

which is smaller than the error of OMP. Moreover, NAOMP
selects the correct atoms {d1, d3}whileOMP selects the atoms
{d1, d4}.
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