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Battery packs are widely used in electric vehicles, and their state-of-charge is one of the essential issues that affect the per-
formances, whilst the balance between parallel and series cell of the battery pack always has an obvious effect. To enhance the
working performance of the lithium-based power battery pack, a hybrid natural and forced active balancing control (HNFABC)
strategy is proposed and adopted to the balancing circuit that is proposed in this work. +ese converters, which are advantageous
in natural balancing and forced equalization, accelerate the balance speed of natural equilibrium in the final stage and protect the
battery from being repeatedly charged and discharged. Simulation and experimental results show that HNFABC is not only
simpler than other traditional balance control strategies but also faster in the equalization process. +e idea of combining natural
equilibrium and forced equilibrium can be inspired to be used in some related industries.

1. Introduction

With the gradual deterioration of the global natural envi-
ronment, new energy electric vehicles have attracted wide
attention and are gradually applied around the world due to
their environmental friendliness and can be used as con-
trollable loads in close cooperation with power grids and
charging stations [1–3]. In these electric vehicles, batteries
are generally needed for energy and power storage. How-
ever, the inconsistency of individual cells in the battery pack
leads to a reduction in overall charge and discharge per-
formance [4–7]. +erefore, various balanced topologies and
control strategies have been proposed to reduce battery
inconsistencies.

In [8], to reduce the switching loss and overcome the
overvoltage problem, a zero-voltage switch and zero-current
switch circuit topology based on DCM operation was
proposed. However, the interleaving technique proposed
requires a sixteen-channel PWM control signal fulfilling the
balancing requirement. In [9], Lee et al. proposed a modular

equilibrium idea, in which the system consists of N batteries
and M equalization modules. +e circuit structure is com-
plex, and it is necessary to adjust the state of twelve switching
tubes to achieve the primary energy balance. In [10], the
circuit is based on a time-sharing flyback converter. Each cell
shares an equalization module in the control gap of the low-
power microcontroller. However, transformer equalization
increases the weight and volume of the equalization circuit
to a certain extent. In [11], a new type of switching circuit
that does not require voltage detection was proposed. In
order to use the single-charge equalizer of the multiwinding
transformer, the energy balancing between the cells is
achieved by the magnetization energy of the multiwinding
transformer, which causes a large amount of magnetic loss
inevitably. In [12], the idea of energy sharing was used to
adaptively adjust the charge and discharge rates of all bat-
teries while maintaining the DC bus voltage, which solved
the unbalancing problems of SOC between battery pack
cells. Using a low-power DC, power converter may take a
long time to achieve equilibrium. In [13], this paper aimed at
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solving this problem by using a buck chopper and an
adaptive unscented Kalman algorithm for estimating the
state-of-charge (SOC) of batteries. +e scheme in the work
presents a simple circuit structure, and shows a faster re-
sponse compared with traditional methods, while a four-cell
balancing experiment is provided. However, this technology
is difficult to be applied when the number of battery cells
increases. As closed-loop, online SOC estimation methods,
Kalman filter (KF) and other observer-based algorithms
have gained growing attention from both academia and
industry. Nowadays, extended Kalman filtering (EKF) [14]
and sigma-point Kalman filtering, i.e., central difference
Kalman filter (CDKF) or unscented Kalman filter (UKF)
[15], based on equivalent circuit models (ECMs), were
applied. To make physical meanings of model parameters
and more insights into internal electrochemical reactions,
various electrochemical models were also combined with
these filters, e.g., single particle model (SPM) [16], single
particle model with electrolyte dynamics (SPMe) [17], and
electrode average model [18]. Other KF variants were also
studied, including robust EKF (REKF) [19], adaptive EKF
(AEKF) [20], and adaptive UKF (AUKF) [21]. Besides KFs,
smooth variable structure filter (SVSF) [22], sliding-mode
observer (SMO) [23], backstepping PDE observer [24],
nonlinear geometric observer [25], and Luenberger-type
observers [26] were applied as well. Based on a reduced
electrochemical model, the optimization-based moving
horizon estimation (MHE) framework has been systemati-
cally assessed for advanced battery condition monitoring
[27]. MHE and mMHE are more precise than EKF/UKF;
however, it has slower computation.

In this work, a new balancing strategy called hybrid
natural and forced active balancing control (HNFABC) is
put forward, the operating principle of which is mainly based
on the energy transmission of unbalanced current flowing
from overcharged batteries to overdischarged batteries. In
this case, energy naturally flows to a low-energy battery
without any measurement sensor equipment. Additionally,
there is no need to use a sensor to measure the voltage of
batteries by utilizing the proposed scheme. Forced balancing
works by precisely controlling the drive switch to transfer
energy from inconsistent battery packs to all other battery
packs. +e proposed natural equalization control can
achieve active equalization by utilizing the energy difference
of the battery itself without external forced control. Forced
equalization can solve the problem of slow equilibrium in
the final stage of natural equilibrium, but the battery will be
repeatedly charged and discharged. +e finally proposed
hybrid natural forced equalization control can combine the
advantages of the two kinds of control above and realize the
rapid equalization while the battery is only in a state of
charging or discharging. In this paper, the HNFABC means
that energy is naturally transferred from overcharged cells to
overdischarged cells with forced energy transfer donors and
acceptors during equilibrium process. To further verify the
feasibility of the proposed strategy, the equalization circuit
simulation system is built in PSIM. Whilst an unscented
Kalman filter is used in a Matlab/Simulink model of battery
packs based on the partnership of a new generation of

vehicles (PNGV). Finally, experiments are provided to verify
the effectiveness and superiority of the proposed technology.

+is paper is organized in the following ways.+e design
and operational principle of the complementary equaliza-
tion topology and its control algorithm are explained in
Section 2. Simulation and experimental results are presented
in Section 3. +e conclusions and key research content for
future work are provided in Section 4.

2. Operating Principle and Design

Replacing the diodes in the traditional buck-boost circuit
with MOSFET transistors enables bidirectional power
transfer and continuous current mode [28–32]. +e system
flow of the equalization technology is shown in Figure 1.+is
improved buck-boost circuit can transfer energy from
batteries to any other batteries. Each equalization module is
connected inductively between two battery packs. +e
structure consists of n cells in series, which is applicable to
the battery pack equalization circuit, is as shown in Figure 2.
+e access of the equalization module divides the battery
components into upper and lower parts, which can transfer
energy in the upper and lower parts, thereby achieving
equalization of the battery pack. +e circuit topology pro-
posed in this paper can also individually adjust the energy of
any battery to be transferred to the rest of other batteries in
the battery pack. Compared with the traditional equalization
circuit, this topology can flexibly realize battery energy
balance and is easy to expand. Each equalization circuit
divides the battery components into two parts, whose energy
can be primarily transferred to each other. Furthermore,
combining two equalization circuits enables any single
battery energy to be transferred to the remaining batteries in
the battery pack by controlling the two switching tubes.

2.1.NaturalActiveBalancingControl. +e transistors in each
equalizer block in the circuit operate in a complementary
drive mode with a duty cycle a set as a function of input
voltage and output voltage:

αi �
UHi

ULi + UHi( 􏼁
,

αiULi −RINeqαiILm � 1− αi( 􏼁UHi + ROUTeq 1− αi( 􏼁ILm,

ILm �
αiULi − 1− αi( 􏼁UHi

RINeqαi + ROUTeq 1− αi( 􏼁
,

(1)

where subscript i is the number of cells on the input leg,
i ∈ int [1; N− 1], UHi is the input cell voltage, ULi is the
output cell voltage, RINeq stands for the equivalent resistance
of the input circuit, ROUTeq stands for the equivalent re-
sistance of the output circuit, and ILm means the balancing
current that natural energy transfer from any overcharged
cells to any undercharged cells is possible which are pro-
duced by any unbalanced voltage across each converter
inductor leg. +is fixed duty cycle equalization mode pro-
duces an average voltage on one side of the inductor that is
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equal to a portion of the battery pack voltage. If the energy of
the two cells separated by the inductance is balanced, the
potential generated at both ends of the inductor is the same;
that is, the energy absorbed by the inductor from a part of
the circuit is equal to the energy released from the other part
of the circuit. If the energy of the two parts of the battery
pack is not balanced, the inductor will transfer the energy of
the battery pack whose energy is higher than the set value to
the battery pack below the set value. +e duty ratio of the
switching tubes in each equalization module in the equal-
ization circuit is given in Table 1. Further, under natural
active balancing control strategy, these switches are operated
in a complementary mode.

2.2. Forced Active Balancing Control. To reduce the energy
circulation caused by natural active balancing control, a
novel forced active equalization control is proposed. Current
flow direction is indicated by the red arrow. As shown in
Figure 3, the topology can easily achieve the balance control
of the front battery and the rear battery: turn on the switch
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Table 1: Duty cycle rate of equalization circuit.

Switch
Duty cycle

EC(1) EC(2) . . . EC(i) . . . EC(n− 1)
SH n− 1 n− 2 . . . n− i . . . 1
SL 1 2 . . . i . . . n− 1
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SLi−1, the current �ow is shown in mode I; then, turn o� the
switch SLi–1, the current �ow is shown in mode II. Further, if
the energy of an overcharged battery in the series battery
pack is transferred to all other batteries, the above steps need
to be performed, and the switch SHi needs to be controlled to
turn on. �e current �ow is as shown in mode III; then, the
switch SHi is turned o�, current �ow is shown in mode IV.
�e status of each switch from mode I to mode IV is shown
in Table 2.

2.3. Hybrid Naturally and Forced Active Balancing Control.
Further, the series equilibrium of N batteries is mathe-
matically veri�ed. �e principle is as follows: supposing that
the energy of Bi is more than the average value of other
batteries, it should be transferred to the other batteries. �e
inductor absorbs energy given out from each battery be-
tween Bi and Bn is Δε1 under mode I. �e inductor releases
energy to the rest batteries from B1 to Bi−1 under mode II.
�e inductor that absorbs energy given out from each
battery between B1 and Bi is Δε2 under mode III. �e in-
ductor releases energy to the rest batteries from Bi+1 to Bn
under mode IV. �e di�erence between the energy of the
battery Bi and the average energy of the battery pack is
de�ned asQextra

i . For the amount of energy that is transferred
from the single cell in the battery pack, formula (4) and
formula (5) are listed:

(n− i + 1)Δε1
(i− 1)−Δε2

�
Qextra
i

n
, (2)

−Δε1 + iΔε2
(n− i)

�
Qextra
i

n
. (3)

�e simultaneous equations are solved as follows:

Δε1 �
(i− 1)Qextra

i

n
,

Δε2 �
(n− i)Qextra

i

n
.

(4)

�is process can be realized only by controlling two
switch tubes. �e circuit simpli�es the design, facilitates the
controlling strategy and is easy to expand for di�erent
numbers of series battery packs. Because the structure of the
N-phase circuit is completely the same, the di�erence is that
the inductor is connected to the battery pack at one end, so
the circuit will be further simpli�ed as shown in Figure 4.

3. Battery Model and Equilibrium Simulation

3.1. Battery Parameters Module. PNGV model is shown in
Figure 5 [33–35]. Compared with the �evenin model and
Rint model, this PNGV model has higher precision and
describes the transient response process of the battery better.
In the model, UOC is the ideal voltage source and represents
the open-circuit voltage of the battery; R0 is the internal
resistance of the battery; RP is the polarization resistance; CP
is the polarization capacitance; IP is the current �oated on
the polarization resistance; when describing the load cur-
rent, CB is the capacitance that describes the changing
voltage, which, accumulates in the open circuit.

Available for circuit diagrams for CB and CP:
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Table 2: Switching state during equalization.

Switch Mode I Mode II Mode III Mode IV
SH(i−1) O� O� O� O�
SL(i−1) On O� O� O�
SH(i) O� O� On O�
SL(i) O� O� O� O�
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Cb
dUb

dt
� IL,

Cp
dUP

dt
� IL −

UP

RP
.

(5)

According to Kirchho�’s voltage law, the open circuit
voltage UOC can be as follows:

UOC � Ub + UP + ILR0 + UL. (6)

�e state equation for establishing the PNGVmodel with
the two capacitor voltages UB and UP in the model is

Ub

UP
[ ] �

0 0

0 −
1

CPRP

  �
Ub

UP
[ ]

1
Cb

1
CP




IL[ ],

UL �[−1, −1] Ub
UP
[ ] + −R0[ ] IL[ ] + UOC[ ].




(7)

�e state equation uses the two capacitor voltages of the
PNGV model as the state variables and the battery terminal
voltage as the output variable. �e SOC is not a measure that
can bemeasured speci�cally.�e electrical quantity that can be
measured in the model is only the port voltage UOC and the
port current IL. �erefore, the existing measurement value
must be used to select an appropriate SOC estimation method.

3.2. �e Analysis of the Simulation Results. �e natural
equalization control strategy and HNFABC strategy of the
circuits above are veri�ed, respectively. In this section, a
software simulation, including a PNGV model and an ex-
perimental system that contains four cells of lithium-ion
batteries, is built.

In the experiment, the energy of the B2 was set higher
than other batteries in the battery pack (UB2 � 4V, UB1, UB3,
and UB4 � 3.6V, i � 2). Speci�cally, the process of trans-
ferring the excess energy of the B2 to other batteries was
simulated and veri�ed. For the equalization circuit that
consisted of four batteries, the equalization process will
undergo four modes as shown in Figure 3. VP1 to VP4 stand
for the voltage of each battery. �e equalization circuit
composed of two batteries will be equipped with an
equalization module. �e equalization circuit composed of
three batteries will be equipped with two equalization
modules. �e equalization circuit composed of n batteries
has an equalization module number of n− 1. �e simulation
experiments of the four-cell battery are built under the
natural equalization and HNFABC strategy, respectively.
�e dynamic voltage waveform is shown in Figures 6 and 7.

Figure 8 is the inductor current of the EC1 equalization
module and the EC2 equalization module. �e function of
the equalization module EC1 is to achieve the balance be-
tween the B1 and the battery 234. �e function of the
equalization module EC2 is to achieve the balance between
the battery and the B3 or B4. As is shown in Figure 6(a), when
the equalization circuit operates, the switch SL1 is turned on
�rst, transferring the energy of B2, B3, and B4 to inductor L1,
and the inductor L1 transfers energy to B1. As is shown in
Figure 6(b), when the equalization circuit is working, the
switch SH2 is turned on �rst, transferring the energy of the B1
and B2 to the inductor L2, and then, the inductor L2 transfers
the energy to B3 and B4.

3.3.�eAnalysis of the Experiment Results. �e experimental
platform was built in the laboratory as shown in Figure 9.
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Simulation and experimental verifications have been com-
pleted, respectively. +e system parameters of the experi-
ment are shown in Table 3.

For simulating and comparing the battery balance in the
idle state (BH > BL), Figure 10(a) shows the simulation
results in a dynamic equalization process and Figure 10(b)
shows the experiment results. Basically, it can be seen from
the figure that the experimental waveform and the simu-
lation results are consistent with the theoretical design.

3.4. Analysis of the Results. +e feasibility of the equalization
circuit and its control strategy described in this paper is
verified, after comparing the simulation with experiment
results. Based on the above four-cell experimental circuit, the
same parameters were used for simulation. Taking a battery

equalization unit as an example, to compare its dynamic
balance effect, Figure 8 shows the working waveforms when
the same battery operates in idle states, including switch
status and current, where Figure 8 is the actual results of the
simulation and experiments, respectively. +e waveforms of
transforming current in experimental results are basically
consistent with which in the simulation process, through
comparison and observation.

Further, during the equalization process, the equaliza-
tion voltage of the four-cell battery, under traditional control
and HNFABC, is drawn into a line graph as Figure 11 shows.
In the experiment, the battery voltage was measured once a
minute and was more intuitively plotted with line graphs.
Compared with the traditional control strategy, it is obvious
that the HNFABC strategy can achieve a faster balance.
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In the experiment, the energy of one battery is higher than
that of other battery cells. +e distinctive of HNFABC
strategy will be more obvious than the traditional strategy,
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Table 3: Simulation and experimental specifications.

Item Description
Control chip STM32F103
Battery parameter 4.2 V, 1AH
Inductance value 100 µH
Switch model IRF530
Operating frequency 10 kHz
Duty cycle of SH2 50.0%
Duty cycle of SL1 33.3%
Initial state of B1 3.6V
Initial state of B2 4.0V
Initial state of B3 3.6V
Initial state of B4 3.6V
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however, considering the battery’s power distribution is
rather complicated in actual circumstances.

+e characteristics of the equalization circuit are char-
acterized by loss, time, complexity, and extended battery life.
After a comprehensive comparison of the above three
equalization methods, the overall advantage of the HNFABC
strategy is obvious. As is shown in Figure 12, especially in
terms of loss, the energy loss is reduced by more than 50%
compared to the resistance dissipation equalization method.

4. Conclusions

+is paper proposed the concept of HNFABC strategy for a
fast-balancing battery cells system based on the PNGV
model. +e experimental results have demonstrated that the
complementary equalization circuit topology with the
HNFABC strategy achieves battery balancing, prolongs the
life of the battery pack, and reduces the energy loss in the
balancing progress. +e main advantage of this structure is
that, in order to transfer the energy that belongs to one
battery to all others, only two switches are needed to control.
+e simulation results also proved that compared to tra-
ditional balancing control, the new strategy effectively uti-
lizes switches to change and implement the controlling
effect. +e waveform and experiment results have indicated
that the proposed control strategy is effective and feasible. In
practical applications, the number of batteries with

abnormal energy in the battery pack is arbitrary. +is design
only transfers the energy of one abnormal battery to the
remaining batteries in the battery pack. Future research will
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be more focused on the actual circumstances, to design and
to propose a multicell abnormal energy balance control
method that is more suitable for engineering practice.
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