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A multi-time scale optimal dispatch model based on the scenario method and model predictive control (MPC) in the AC/DC
distribution network is established due to the uncertainty of wind and load. A Markov chain dynamic scenario method is
proposed, which generates scenarios by characterizing the forecast error via empirical distribution. Considering the time
correlation of the forecast error, Markov chain is adopted in the Markov chain dynamic method to simulate the uncertainty and
variability in wind and load with time. A multi-time scale optimal dispatch strategy based on MPC is proposed. +e operation
scheduling of operation units is solved in day-ahead and intraday optimal dispatch by minimizing the expected value of total cost
in each scenario. In the real-time optimal dispatch, the stability and robustness of system operation are considered. MPC is
adopted in the real-time optimal dispatch, taking the intraday scheduling as reference and using the roll optimization method to
compute real-time optimal dispatch scheduling to smooth the output power. +e simulation results in a 50-node system with
uncontrollable distributed energy demonstrate that the proposed model and strategy can effectively eliminate fluctuations in wind
and load in AC/DC distribution networks.

1. Introduction

1.1. Motivation. An active distribution network (ADN) has
advantages in actively adjusting power flow, managing
variable distributed energy, and improving the efficiency of
distributed energy [1–4]. As an important part of the ADN,
the AC/DC distribution network is a significant develop-
ment trend of future distribution networks and has better
efficiency in supplying the DC load [5–8]. +e DC network
has better energy quality and longer transmission distance
than the AC network. +e energy storage system (ESS) and
some distributed generation (DG) must be connected to the
AC distribution network by a voltage source converter
(VSC); if the dc distribution network is used for power
supply, a large number of converters will be saved and
energy loss will be reduced [9–11].

Distributed energy is a significant component of the AC/
DC distribution network. +e output power of some types,

such as wind and solar, fluctuates and is uncontrollable, and
the forecast accuracy decreases sharply with increasing time
scale. It is important to reasonably schedule the output
power of controllable distributed energy to account for
uncontrollable energy. Methods based on stochastic pro-
gramming have been widely adopted to address the un-
certainty of uncontrollable energy output, and scenario-
based programming is the most commonly used stochastic
programming method [12]. +e main idea is to generate
scenarios according to the character of the fluctuations of
uncertain factors, making the decision variable meet the
requirements in all scenarios. In [13], a scenario method and
chance-constrained programming were proposed to estab-
lish a multi-time rolling dispatch model to optimize the
configuration of variable resources. In [14], a two-stage
reactive power optimization of the distribution network
based on extreme scenario was applied using extreme sce-
nario constraints to deal with unknown variables. In [15], a
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dynamic scenario method was proposed to generate a dy-
namic scenario with correlation according to the analysis of
historical data.

In [16], a multi-time scale optimal dispatch method was
applied since the accuracy of wind turbine and load pre-
diction gradually increased with time scale subdivision, and
this method effectively increased the proportion of wind
turbine consumption. In [17], a multi-time active power
coordination scheduling method was proposed based on the
idea of level by level subdivision and mutual coordination to
correct the error between the forecast value and the actual
value in the next layer. Unlike the traditional time scale
subdivision, model predictive control (MPC) adopts the roll
optimization method to subdivide the time scale and con-
siders the feedback correction of the control process, which
can address the fluctuation of controllable distributed energy
well. +e traditional multi-time scale optimal methods have
slow response speed which may lead to a large forecast error.
In [18], MPC was used for handling plug-and-play charging
requests of flexible loads in a distribution system. In [19],
MPCwas applied to control voltage in the ADN according to
roll optimization of unknown variables. In [20], a method
based on D-MPC was proposed to control the voltage of
wind farms, which aimed to coordinate the wind turbine and
the static reactive power generator and optimize the process
of reactive power adjustment to smooth the future voltage
curve. In [21], a multi-time scale optimal dispatch method
based on MPC was applied which using roll optimization
strategy to replace the time scale subdivision optimal dis-
patch method.

1.2. Contribution. In order to better deal with the uncer-
tainty of wind power and improve the prediction precision, a
multi-time scale optimal dispatch model based on Markov
chain dynamic scenario method and MPC for the AC/DC
distribution network is proposed in this paper, and the main
contributions are as follows:

(1) +e distribution of the forecast error is generally
assumed as normal distribution and beta distribu-
tion, which is a relatively simple way to simulate the
uncertainty of wind power without using historical
error data. However, it is concluded that normal
distribution and beta distribution cannot be used to
model the measured power for its given data sets
because the great variety of the forecast methods and
applied locations would lead to different approxi-
mate theoretical distributions or even no theoretical
distribution [22]. In order to better describe the
uncertainty of wind power, the Markov chains dy-
namic scenario method is adopted to generate sce-
narios, which estimate the covariance matrix of the
multivariate normal distribution to fit the distribu-
tion of historical wind power fluctuations and adopt
an inverse transform sampling method from a
multivariate normal distribution to generate sce-
narios. Additionally, considering the time correla-
tion of the forecast error, a Markov chain model is
formulated to simulate the change process of the

forecast error probability distribution with time,
which can effectively ensure the reliability of gen-
erated scenarios when the prediction time scale is
long.

(2) Traditional multi-time scale optimization methods
mainly focus on cost optimization without further
consideration of system stability. In order to better
ensure the stability of system, an MPC-based multi-
time scale optimal dispatch strategy is proposed. In
the day-ahead and intraday dispatch, the scenario-
based method is adopted to deal with the uncertainty
of wind power. +e on-off state of device, the grid
purchase decision, the output power of regular de-
vice, and the expected power of the fast response
device are solved in day-ahead and intraday optimal
dispatch by minimizing the expected value of total
cost in each scenario. +e system stability is mainly
considered in real-time optimal dispatch since most
of the costs have been optimized. +e expected
power of the fast response device solved in the day-
ahead and intraday dispatch is taken as the reference
to minimize the difference between the solved
control variables and the expected value by roll
optimization and feedback correction. +erefore, in
real-time optimal dispatch, it is only necessary to
adjust the output power of fast response device
appropriately based on the expected value according
to the measured wind power, which can not only
meet the load power of system but also solve the
problem of volatility of DG power, thus improving
the stability of system.

2. Markov Chain Dynamic Scenario Method

Markov chain dynamic scenario method characterizes
forecast error via empirical distributions of a set of forecast
bins, using Markov chain to simulate the change process of
forecast error distribution, and the inverse transform is
adopted to generate scenario according to the historical
forecast error distribution, which ensure the reliability of
generated scenarios, and the main steps are as follows:

(1) Processing historical data: collecting historical data
of wind and load to obtain the data pairs (measured,
forecast) and transform the value of the data to per-
unit values.

(2) Generating the forecast bins: choose 50 bins with
0.02 pu bin widths in this case, and every forecast has
a corresponding measurement, which is assigned to
the same bin as the forecast. +en, sorting the data
pairs (measured, forecast) by the forecast values and
assigned to the matching forecast power bins to
obtain the forecast error distribution of each random
variable in each forecast bin.

(3) Discretizing the forecast error distribution of each
random variable into seven intervals centered on the
zero mean, with a width equal to the standard de-
viation δ. +e state of the corresponding interval i is
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denoted as xi(i � 1, 2, . . . , 7), and the occurrence
probability of this state interval is Si. All the prob-
ability Si.k.t(i � 1, 2, . . . , 7) of the k-th forecast bin at
moment t constitutes the error state vector Pk.t at the
current time. +e expressions are as follows:

Pk.t � S1.k.t, S2.k.t, . . . , S7.k.t􏼂 􏼃, (1)

􏽘

7

i�1
Si.k.t � 1. (2)

(4) Generating the probability density function Fk.t(X)

in each forecast bin according to the error state
vector in the forecast bins. +e expression is as
follows:

Fk.t xj􏼐 􏼑 � 􏽘

j

i�1
Si.k.t, j � 1, 2, . . . , 7. (3)

(5) Generating random vectors [15]: generate Z random
vectors Y � Y1, Y2, . . . , Yl􏼈 􏼉 with zero mean and
standard deviation, which follows a multivariate
normal distribution. +e structure of Σ is as follows:

Σ �

σ1.1 σ1.1 · · · σ1.l

σ2.1 σ2.1 · · · σ2.l

⋮ ⋮ ⋱ ⋮

σl.1 σl.2 · · · σl.l

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where l is the length of the generated scenario se-
quence and σm.n is the covariance of Ym and Yn,
which can be expressed as

σm.n � cov Ym, Yn( 􏼁 � e
− ((|m− n|)/ε)

, 0≤ n, m≤Δt,
(5)

where ε is the range parameter controlling the strength
of the correlation of the random variable sequence.

(6) Generating error scenarios [15]: the inverse trans-
form shown in (6) is used to transform a random
vector following a multivariate normal distribution
into an error vector with correlation to generate an
error scenario within the forecast time:

Δωt � F
− 1
i.k Φ Yt( 􏼁( 􏼁, (6)

where Δωt is the generated forecast error at moment t
andΦ(Yt) is the cumulative density function following
a normal distribution, which is

Φ Yt( 􏼁 � 􏽚
Yt

− ∞

exp − x2/2( 􏼁
���
2π

√ dx. (7)

Following these steps above, the multivariate normal
random variable is converted into scenarios fol-
lowing both the marginal distribution of wind power
forecast error among the forecast horizon. But the
prediction precision will decrease with the growth in

prediction time scale when the forecast horizon is
long. Wind and load power within a day need to be
predicated in the day-ahead dispatch, so the time
correlation of forecast error should be considered.
For the good performance of the Markov chain
shown in the simulation of wind and load output
sequences [23, 24], the Markov chain is incorporated
into the traditional dynamic scenario method. +e
change process of the forecast error probability
distribution with time is regarded as a Markov chain,
which is a stochastic process of transition from one
state to another. In this paper, the state transition
matrix is generated according to the historical
forecast error data. +e state transition is utilized to
update the forecast error probability distribution in
each forecast bin at set intervals when the prediction
time scale is long, which can effectively ensure the
reliability of generated scenarios. +e main steps are
as follows.

(7) Forming the state transition matrix: the state tran-
sition matrix is the most important part in the whole
Markov chain process, and the expression is as
follows:

Ek.t �

E11 E1.1 · · · E1.n

E2.1 E2.1 · · · E2.n

⋮ ⋮ ⋱ ⋮

En.1 En.2 · · · En.n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×n

, (8)

where Ek.t is the state transition matrix of the k-th
forecast bin at moment t and Emn is the state transition
probability from the state xm in the last moment to the
state xn in the next moment, which is

Emn �
Nmn

􏽐
n
j�1 Nmj

, (9)

where Nmn is the number at which the state xm in the
last moment transits to the state xn in the next
moment through the statistics of historical data of
unknown variables.

(8) Generating the error state of all forecast cases: after
obtaining the state transition matrix, the state
transition matrix is used to generate the error state of
all the forecast cases in the next period and then
return to Step (4) to continue scenario generation.
+e expression is as follows:

Pk.t+1 � Pk.tEk.t. (10)

3. Multi-Time Scale Optimal Strategy

+e uncertainty of wind turbines brought new challenges for
multi-time scale optimal dispatch in the AC/DC distribution
network. Considering that the prediction precision will
increase with a shortened time scale, a multi-time scale
optimal coordinate dispatch strategy is adopted, as shown in
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Figure 1, in which the dispatching process is divided into
three stages: day-ahead, intraday, and real time [25].
Microturbines are classified into regulation microturbines
(RMTs) and quick-adjustment microturbines (QAMTs)
according to the response speed:

(1) Day-ahead scheduling: the scheduling cycle is 24
hours, and the time interval is 1 hour. +e Markov
chain dynamic scenario method is adopted to gen-
erate the scenario, and the time interval of the
Markov chain process is 4 hours. +e on-off state of
RMT and QAMT is solved in day-ahead optimal
dispatch by minimizing the expected value of total
cost in each scenario.

(2) Intraday scheduling: the scheduling cycle is 1 hour,
and the time interval is set to 15 minutes. +e dy-
namic scenario method is adopted to generate the
forecast scenario since the intraday time scale is not
long, and the time correlation of forecast error can be
ignored. +e RMT output power and the grid

purchase decision are solved in intraday optimal
dispatch by minimizing the expected value of total
cost in each scenario.

(3) Real-time scheduling: the scheduling cycle is 15
minutes, and the time interval is 5 minutes. Con-
sidering the stability of system, MPC is adopted to
compute output power of QAMT and ESS by taking
the intraday scheduling as reference and using roll
optimization method and feedback correction.

4. Multi-Time Scale-Coordinated
Optimization Model

4.1. Day-Ahead Optimization Model

4.1.1. Objective Function. +e objective function of day-
ahead optimal dispatch is to minimize the expected value of
total cost in each scenario, which is

min

􏽘

Nt

t�1
cgrid.t 􏽘

Ns

s�1
πsPgrid.s.t + 􏽘

Nt

t�1
􏽘

NDG.F

i�1
􏽘

Ns

s�1
πsC

F
DG.i.s.t + U

F
DG.i.t + D

F
DG.i.t

⎛⎝ ⎞⎠+

􏽘

Nt

t�1
􏽘

NDG.R

i�1
􏽘

Ns

s�1
πsC

R
DG.i.s.t + U

R
DG.i.t + D

R
DG.i.t􏼐 􏼑+

􏽘

Nt

t�1
􏽘

NESS

i�1
􏽘

Ns

s�1
πsCESS.i.s.t( 􏼁 + 􏽘

Nt

t�1
􏽘

Nwt

i�1
􏽘

Ns

s�1
πsλ

curt
i.s.t W

curt
i.s.t􏼐 􏼑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Δt, (11)

where Nt is the dispatching cycle; NDG.F is the number of
QAMT; NDG.R is the number of RMT; Ns is the number of
the scenarios; NESS is the number of ESSs; Nwt is the number
of wind turbines; cgrid.t is the electricity price at moment t;
Pgrid.s.t is the exchange power between ADN and the upper
grid at moment t in scenario s; CF

DG.i.s.t is the power cost of
QAMT i at moment t in scenario s; UF

DG.i.t and DF
DG.i.t are the

cost of starting and stopping, respectively, QAMT i at
moment t; CR

DG.i.s.t is the power cost of RMT i at moment t in
scenario s; UR

DG.i.t and DR
DG.i.t are the starting and stopping

costs, respectively, of RMT i at moment t; CESS.i.s.t is the
power cost of ESS i at moment t in scenario s; Wcurt

i.s.t is the
cutting wind quantity of wind turbine i at moment t in
scenario s; λcurti.s.t is the cutting wind cost of wind turbine i at
moment t in the scenario s; πs is the probability of the
scenario s; and Δt is the time interval.

4.1.2. Main Constraints

(1) Power balance constraints:

􏽘

NDG.F

i�1
P

F
DG.i.s.t + 􏽘

NDG.R

i�1
P

R

DG.i.s.t
+ 􏽘

Nwt

i�1
Pwt.i.s.t − W

curt
i.s.t􏼐 􏼑

+ 􏽘

NESS

i�1
PESS.i.s.t + Pgrid.s.t − Ploss.s.t − Rs.t � Pload.s.t,

(12)

where PF
DG.i.s.t is the power of QAMT i at moment t in

scenario s, PR
DG.i.s.t is the power of RMT i at moment t

in scenario s, Pwt.i.s.t is the power of wind turbine i at
moment t in scenario s, PESS.i.t is the power of ESS i at
moment t in scenario s, Pload.s.t is the load power at
moment t in scenario s, Ploss.s.t is the power loss in the
AC/DC distribution network at moment t in sce-
nario s, and Rs.t is the spinning reserve in the sce-
nario s at moment t [14].

(2) Power limit constraints:

u
F
i.s.tP

F
DG.i.min ≤P

F
DG.i.s.t ≤ u

F
i.s.tP

F
DG.i.max, (13)

u
R
i.s.tP

R
DG.i.min ≤P

R
DG.i.s.t ≤ u

R
i.s.tP

R
DG.i.max, (14)

where PF
DG.i.max and PF

DG.i.min are the upper limit and
lower limit of the power of QAMT i, respectively; uF

i.t

is the on-off state of QAMT i at moment t; PR
DG.i.max

and PR
DG.i.min are the upper limit and lower limit of

the power of RMT i, respectively; and uR
i.t is the on-off

state of RMT i at moment t.
(3) On-off state constraints:

x
F
i.t + y

F
i.t ≤ 1, (15)

x
F
i.t − y

F
i.t � u

F
i.t − u

F
i.t− 1, (16)
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x
R
i.t + y

R
i.t ≤ 1, (17)

x
R
i.t − y

R
i.t � u

R
i.t − u

R
i.t− 1, (18)

where xF
i.t and yF

i.t are the starting and stopping
action, respectively, of QAMT i and xR

i.t and yR
i.t are

the starting and stopping action, respectively, of
RMT i.

(4) Climbing constraints:

PR
DG.i.s.t − PR

DG.i.s.t− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ uR
i.t − uR

i.t− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌PR
DG.i.min + ΔR

i ,

PF
DG.i.s.t − PF

DG.i.s.t− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ uF

i.t − uF
i.t− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌PF

DG.i.min + ΔF
i ,

⎧⎨

⎩

(19)

where ΔR
i and ΔF

i are the climbing rate of RMT and
QAMT, respectively.

(5) VSC converter station constraints:
+e AC part and the DC part are connected
through the VSC, and the connecting point can be

assumed as a virtual node [26], as shown in
Figure 2. In Figure 2, Pac.ij.s.t, Qac.ij.s.t, and Pdc.jk.s.t

are the active power in the AC part, reactive
power in the AC part, and active power in the DC
part in scenario s at moment t, respectively;
Qvsc.j.s.t is the reactive power of VSC in scenario s
at moment t; Rvsc.ij is the equivalent resistance of
the loss in the converter station; Xvsc.ij is the
equivalent reactance of the filter in the converter
station; Uac.i.s.t is the voltage at the AC side in
scenario s at moment t; Udc.k.s.t is the voltage at the
DC side in scenario s at moment t; and Uvsc.j.s.t is
the voltage of the VSC virtual node in scenario s at
moment t.
According to the equivalent circuit in Figure 2, we
obtain

Pac.ij.s.t −
Pac.ij.s.t􏼐 􏼑

2
+ Qac.ij.s.t􏼐 􏼑

2
􏼒 􏼓

Uac.s.i( 􏼁
2 Rvsc.ij � Pdc.jk.s.t,

(20)

08:00

09:00 09:10 09:1509:05

Real-time
optimal dispatch 

09:00 10:00

15min

5min

Intraday optimal
dispatch 

On-off state of
QAMT 

On-off state of
RMT 

RMT output power
Grid purchase

decision

QAMT output power ESS output power

00:00 06:00 18:0012:00 24:00

1h

Day-ahead
optimal dispatch 

Figure 1: Multi-time scale optimization process.
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Qac.ij.s.t −
Pac.ij.s.t􏼐 􏼑

2
+ Qac.ij.s.t􏼐 􏼑

2
􏼒 􏼓

Uac.s.i( 􏼁
2 Xvsc.ij � − Qvsc.j.s.t,

(21)

− Qvsc.j.max ≤Qvsc.j.s.t ≤Qvsc.j.max, (22)

Uvsc.s.j � Uac.s.i − 2 Pac.ij.s.tRvsc.ij + Qac.ij.s.tXvsc.ij􏼐 􏼑

+
Pac.ij.s.t􏼐 􏼑

2
+ Qac.ij.s.t􏼐 􏼑

2
􏼒 􏼓 Rvsc.ij􏼐 􏼑

2
+ Xvsc.ij􏼐 􏼑

2
􏼒 􏼓

Uac.s.i( 􏼁
2 ,

(23)

Uvsc.s.j �

�
3

√

3
μMiUdc.s.k, (24)

where Qvsc.j.max and − Qvsc.j.max are the upper limit
and lower limits, respectively, of the power of VSC j;
μ is the efficiency of dc voltage (0≤ μ≤ 1, μ is set to
0.866 when the modulation mode is SPWM); and Mi

is the modulation of VSC i (0≤Mi ≤ 1).
(6) ESS operation constraints:

SESS.i.s.t � SESS.i.s.t− 1 1 − εESS( 􏼁 −
PESS.i.s.tΔt

Es.iηd

,

PESS.i.s.t > 0,

SESS.i.s.t � SESS.i.s.t− 1 1 − εESS( 􏼁 −
ηcPESS.i.s.tΔt

Es.i

,

PESS.i.s.t < 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

SESS.i.min ≤ SESS.i.s.t ≤ SESS.i.max, (26)

− PESS.i.max ≤PESS.i.s.t ≤PESS.i.max, (27)

SESS.i.s.T � SESS.i.s.1, (28)

where SESS.i.s.t is the energy of ESS i atmoment t in scenario
s;PESS.i.s.t is the power of ESS i atmoment t in scenario s; ηd

and ηc are the efficiency of discharge and charge, respec-
tively;Es.i is the capacity of ESS i in scenario s; SESS.i.max and
SESS.i.min are the upper limit and lower limits, respectively, of
the capacity of ESS i; εESS is the ESS self-discharge; and
PESS.i.max is the upper limit of the power of ESS i.

4.1.3. Day-Ahead Optimal Dispatch Result. +e starting and
stopping plan of QAMT uR

i.s.t and the starting and stopping
plans of RMT uF

i.s.t in the next day are determined through
day-ahead optimal dispatch, which are taken as input data
in the intraday optimal dispatch model to compute other
unknown variables in the intraday optimal dispatch
model.

4.2. Intraday Optimal Model

4.2.1. Objective Function. +e objective function of intraday
optimal dispatch is to minimize the expected value of total
cost in each scenario, which is

min􏽘

Nt

t�1
􏽘

NDG.F

i�1
C

F
DG.i.t + 􏽘

Nt

t�1
􏽘

NDG.R

i�1
􏽘

Ns

s�1
πsC

R
DG.i.s.t􏼐 􏼑

+ 􏽘

Nt

t�1
􏽘

NESS

i�1
􏽘

Ns

s�1
πsCESS.i.s.t( 􏼁 + 􏽘

Nt

t�1
􏽘

Nwt

i�1
􏽘

Ns

s�1
πsλ

curt
i.s.t W

curt
i.s.t􏼐 􏼑.

(29)

4.2.2. Main Constraints

(1) Power balance constraints:

􏽘

NDG.F

i�1
P

F
DG.i.s.t + 􏽘

NDG.R

i�1
P

R
DG.i.t + 􏽘

Nwt

i�1
Pwt.i.s.t − W

curt
i.s.t􏼐 􏼑

+ 􏽘

NESS

i�1
PESS.i.s.t + Pgrid.t − Ploss.s.t − Rs.t � Pload.s.t,

(30)

where PR
DG.i.t is the power of RMT i at moment t and

Pgrid.t is the exchange power between ADN and the
upper grid at moment t.

+e remaining constraints of the intraday optimization
model are the same as the constraints of the day-ahead
optimal dispatch, and the operation states of QAMT and
RMT are obtained by the day-ahead optimal dispatch.

4.2.3. Intraday Optimal Dispatch Result. +e power
scheduling of RMT and the grid purchase decision, the
expected value of QAMT, and ESS are determined through
intraday optimal dispatch; these values are taken as inputs in
the real-time optimal dispatch model to compute other
unknown variables.

4.3. Real-Time Optimal Dispatch Model

4.3.1. MPC. Model predictive control is a finite domain
closed-loop optimal control algorithm based on the pre-
diction model. +e main idea is as follows: in each sample
moment, the prediction model is established to compute
optimal control variable according to objective function and
constraints, and the control variable at the current moment
is issued. +en, the feedback correction is adopted for the
issued control variable to modify the control variable [27].

VSC

Pac.ij.s.t + jQac.ij.s.t –Qvsc.j.s.t Pdc.jk.s.t

Uac.s.i

Rvsc.ij Xvsc.ij

Uvsc.s.j

Udc.s.k

Figure 2: VSC converter station model.
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+e MPC-based optimal dispatch method is utilized to
minimize the difference between the solved control variables in
the future and the expected value of the control variables solved in
the day-ahead optimal dispatch considering the network con-
straints by using roll optimization and feedback correction, which
samples every 5 minutes, and the process is shown in Figure 3.
+e actual values of QAMTand ESS at the current sampling time
are taken as the original state to compute the control command
sequence in the next 15minutes and issue the control instructions
in the first 5 minutes, and the process is repeated at the next
sampling time, which can not only meet the load demand of the
systembut also keep the issued adjustment value fromgetting too
high. Additionally, the closed-loop control is formed due to the
feedback correction part, which can further increase the pre-
diction precision to ensure the stability of system.

4.3.2. Establishing Prediction Model. +e prediction model
is adopted to predict output power of QAMT, ESS, and the
grid in the next period to compute the control variable,
which are as follows [19]:

PDG(k + i | k) � PDG0(k) + 􏽐
i

t�1
ΔuDG(k + t | k), i � 1, 2, . . . , N,

PESS(k + i | k) � PESS0(k) + 􏽐
i

t�1
ΔuESS(k + t | k), i � 1, 2, . . . , N,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(31)

where N is the prediction step and PDG0(k) and PESS0(k) are
the original value of QAMT and ESS measured in the
sampling time, respectively. ΔuDG(k + t | k) and ΔuESS(k +

t | k) are the power increments of QAMTand ESS in the next
period predicted at moment k, respectively; PDG(k + i | k)

and PESS(k + i | k) are the power of QAMT and ESS in the
next period predicted at moment k, respectively.

4.3.3. Objective Function. +e objective is to minimize the
deviation between the issued control command sequence
and the expected value of intraday optimal dispatch, which is

min PDG.pre − PDG.ref􏼐 􏼑
T
W PDG.pre − PDG.ref􏼐 􏼑

+ PESS.pre − PESS.ref􏼐 􏼑
T
Q PESS.pre − PESS.ref􏼐 􏼑,

(32)

whereW is the weight coefficient matrix of QAMT, Q is the
weight matrix of ESS, PDG.pre is the power of QAMT in the
future k + i times predicted in the sampling time, and PESS.pre
is the power of ESS in the future k + i times predicted in the
sampling time, which is

PDG.pre � PDG(k + 1 | k),PDG(k + 2 | k), . . . ,PDG(k + N | k)􏼂 􏼃
T
,

PESS.pre � PESS(k + 1 | k),PESS(k + 2 | k), . . . ,PESS(k + N | k)􏼂 􏼃
T
,

⎧⎪⎨

⎪⎩

(33)

PDG(k + i | k) � PDG.1(k + i | k), PDG.2(k + i | k), . . . ,􏼂

· PDG.NDG
(k + i | k)􏽩,

(34)

PESS(k + i | k) � PESS.1(k + i | k), PESS.2(k + i | k), . . . ,􏼂

· PESS.NESS
(k + i | k)􏽩,

(35)
where PDG.ref is the expected value of QAMT in intraday
optimal dispatch from sampling time to time k + N and
Pgrid.ref is the expected value of ESS in intraday optimal
dispatch from sampling time to time k + N, which is

PDG.ref � PT
DG.ref(k + 1 | k),PT

DG.ref(k + 2 | k), . . . ,􏼂

PT
DG.ref(k + N | k)􏼃

T
,

PESS.ref � PT
ESS.ref(k + 1 | k),PT

ESS.ref(k + 2 | k), . . . ,􏼂

PT
ESS.ref(k + N | k)􏼃

T
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(36)

4.3.4. Issuing Instruction. +e control command sequence of
QAMTand ESS in the futureNmoment is solved by the real-
time optimization model:

ΔuT
(k + 1 | k),ΔuT

(k + 2 | k), . . . ,ΔuT
(k + N | k)􏽮 􏽯.

(37)

Begin

Adopt actual active power as
original value 

Establish rolling optimisation
model 

Solve control variable

Issued first control variable
sequence

Feedback correction

Is the optimization period
over? 

End

Yes

No

Figure 3: Real-time optimal dispatch process.
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+e first command is issued in the control increment
sequence to compute the power of QAMT and ESS in the
AC/DC distribution network in the next period:

P(k + 1 | k) � P0(k) + ΔuT
(k + 1 | k). (38)

4.3.5. Feedback Correction. +e measured value at current
sampling time is taken as the original value of the new roll
optimization before the next roll optimization to avoid the
interference caused by the uncertainty of the wind turbine.
+e feedback formula is as follows [19]:

P0(k + 1) � Preal(k + 1) + δ, (39)

where P0(k + 1) is the original power in the time k + i,
Preal(k + 1) is the actual measured power in the time k + i,
and δ is the measured error.

+e remaining constraints of the real-time optimization
model are the same as those of the day-ahead optimal
dispatch, and the expected value of QAMT and ESS, the
RMT power, and the grid purchase decision is obtained by
intraday optimal dispatch.

4.3.6. Real-Time Optimal Dispatch Result. +e control
command sequence of QAMTand ESS, the output power of
QAMTand ESS, and the storage state of ESS are determined
through real-time optimal dispatch.

5. Case Study

+e Yalmip and Cplex solvers are used for modeling and
solving the optimal dispatch model.+e test is performed on
a PC with an Intel Core (TM) i5-3340s CPU@2.8 GHz
processor and 8GB of memory.

+e simulation is conducted on a 50-node AC/DC
distribution network, as shown in Figure 4 [28]. WT is the
wind turbine unit, DG_F is the QAMT, DG_R is the RMT,
and ESS is the energy storage system. +e RMT with an
upper limit of power of 300 kW is connected to nodes 10 and
37, and the QAMTwith an upper limit of power of 300 kW is
connected to nodes 18 and 46, with a power factor of 0.9. ESS
with an upper limit of power of 300 kW and energy storage
of 1800 kWh is connected to nodes 36 and 49, and ESS with
an upper limit of power of 240 kW and energy storage of
1400 kWh is connected to nodes 41 and 45. +e time-of-use
electricity price is adopted, which is shown in Figure 5.

One thousand scenarios for wind and load are generated
in intraday dispatch and day-ahead dispatch, respectively,
and then these original scenarios are reduced to 5 scenarios
for wind and load by the K-means clusteringmethod [29], so
the number of total scenarios is 25.+e generated scenario is
applied to the wind and load data of EirGrid in 2017 and
2018. Figures 6 and 7 are the reduced wind scenario and the
reduced load scenario, respectively, generated in the day-
ahead dispatch. +e wind and load scenarios are generated
by the forecast value and forecast error sampled from the
empirical cumulative distribution function using the
transformation in (6). It is observed that the load scenarios

have lower volatility than the wind scenarios, and this is
because the forecast error of load is much smaller than that
of wind power in the historical data. Additionally, it is shown
that the wind output power is low from 2:00 to 6:00, so the
demand of microturbine output power and exchange power
is high. From 7:00 to 12:00, with the sharp increase in wind
output power and the growth of load power is relatively low,
the demand of microturbine output power and exchange
power begins to decrease. In the later stage, the load power
decreases slowly, while the wind power output shows a
substantial decline, which lead to a constant increase in the
demand of microturbine output power and exchange power.

5.1. Optimization Result Discussion. +e intraday optimal
dispatch results of RMTand the grid purchase decision from
08:00 to 10:00 are given with an interval of 15 minutes, which
is shown in Figure 8. It is observed that the rise in electricity
price begins at 8:00, leading to an increase in the cost of ex-
change power, so the exchange power is decreased and the
RMTpower is used as the main output power. When the load
power rises gradually, the AC/DC distribution network system
properly reduces the output power of RMT and increases the
exchange power because the RMT cost increases sharply with
the rise in power and the RMT output power is limited. +e
real-time optimal dispatch results of the power of ESS and the
QAMT from 08:00 to 09:00 are given with an interval of
5minutes, which is shown in Figure 9. It is observed that when
the load power is low at the starting optimal stage, the storage is
mainly charged for the growth of load power in the future.
With the constant increase in the load power, the state of
storage is transformed to discharge and the power of QAMT
also increases rapidly which realizes peak shaving maximally
and ensures safe operation of the AC/DC distribution network.
+e state of charge is shown in Figure 10. It is observed that the
state of charge is optimized according to the ESS constraints in
the multi-time scale optimal model, the curve of state of charge
becomes smoother, and there are no large fluctuations, in-
creasing the ESS usage life and the economy of the AC/DC
distribution network.

5.2. Markov Chain Dynamic Scenario Analysis. To verify the
effectiveness of the proposed method, the total adjustment
value G of the multi-time scale optimal dispatch is analyzed,
as shown in (40). +e total adjustment value in the intraday
optimal dispatch of the Markov chain dynamic scenario
model, dynamic scenario model, and Monte Carlo model is
shown in Figure 11. It is observed that there is little forecast
error observed between the generated scenario and the
actual scenario at the beginning due to the high prediction
precision. +e prediction precision decreases sharply, and
the forecast error between the generated scenario and the
actual scenario becomes increasingly larger with the growth
in the prediction time scale. Scenarios generated by the
Monte Carlo method are obtained only by superimposing
the perturbation of the normal distribution on the actual
load and wind curve, and the total adjustment value in-
creases considerably with the growth in the prediction time
scale. Considering the correlation of the original scenario
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with time, the Markov chain is adopted in the Markov
chain dynamic scenario method to simulate the change in
forecast error with time through the state transfer matrix,
so the deviation between the generated scenario and the
actual scenario and the adjustment value is relatively
small. +e total adjustment value of the dynamic scenario
method is between the two. +e multi-time scale optimal

dispatch based on the Markov chain dynamic scenario
method can effectively reduce the pressure of the intraday
optimal dispatch, verifying the feasibility of the proposed
model:
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Figure 4: Test system with 50 nodes.
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G � 􏽘
T

t�1
􏽘

kc

k�1

Pdayahead.t.k − Pintraday.t.k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Pdayahead.t.k

, (40)

where Pdayahead.t.k is the power of output unit k at moment t
in the day-ahead optimal dispatch, Pintraday.t.k is the power of

output unit k at moment t in the intraday optimal dispatch,
kc is the number of operation units, and T is the optimal time
scale.

To further illustrate the effectiveness of the method
proposed in this paper, the coverage ratio of the scenario set
over the actual valueΠ is analyzed, as shown in the following
equations:

Π �
1
T

􏽘

T

t�1
g Pt( 􏼁, (41)

g Pt( 􏼁 �
1 Pt.min ≤Pt ≤Pt.max ,

0 Pt >Pt.max, Pt <Pt.min ,

􏼨 (42)

where g(Pt) is the probability of covering the actual value
for the scenario set at moment t, T is the optimal time scale,
Pt is the actual value at moment t, Pt.min is the minimum
value of the scenario set, and Pt.max is the maximum value of
the scenario set. +e range of Π is 0 to 1. +e larger the
calculation result is, the higher the coverage ratio of the
scenario set to the actual value is, the higher the reliability of
the solved dispatch schedule is, and the lower the possibility
of a failure occurring in the AC/DC distribution network
operation is.

Five hundred wind turbine scenarios are generated by
the Markov chain dynamic scenario method, the dynamic
scenario method, and theMonte Carlo method, respectively.
+e coverage ratios of these generated scenarios are ana-
lyzed, which is shown in Table 1. +e coverage ratio of the
scenario generated by the Monte Carlo method is lower than
those of the other two methods, and the coverage ratio
decreases significantly with an increase in the prediction
time scale. +e scenario generated by the dynamic scenario
method has the same high coverage ratio as the Markov
chain dynamic scenario method when the prediction time
scale is low, but with the continuous growth of the pre-
diction time scale, the coverage ratio of the scenario gen-
erated by the dynamic scenario method starts to decrease
gradually while the scenarios generated by the Markov chain
dynamic scenario method still have high coverage rates.

5.3. MPC Analysis. +e result of the intraday optimal dis-
patch based on MPC and the intraday optimal dispatch
without using the MPC method is shown in Figure 12. +e
intraday optimal dispatch results based on MPC have the
same output power trend as the intraday optimal dispatch
results without MPC, while the intraday optimal dispatch
results without using MPC have large fluctuations. Feedback
correction and roll optimization are adopted in the optimal
dispatch based on MPC, so the result is relatively smooth,
which is more beneficial to the operation of the AC/DC
distribution network.

To better compare the results of different optimization
methods, the stability of the power of QAMT is analyzed.
+e output volatility of QAMT is defined as follows:

Γ � 􏽘

NDG

i�1

Pmax
DG.i − Pmin

DG.i

PDG..i

× 100%, (43)
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where Pmax
DG.i and Pmin

DG.i are the maximum and minimum
power of QAMT i in the entire optimal period, respectively,
and PDG..i is the average power value of QAMT i in the whole
optimal period.

+e results of these three different optimizationmethods are
compared, as shown in Table 2. MPC1 represents the opti-
mization method that only utilizes roll optimization without
feedback correction. MPC2 represents an optimization method
utilizing both roll optimization and feedback correction.

Table 2 shows that these three methods have almost the
same optimal results. However, as the MPC1 optimization
method adopts the roll optimization, the output volatility is
59.7%, which shows a better stability than that of the traditional
optimal flow. MPC2 has a lower volatility than MPC1 due
feedback correction, which is 56.1%. As a result, MPC2 can
ensure that the large power fluctuations in QAMTand ESS will
not occur when dealing with the uncertainty and volatility of
uncontrollable energy, which is beneficial to maintain the
balance of active power in the AC/DC distribution network,
improving the stability of system operation.

6. Conclusions

A multi-time scale optimal dispatch model of an AC/DC
distribution network based on the Markov chain dynamic

scenario method and MPC is proposed. +e Markov chain
dynamic method is proposed to generate a scenario to
address with the fluctuation of uncontrollable energy, and
the output power of the unit is solved by adopting roll
optimization in intraday optimal dispatch based on MPC,
realizing the coordination of day-ahead, intraday, and real-
time optimization and the consumption of wind turbine.

(1) As the correlation of the forecast error state with
time is considered, the scenario generated by the
Markov chain dynamic scenario method has a higher
coverage ratio than the scenario generated by the
dynamic scenario method when the time scale is long
and the solved dispatch schedule using the Markov
chain dynamic method has less fluctuations, which
improves the stability of the AC/DC distribution
network and ensures the safe operation of the
system.

(2) All operating units with different adjusting times is
used in the power system dispatch by adopting a
multi-time scale optimal dispatch model. +e op-
eration units with long adjusting times are used in
the consumption of uncontrollable distributed en-
ergy in the AC/DC distribution network, while the
operation units with short start adjusting times are

Table 1: Comparative result of the coverage ratio.

Π Markov chain dynamic scenario method Dynamic scenario method Monte Carlo method

Time

1:00–6:00 0.9981 0.9975 0.9471
7:00–12:00 0.9896 0.9795 0.8995
13:00–18:00 0.9744 0.9452 0.8451
19:00–24:00 0.9611 0.8997 0.8071
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Figure 12: Comparison of real-time dispatch results.

Table 2: Results of different optimization methods.

Optimization method Volatility (%) Cost ($)
Non-MPC 66.3 18412.32
MPC1 59.7 18634.25
MPC2 56.1 18787.47

Journal of Electrical and Computer Engineering 11



used to suppress the short-term fluctuation of un-
controllable distributed energy.

(3) As the roll optimization method and feedback cor-
rection are used in the process of optimization, MPC
has better stability than traditional optimal flow,
which can ensure that the output power of QAMT
and ESS fluctuates within a certain range, thereby
improving the stability and robustness of system
operation.
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ongoing study.
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