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Spectrum is one of the world’s most highly regulated and limited natural resources. Cognitive Radio (CR) is a cutting-edge
technology that aims to solve the future spectrum shortage issue in wireless communication systems. CR is one of the most widely
used methods for maximizing the use of the wireless spectrum. Spectrum sensing is a critical step in discovering spectrum gaps in
CR. Matching �lter detection, energy detection (ED), cyclostationary detection, correlation coe�cient detection, and wavelet
detection are some of the frequency band sensing techniques. ED has received the most attention from many researchers because
of its convenience and low computation complexity. However, noise instability, or the random and unavoidable variation of noise
that exists in any communication link, greatly decreases the output of ED, especially whenever the signal-to-noise ratio (SNR) is
poor. As a result, this research provides an exciting spectrum sensing option known as the energy detection with entropy method
technique. In contrast to conventional ED, the proposed energy detection with entropy method o�ers better sensing performance
in low SNR circumstances. According to simulation results, the proposed method has a signi�cant performance improvement of
about 18.58% when compared to CED at a given SNR of − 18 dB.

1. Introduction

Wireless communication technologies are rapidly evolving
in order to satisfy people’s demands and requirements,
which are changing dramatically. As wireless systems and
technology advance, the demand for radio spectrum also
grows in the same manner. �e proliferation of wireless
systems and networks has resulted in a scarcity of spectrum
resources, which are limited and precious natural resources
[1]. On the contrary, recent studies on current spectrum
allocation show underutilization of the allocated spectrum
by the licensed user at any speci�c location and time.
Cognitive radio (CR) has been identi�ed as a possible
technology for addressing the issues of spectral scarcity and
underutilization [2, 3]. CR has been regarded as an ap-
propriate solution for resolving the imbalance or disparity
between scarce spectrum and the underutilized spectrum.

Spectrum Sensing (SS) is regarded as the most critical
component in the establishment of CR [4–6]. SS is the most
fundamental and important process of CR to �nd the unused
or vacant spectrum, which is called “spectrum holes.” Under
a CR environment, the sensing of the spectrum is done in
order to trace the unused spectrum segments from the target
spectrum pool in order to use those segments in a fair and
optimal manner such that there should be no unwanted
interference to the licensed primary user.

Cognitive radio (CR) is a vital technology that allows for
more e�cient use of the �nite and ine�ciently utilized
frequency bands in an opportunistic manner [7, 8]. CR is
also described as a wireless communication system that
intelligently learns and adapts to its surroundings. �ere are
two kinds of bands: licensed and unlicensed. Licensed bands
are those that can only be used by authorized parties or
users, whereas unlicensed bands can be used by everyone
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who wants to use them. According to those bands, there are
two kinds of users in the CR Network (CRN) [9]. *e users
who have the privilege of using licensed bands at any time
are known as primary users (PUs), whereas the users who
have the privilege of using unlicensed bands are known as
secondary users (SUs). Almost all of the time and in many
parts of the world, licensed bands are not efficiently utilized
by the PUs [1]. *ere are always gaps and possibilities in the
spectrum. A spectrum hole occurs when a frequency band is
unoccupied (or when a vacant band occurs in the frequency
spectrum). CRN has four main tasks/functions, which are
spectrum sensing (SS), spectrum mobility/handoff, spec-
trum management/decision, and spectrum sharing [10].

*e main goal of CR is to resolve the bandwidth crises
problem by utilizing the natural resources well such as
transmitted energy, time, and frequency [11–13]. CR
technology detects the available spectrum bands and iden-
tifies which bands are vacant and where. Detecting vacant
bands is only possible by using SS techniques, which are
useful in improving the spectral efficiency of a network.
Unutilized spectrum bands can be considered as a spectrum
from which spectrum band frequencies can be assigned to
cognitive radio users (CRUs). Without collecting these
spectrum bands into a common pool, CR users can use
frequencies that have been discovered to be vacant directly.
Moreover, cognitive radio (CR) methods can be utilized
internally inside a licensed network to enhance spectrum
utilization efficiency. In a CR network, the secondary users
(SUs) periodically observe the spectrum radio and com-
municate opportunistically through the spectrum gaps, or
white space. As indicated in Figure 1, there are three popular
types of SS methods for identifying a PU licensed available
spectrum [14].

Several spectrum sensing methods, such as energy de-
tection (ED), match filter detection (MFD), and cyclosta-
tionary detection (CD), which are termed noncooperative
detection or single-stage methods, are used to sense the
spectrum for CR. ED is the simplest and easiest of these
methods because it does not need information about the PU
signal. It’s simple to use and has a short sensing time [15–17].
*e EDmethod involves searching for the frequency band of
interest and performing tests to compare the received energy
with a predefined threshold to determine whether the PU is
active or not. Unfortunately, at low SNRs, the ED technique
is not robust in detecting spectrum holes correctly. To
overcome the challenges of the ED method, the energy
detection method with entropy-based detection sensing is
introduced in this research.

Transmitter-based detection is one of the major cat-
egories of SS techniques. It is also known as noncoop-
erative SS techniques. Noncooperative detection refers to
the sensing terminal does not cooperate with each others
or the availability of one terminal only for sensing the
spectrums. *erefore, is spectrum sensing decision is
made based on the local measurements and observations
of secondary users [18–20]. *e detection model is purely
based on the analysis of the received signal at the SUs
receiver end. Transmitter based detection methods are
commonly based on the assumption that the cognitive

device is unaware of the primary transmitter’s location
[20]. As a result, cognitive users have to rely on the de-
tection of weak signals from the primary transmitter and
use only local observations to carry out SS. A cognitive
device is not fully aware of the spectrum occupancy in its
vicinity (coverage area). *erefore, totally avoiding
harmful interference with PUs is impossible. Further-
more, the transmitter-based detection is ineffective in
preventing a hidden terminal problem [18, 20].

In transmitter-based detection, each CR user behaves
individually and assesses the spectrum occupancy depend-
ing on its own local observations [21]. Detecting a trans-
mitted signal of licensed users in a CRN environment is
difficult due to a number of uncertainties, including channel
uncertainty, which refers to dynamic variation in channel
fading and shadowing circumstances; aggregated interfer-
ence uncertainty, which occurs when there are too many
unauthorized users in the same CRN that interfere with one
another; and lastly, the noise uncertainty, which can affect
the performance of the receiver operating characteristics
(ROC) curve and detection sensibility [21, 22]. In SS, the
problem of hidden terminals is also seen as a major challenge
[21, 22].

Cooperative spectrum sensing (CSS) provides a solution
to the problem that arises in spectrum sensing due to noise
uncertainty, receiver uncertainty, fading and shadowing
[18]. Particularly, CSS is used to overcome the hidden
terminal problems occurred for single node detection. As
discussed earlier, there are three approaches to CSS; cen-
tralized, distributed (decentralized), and relay-assisted ap-
proaches [23]. Under the centralized CSS approach, each
secondary user employs the single node detection techniques
to perform the local spectrum sensing and then sends the
decision result to the fusion center (FC). Lastly, the FC
analyses the aggregated information and makes a decision
based on certain judgment criteria to complete the spectrum
process. SU sends their results to FC either by using hard
decision combining (OR Rule, AND Rule, Majority rule) or
soft decision combining (EGC, MRC, SLC) [23]. However,
this study considers only transmitter-based detection since it
is the basis for other types of spectrum sensing techniques
(i.e., cooperative detection and relay-assisted technique).

*e increasing demand for wireless services has put a lot
of restrictions on how the available radio spectrum, which is
a finite and valuable resource, can be used. Because of the
recent rapid rise of wireless communications, the issue of
spectrum utilization has become even more critical. In
addition to this, a fixed spectrum allocation policy has
resulted in spectrum underutilization, as a large amount of
licensed spectrum is not adequately exploited. In order to
overcome the problem of spectrum underutilization, cog-
nitive radio (CR) has emerged as a viable solution for in-
creasing the efficiency of available radio spectrum
utilization. Spectrum sensing is an essential task for CR since
it helps in the detection of the spectrum gaps (frequency
bands that are underutilized). As mentioned in the back-
ground section, there are a variety of spectrum sensing
techniques [18, 24–28]. Among those techniques, the energy
detection (ED) method is the simplest and easiest one. But at
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low SNR signals, the performance of energy detection
spectrum sensing is degraded or reduced. So, in order to
overcome the problem at low SNR, energy detection with the
entropy method has been used in this research study. *e
main purpose of this study is to improve the spectrum
sensing performance of ED at low SNR using energy de-
tection with entropy methods.

*is study focuses on implementing SS techniques for
CRs. For implementation, the ED noncooperative SS
method is adopted. Also, entropy is added to energy de-
tection techniques to enhance SS performance for CRs. An
analytical study of energy detectors with entropy has been
done to enhance the performance of conventional tech-
niques. *e comparison between traditional energy and the
proposed energy detection with entropy technique have
done using MATLAB simulations. Performance evaluations
of the proposed technique at different sampling values are
also done using MATLAB simulations. *e comparison
results show that the proposed method outperforms the
conventional energy detection (CED) by a significant per-
formance improvement. For instance, at a given SNR of
− 18 dB, the detection probability of the proposed technique
is 0.4818, while the detection probability of CED is 0.4063. In
other words, the proposed method has a significant per-
formance improvement of about 18.58% when compared to
CED.

2. Literature Review

In [6], analysis of the energy detection SS technique in CR is
presented. *e theoretical concept of different types of
spectrum sensing techniques is discussed clearly with their
mathematical formulas. In this study, the ED method is one
of the SS techniques that is analysed in detail. An energy
detectionmethod is used to detect the unused portions of the
spectrum and make them available for reuse. By using the
energy detection method, we can identify and allocate gaps
in the spectrum to secondary users. Also, the effects of
fading, shadowing, and hidden terminal problems on de-
tection performance are discussed. *is study analyses

energy detection techniques well, but it fails to detect PU
signals at low SNR levels. In [29], energy detection-based
spectrum sensing in Rayleigh fading environments is dis-
cussed. *e closed form mathematical equations for AWGN
and Rayleigh channels, including detection probability and
probability of false alarm in respect to the SNR, are derived.
*e results of simulations and theoretic calculations are
compared. According to the comparison, this study con-
firmed that the probability of detecting a primary signal is
lower in Rayleigh channels compared to the AWGN
channels.*e results of this study show that as the SNR value
increases, so does the detection probability. Furthermore, it
is evident that an increase in false alarm probability increases
the detection performance.

In [30], numerical analysis of histogram-based estima-
tion techniques for entropy-based spectrum sensing is
proposed. In this study, spectrum detection-based on En-
tropy had been proposed to sense primary transmission in a
Cognitive Radio Network (CRN). To estimate entropy, the
histogram method was used. *e performance of the en-
tropy-based detection with respect to several rules for cal-
culating the number of bins in the histogram is evaluated.
And, it demonstrated that the performance of detection is
different for each of the aforesaid rules due to the probability
distribution of the PU signal. *e main focus of this study is
only focused on the optimal determination of the number of
bins. However, the current hot research topics in the area of
CRs are improving the performance of spectrum sensing.
*e authors in [31] present their study on selective clustering
energy detectors for cognitive radio networks–conceptual
design and experimental assessment. *is work presents a
new ED that determines a dynamic threshold based on
clustering and aggregating selected sequences of energy
measurements obtained from a software-defined radio. In
[2], spectrum sensing evaluation based on the entropy
strategy applied to the Cognitive Radio network is presented.
Bartlett periodogram is used to perform Entropy Estimation.
A trade-off between variance and the spectral resolution for
Bartlett periodogram is presented. *is study tries to do
spectrum sensing only by entropy detection using the

Spectrum Sensing

Transmitter-based Detection

Interference-based Detection

Receiver-based Detection

Energy Detection

Entropy Detection

Matched Filtering Detection

Cyclostationary Feature
Detection

Figure 1: Spectrum sensing technique.
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Bartlett periodogram. However, entropy detection using
Bartlett periodogram has more computational complexity
than two-stage SS using ED and entropy detection.

In [32], SWIPT cooperative spectrum sharing for a 6G-
enabled cognitive IoT network is presented. In this study,
two simultaneous wireless information and power transfer
(SWIPT) cooperative spectrum sharing methods are pro-
posed to improve the energy and spectrum efficiency of a
6G-enabled cognitive IoT network, in which Internet of
*ings (IoT) devices access the primary spectrum by serving
as orthogonal frequency division multiplexing (OFDM)
relays with the energy harvested from the received radio
frequency (RF) signal.

*e authors in [33] present their study on incentive
mechanism-based cooperative spectrum sharing for OFDM
cognitive IoTnetworks. In this study, we use contract theory
to model the incentive mechanism in an OFDM-based
cognitive IoT network under a practical scenario with in-
complete information where UIDs act as the employer and
employees, respectively.

3. System Model of Spectrum Sensing

Generally, spectrum sensing (SS) can bemodelled as a binary
hypothesis problem in the detection theory and can be given
as

y(n) �
w(n): H0,

s(n) + w(n): H1,
 (1)

where n� 1, 2, 3, . . ., N is the sample number in the sampled
signal that has been received, y(n) is the sampled signal that
has been received by secondary users, w(n) is zero mean
AWGN (additive white Gaussian noise) with variance σ2w,
s(n) is the signal from PU with variance σ2s and zero mean.
H0 andH1 represents absence (null hypothesis) and pres-
ence (alternative hypothesis) of the PU, respectively [34].

*e probability matrix for different scenarios and their
possible outcomes is shown in Figure 2.

Figure 2 shows four alternative scenarios or cases for the
detected signal:

(i) Case 1: deciding H0 when H0 is active (H0/H0)

(ii) Case 2: deciding H1 when H1 is active (H1/H1)

(iii) Case 3: deciding H0 when H1 is active (H0/H1)

(iv) Case 4: deciding H1 when H0 is active (H1/H0)

*e probability of detection (Pd), missed detection
probability (Pm), and probability of false alarm (Pf) are
generally defined as

Pd � p
H1

H1
 ,

Pm � 1 − Pd � p
H0

H1
 ,

Pf � p
H1

H0
 .

(2)

Accordingly, detection probability is equal to the
probability of deciding H1 when H1 is active and the missed
detection probability is equal to the probability to deciding
H0 when H1 is active. *e false alarm probability is the
probability of deciding H1 when H0 is active.

3.1. SystemModel of the Energy Detection Technique. An ED
technique is employed in this study to enhance the sensing
performance at low SNR, which is one of the SS detection
techniques. *e block diagram of the ED that is used to
determine whether a primary user is present is depicted in
Figure 3 [19]. To calculate the received signal energy, the
signal that is passed through BPF (used to normalize noise
variance and to minimize the power of the noise) of
bandwidth W is first squared by using a square-law device
and then summed (integrated for continuous signal) over
the observation interval T. Finally, the summation’s output
(integration’s output) is compared with a predefined
threshold “λ,” to determine whether the licensed user is
present.

*e received signal’s energy is compared to the detection
threshold to determine if the PU is present or not in the
energy detection system. Energy detection test statistics are
as follows:

T(y) �
1
N



N

n�1
|y(n)|

2
. (3)

Under the noise only condition (H0) of zero mean
Gaussian distribution, the test statistics decision of energy
detection follows a central chi-square distribution with
2 TW degrees of freedom. Note that TW represents the
product of time bandwidth. On the contrary, under H1
conditions, the test statistics decision follows a noncentral
chi-square distribution with noncentrality parameters of 2c

and degrees of freedom of 2 TW. Here, c represents the

H0
H0

H1

P (H1/H0)

P (H1/H1)

P (H0/H0)

P (H0/H1)

H1

Figure 2: Hypothesis testing and probable outcomes, along with
their probability.
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linear scale of the mean SNR. As a result, the decision test
statistics for energy detection under H0 and H1 hypothesis
are given as follows [35, 36]:

Y �
χ22TW H0

χ22TW(2c) H1

⎧⎨

⎩

⎫⎬

⎭. (4)

*en, the probability density function (PDF) of test
statistics Y can be expressed as [35, 36]

fY(y) �

1
2TWΓ(TW)

y
TW− 1

e
− (y/2)

, H0

1
2

y

2c
 

(TW− 1/2)

e
− ((2c+y)/2)

ITW− 1(
����
2cy


), H1

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, (5)

where Γ(.) is the complete gamma function and Ix(.) is the
xth-order modified Bessel function of the first kind. *e
probability of false alarm and the probability of detection
are, respectively, given as [35, 36]

Pf � Pr Y> λ/H0(  �
Γ(TW, (λ/2))

Γ(TW)
,

Pd � Pr Y>
λ

H1
   � Q(N�TW)(

��
2c


,

�
λ

√
),

(6)

where Q(N�TW)(., .) is the generalized Marcum Q-function.
Without coherent detection, the samples of the primary

signal S[n] can be described as a Gaussian process with
variance σ2s . As a result, y[n] is a Gaussian process. *e
number of needed samples N in the low SNR region is high,
as can be seen. *e test statistics can be estimated as a
Gaussian distribution using the central limit theorem [37].
*e test statistics are given by [35]

Y �
N μ0, σ

2
0 : H0

N μ1, σ
2
1 : H1

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (7)

H0: T ∼ Normal Nσ2w, 2Nσ4w , (8)

H1: T ∼ Normal N σ2w + σ2x , 2N σ2w + σ2s 
2

 , (9)

where N(μ, σ2) is the Gaussian distribution with mean μ and
variance σ2. *e mean and variance for both hypothesis H0
and H1 are given, respectively, as [35, 36]

μ0 � Nσ2w; σ20 � 2Nσ4w ,

μ1 � N σ2s + σ2w ; σ21 � 2N σ2s + σ2w 
2

 .
(10)

*e detection probability (Pd) and false alarm proba-
bility (Pf) are two parameters used to evaluate the detection
performance of any SS method. For the large values of N, Pd

and Pf with the substitution of equation (10) can be
expressed as [35, 36]

Pd � P T>
λ

H1
  � Q

λ − N σ2w + σ2s 
������������

2N σ2w + σ2s 
2

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (11)

Pf � P T>
λ

H0
  � Q

λ − Nσ2w�����

2Nσ4w
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠, (12)

where

Q(x) �
1
���
2π

√ 
∞

x
exp

− y
2

2
 dy, (13)

where Q(x) is Q-function.
*e detection threshold can be given as

λ � σ2w
���
2N

√
Q

− 1
Pf  + N . (14)

*e minimum number of samples needed is dependent
on the SNR and can be computed as [36]

N � 2 Q
− 1

Pf  − Q
− 1

Pd(  SNR− 1
− Q

− 1
Pd(  

2
. (15)

3.2. System Model for the Proposed Technique. In this study,
we propose energy detection with an entropy methods
technique to improve the spectrum sensing performance of
the energy detector technique in low SNR situations. *ere
are many types of entropy techniques, such as entropy of
uniform distribution and entropy of Gaussian distribution.
In this research, the entropy of a discrete Gaussian distri-
bution is used since the energy measurements are a Gaussian
distribution.

*e proposed technique is the same as the energy de-
tection technique except after energy measurement or test
statistics, it applies an entropy method as shown in Figure 3.

Since the test statistics, decision of energy detection for
noise only (H0) Gaussian distribution with zero mean
follows the distribution of central chi-square with 2 TW
degrees of freedom. Note that TW represents the product of
time bandwidth. On the contrary, H1 follows a noncentral
chi-square distribution with noncentrality parameters of 2c

and degrees of freedom of 2 TW. Here c represents the linear
scale of the mean SNR. As the number of samples N in-
creases, the test statistics can be estimated as a Gaussian
distribution.

H0: T ∼ Normal μ0, σ
2
0 ,

H1: T ∼ Normal μ1, σ
2
1 ,

(16)

where Normal(μ, σ2) denotes a Gaussian distribution with
variance σ2 and mean μ. For both hypotheses, the mean and
variance are as follows:

μ0 � Nσ2w, σ20 � 2Nσ4w ,

μ1 � N σ2w + σ2x , σ21 � 2N σ2w + σ2s 
2

 .
(17)
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With these substitution the Pd and Pf can be expressed
by equations (11) and (12), respectively.

Since the test statistics of energy detection is Gaussian
distribution as the number of samples increases, the pro-
posed technique applies a Gaussian entropy method on to it.

*e probability density function p(x) of Gaussian
random variables is given as follows:

p(x) �
1

����
2πσ2

 exp −
(x − μ)

2

2σ2
 , (18)

where σ and μ denotes the standard deviation and mean of
the Gaussian random variable respectively. For this research
lets us consider μ � 0 and σ � 0.5 for simplicity.

Entropy can be defined as a measure of the average
information content per symbol. In data communication,
the term entropy refers to the relative degree of randomness.

Entropy of the PDF p(x) of continuous random variable
is given as follows:

H(x) � − 
∞

− ∞
p(x)log(P(x)

2 dx. (19)

But, since this research uses a digital implementation, the
integration of entropy is replaced by summation as follows:

H(x) � − 
∞

x�− ∞
p(x)log(P(x)

2 , (20)

where p(x) denotes a Gaussian random variable’s proba-
bility density function.

4. Results and Discussion

Under this section, the results of SS simulations achieved
using employing both the CED as well as the proposed
techniques are presented and also discussion analyses on the
results obtained from both techniques are presented. *e
following important performance metrics are used to ana-
lyze the performance of CED as well as the suggested
technique: detection probability, false alarm probability,
probability of missed detection, and SNR. For this research
study, the performance of conventional and proposed
techniques over an additive white Gaussian noise (AWGN)
channel is evaluated using the MATLAB simulation tool.
*e parameters that are used for simulation in this research
are listed in Table 1.

4.1. Results of the Conventional Energy Detector (CED).
Under this subsection, two cases are considered in the
implementation: the simulation cases and theoretical cases.
*e theoretical case illustrates the ROC curve depending on

the theoretical calculation, whereas the simulated scenario
shows the ROC curves based on the actual sensing infor-
mation. So, under this subsection, the comparison between
theoretical and simulated energy detector techniques is
discussed. In this research study, the conventional energy
detector refers to the ED without an entropy method.

*e performance of conventional energy detection
through the AWGN channel is simulated under this section.
*e following simulation results are discussed for conven-
tional energy detection techniques:

(i) Probability of detection versus signal-to-noise ratio
(ii) Probability of detection versus probability of false

alarm

4.2. Probability of Detection versus SNR for the Energy De-
tection Technique. *e SNR range in this simulation is from
− 20 dB to 0 dB, and the false alarm probability is also
considered as a constant that has a value of 0.2. In addition,
1,000 received signal samples and 10,000 simulations of
Monte-Carlo are taken into account. *e value of SNR
increases over its range with step increments of 1 dB. Fig-
ure 4 depicts the SNR versus Pd when the false alarm
probability is set to 0.2.

Also, Figure 4 depicts the relationship between theo-
retical and simulation results of energy detection techniques;
as shown in the figure, there is a strong correlation between
them. *e results of both simulation and theoretical show
the same trend as observed in the plot. *e result indicates
that the performance of ED at low values of SNR deterio-
rates. At a below − 18 dB SNR value, the performance of ED
is too low, i.e., it cannot differentiate between the signal of
PU and noise. As the SNR value increases, the probability of
detection also becomes increase sharply up to − 7 dB. After
− 7 dB, CED attains the maximal detection probability, i.e.,
the energy detection technique can distinguish PU signal in
the spectrum from noise is shown in Table 2.

H1

y (t) H0BPF
T (y) > λ

T (y) < λ
ADC

Energy 
Measurem
ent; T (y)

Entropy 
Method

Figure 3: Block diagrams of the proposed technique of the energy detector with entropy.

Table 1: Parameters used for simulation.

Simulation parameters Type and values
Cognitive users Single user
Types of primary signal Random
Detection type Energy detection (ED)
SNR values of transmitted signal − 20 dB up to 0 dB
Probability of false alarm 0.1 to 1
Number of samples 1000, 1500 and 2000
Channel AWGN
Mean and variance 0 and 1 for AWGN
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4.3. Probability of Detection (Pd) versus Probability of False
Alarm (Pf ). Figure 5 depicts the simulation result of the
ROC curve for a conventional energy detector under the
AWGN channel. *e ROC plot illustrates the relationship
between detection probability and false alarm probability
at an SNR value of − 10 dB. An increase in the probability

of false-alarm increases the probability of detection. A
high false alarm probability leads to a poor spectrum.
Hence, the false alarm probability should be as minimal
as possible for accurate results and also to protect the
primary user signal from interfering with secondary
users.

Table 2: Simulation result of SNR vs. Pd for CED (without entropy).

SNR vs. Pd for the conventional energy detector (without entropy)
SNR in dB − 19 − 17 − 15 − 13 − 11 − 9 − 7 − 5 − 3 − 1
Pd 0.3784 0.4385 0.5365 0.6855 0.8631 0.9793 0.9998 1 1 1
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4.4. Results of the Energy Detector with the Entropy Method
Technique. In this section, the results and performance of
energy detection with entropy methods are evaluated and
analysed. Also, the comparisons between energy detection
without entropy and with the entropy method are dis-
cussed. Like in conventional energy detection, the per-
formance of the proposed technique for spectrum sensing
is evaluated by key performance metrics that are discussed
under this part.

Figure 6 shows SNR versus detection probability for
theoretical ED, simulated ED, and proposed ED with the
entropy method at the value of Pf � 0.2.*e blue color with a
diamond represents the proposed energy detection with the
entropy method technique, and the black color with an
asterisk represents conventional energy detection, whereas
the red one represents the theoretical value of energy de-
tection. As observed in Figure 6, the proposed technique has

better performance than the conventional detector at low
SNR. At below − 7 dB of SNR, the proposed technique has
better performance than both theoretical and simulated
values of conventional energy detectors. However, after
− 7 dB, all plot curves attain their maximum value of
probability of detection, which is shown in Table 3. So,
energy detection with the entropy method can distinguish
primary user signal from noise better than traditional energy
detection since it has good detection probability at low SNR
(i.e., below –15 dB).

Figure 7 shows the ROC plot for Pf versus Pd at SNR
values of − 10 dB. In below simulation results, the red color
with a cross represents the proposed energy detection with
the entropy method technique; the blue color with a circle
represents the conventional energy detection; the blue color
with a dashed line represents the theoretical results of
conventional energy detection.*e ROC curve shows that as

Table 3: SNR vs. Pd for both the conventional and proposed technique.

SNR vs. Pd for the energy detector with the entropy method
SNR in dB − 19 − 17 − 15 − 13 − 11 − 9 − 7 − 5 − 3 − 1
Pd_ED 0.3726 0.431 0.5326 0.6891 0.8596 0.9779 0.9994 1 1 1
Pd_ED_EN 0.4566 0.5208 0.6178 0.7588 0.903 0.9851 0.9998 1 1 1
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Figure 7: Pf vs. Pd at SNR� − 10 dB.

Table 4: Pf vs. Pd for the energy detector with the entropy method at SNR� − 10 dB and L� 1000.

Pf vs. Pd for the energy detector with the entropy method at SNR� − 10 dB and L� 1000
Pf 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Pd_ED 0.7621 0.809 0.846 0.865 0.8878 0.9035 0.9103 0.9201 0.9278
Pd_ED_EN 0.8298 0.871 0.8936 0.9134 0.9245 0.9398 0.9415 0.9482 0.95
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the false-alarm probability rises, the detection probability
rises as well. *e proposed technique has a greater proba-
bility of detection than conventional techniques, as shown in
Table 4. *e detection probability reaches its maximum
value, Pd � 1, whenever the false alarm probability is larger
than 0.8, as seen in the graph. It is clear from the figure that
the proposed method performs better in terms of detection.
For instance, at a given probability of false alarm of 0.1, the
detection performance of the proposed technique is 0.9241,
while the detection probability of CED is 0.8951. In other
words, the proposed technique achieves the desired prob-
ability of detection with 0.17 probability of false alarm, while

the CED achieves it with 0.28. As a result, it is possible to
deduce that the proposed method has better detection
performance than CED, since it requires a lower probability
of false alarm to obtain the desired probability of detection.

Figure 8 shows the CROC curve for Pf vs Pm at an SNR
value of − 10 dB. Like in the ROC curve for Pf vs Pd, the red
color with a cross represents the proposed energy detection
with the entropy method technique, and the blue color with
a circle represents the conventional energy detection,
whereas the blue color with a dashed line represents theo-
retical results of conventional ED. *e proposed technique
has a lower miss-detection probability than the conventional
ED technique. As false alarm probability rises, the proba-
bility of miss-detection is decreased. Decreasing of miss-
detection probability indicates an increase in detection. As
miss-detection probability increases, the interference of PU
and SU also increases, which is not preferable in spectrum
sensing.

Figure 9 shows the ROC curve between Pd and Pf at
different sampling values. As observed in the ROC curve, the
detection probability increases as the sample number in-
creases. However, an increase in the sampling number in-
creases the computational complexity and sensing time. In
this study, we tried to simulate the proposed technique on
L� 1000, L� 1500, and L� 2000, where L is the number of
samples, as illustrated in Table 5.

Figure 10 shows the plot curve for Pd vs. SNR at various
Pf values. At a particular SNR value, as the false alarm
probability increases, so does the probability of detection. As
depicted in the graph, the probability of detection attains its
maximum value after an − 8 dB SNR value. In this simula-
tion, the red color with an asterisk represents a pf value of 0.1
and the blue color with a diamond represents a pf value at
0.2, whereas the black color with a circle represents a pf value
at 0.3, as shown in Table 6.
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Figure 8: Pf vs. Pm at SNR� − 10 dB.
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5. Conclusions and Future Study

In this study, the mathematical formulas for false alarm
probability, probability of detection, and miss-detection
probability under the AWGN channel model were pre-
sented. Numerous simulation plots for AWGN channels
were presented based on them. *e simulation results have
shown that the proposed ED with the entropy method has
enhanced performance for spectrum sensing compared to
the CED at low SNR situations.*e comparison results show
that the proposed method outperforms the conventional
energy detection (CED) by a significant performance im-
provement. For instance, at a given SNR of − 18 dB, the
detection probability of the proposed technique is 0.4818,
while the detection probability of CED is 0.4063. In other
words, the proposed method has a significant performance
improvement of about 18.58% when compared to CED.

In this research, we assumed that the input signal to
the SU was a randomly generated signal. In the future, the
input signal can be evaluated using different types of
digital modulation methods, such as BPSK, QPSK, M-ary
and QAM. Only the AWGN channel model is used to
evaluate the proposed methods. In the future, the pro-
posed method can be tested using different channel
models, such as Rayleigh, Nakagami, and Racian fading
channels. Moreover, the proposed method should be
performed either using double threshold or dynamic
threshold rather than using predetermined threshold.
Finally, the cooperative detection techniques for proposed
methods should be performed.

Data Availability

Data are included within the article.

Table 5: Pf vs. Pd for the energy detector with the entropy method at different sample values.

Pf vs. Pd for the energy detector with the entropy method at different sample values
Pf 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Pd_ED_EN At L� 1000 0.3188 0.3875 0.4442 0.4863 0.5109 0.547 0.5619 0.5862 0.6045
Pd_ED_EN At L� 1500 0.4108 0.4959 0.5345 0.5948 0.6138 0.6438 0.6586 0.6822 0.692
Pd_ED_EN At L� 2000 0.4954 0.5792 0.6249 0.6568 0.6961 0.7223 0.7378 0.7575 0.7638
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Figure 10: SNR vs. Pd at various Pf values.

Table 6: SNR vs. Pd for the energy detector with the entropy method at different Pf values.

SNR vs. Pd for the energy detector with the entropy method at different Pf values
SNR in dB − 19 − 17 − 15 − 13 − 11 − 9 − 7 − 5 − 3 − 1
Pd_ED_EN At Pf� 0.1 0.3461 0.408 0.5073 0.6632 0.8555 0.9752 0.9996 1 1 1
Pd_ED_EN At Pf� 0 0.4511 0.5178 0.6163 0.7552 0.9081 0.9878 1 1 1 1
Pd_ED_EN At Pf� 0.3 0.5336 0.5939 0.6887 0.8136 0.9329 0.9916 1 1 1 1
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