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�emodernmicrogrid is designed to withstand various disruptive events that have a high probability of occurrence but have a low
impact on the system. �is improves the reliability of the system but does not take into consideration the disruptive events that
have a low probability of occurrence but have a large impact on the system, such as extreme weather or natural disasters.
Redesigning a microgrid to withstand low probability high impact events is very costly and is not a feasible solution to existing
microgrids. �is paper proposes a method to improve the resilience of an existing microgrid to quickly recover from low
probability high impact events.�emethod used for this purpose is a combination ofMonte Carlo simulation and prioritization of
load of the microgrid.�e e�cacy of the method is examined by modeling microgrids using a fragility model. Using the proposed
novel resilience index, the resilience of the IEEE 5-Bus system and IEEE 14-Bus system and the e�ect of load shedding on the
resilience of the microgrid are analyzed and presented. �e e�ect on smaller and larger grids and their resilience is examined. A
novel resilience index is used to quantify the improvement of resilience of the proposed method when compared to other methods
available in the literature.

1. Introduction

Power system resilience is de�ned as the capability of the power
system to withstand and recover from any disturbance. With
the use of modern controllers and advanced automatic control
systems, the power system is able to withstand and recover
from a wide variety of disturbances. �is is due to the fact that
the power system and control system are generally designed by
taking themajor disturbances into consideration and have been
optimized to either automatically clear the disturbance or work
around the disturbance without disrupting power supply to the
consumers. �is is achieved using the implementation of
additional components to the power system to increase re-
dundancy. �is increases the reliability and resilience of the
system. To optimize the increase in reliability, the major dis-
turbances are selected to be modeled and analyzed based on a

few criteria. A few prominent criteria are the frequency of the
disturbance or probability of occurrence of the disturbance, the
impact of the disturbance on the system or consumer, and the
cost of implementing a solution to the disturbance. �is in-
creases the system’s resilience to high-impact high-frequency
events, such as lightning strikes, variation in load, etc., and low-
impact high-frequency events, such as faults and �uctuations,
etc. Low-impact low probability events are generally ignored at
this stage and are dealt with as and when they occur on a case-
by-case basis. �is leaves the system vulnerable to high-impact
low-frequency events, such as extreme weather conditions,
natural disasters, cyberphysical attacks, geomagnetic storms,
electromagnetic pulses, etc.

Microgrids are low voltage or consumer end systems
with Distributed Energy Resources (DERs) together with
storage devices and �exible loads. DERs include
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microturbines, fuel cells, Photo Voltaic systems, etc., either
singularly or a combination of them. Storage devices used
may be flywheels, energy capacitors, batteries, or a combi-
nation of them. Such microgrids can be operated autono-
mously without connection to the power grid, i.e., in
islanded mode or connected to work along with the grid
connection. )e operation of a microgrid in the distribution
network provides immense benefits to the overall perfor-
mance of the distribution system if it is efficiently controlled
and coordinated. )ey usually cover only a small area of the
overall network. In the event of an emergency or a failure of
the system, the distribution network can be maintained by
dividing into clusters of microgrids. )e latest designs of
distribution networks all include optimally placed DERs in
the network for ease of division of the network into
microgrids in the event of grid failure to provide uninter-
rupted power to the consumers. Microgrids tend to increase
the complexity of the control system required to regulate the
power distribution system while connected to the grid but
require only simple control systems if run in islanded mode.

In [1], it is indicated that although extreme weather
phenomena, such as cyclones, landslides, etc., have a low
probability of occurrence, it is predicted that such events
may increase in severity and probability in the future, and
the power system must be made resilient to them in re-
sponse. )is calls for a major overhaul of the existing power
system and redesigning it to be resilient against such extreme
weather events using hardened infrastructure and redundant
supply.

)is is a very costly affair in both resources required, and
research effort such as hardening the system to a great degree
increases the brittleness of the system; i.e., the system will
withstand a lot of disturbances, but if and when it fails, it
becomes irreparably damaged and will have to be completely
replaced. Extensive research will have to be done to de-
termine the optimal hardness of the system without making
it too brittle.

)is affects different parts of the transmission network
differently. On the high voltage side, such measures are very
crucial and have already been implemented using superior
transmission tower designs, wider spacing between the
conductors, sturdy anchoring, and an increase in periodic
maintenance. )is is due to the high level of redundancy
already available in high voltage networks over long dis-
tances; i.e., they are highly interconnected, and thus, they
can be easily scheduled to be switched off and maintained or
replaced. )is mitigates the impact of extreme weather
events at a high voltage level.

)is is not true for the low voltage level of power dis-
tribution as the level of redundancy is not as high as that of
the high voltage system. )ere is very limited space to in-
crease the gap between conductors in residential areas to
mitigate the effect of high wind speeds. )ere are also re-
strictions due to the proximity of existing residential
complexes or apartments. )is issue can be avoided by
including these factors during the design of a new distri-
bution area or residential area, but it is not feasible for
existing networks as the process of implementing the rec-
ommended changes to the network is very cost-prohibitive.

It is necessary to improve the resilience of the low voltage
distribution systems, such as microgrids against extreme
weather.

In the search for existing research on the topic of im-
provement of power system resilience, the resulting papers
have been analyzed based on three key attributes. )ese
attributes are not exhaustive and do not extend to all the
papers researched. )e attributes are as follows: problem
solved, the method of the solution implemented, and test
cases used. While almost all of them comment on the effect
of severe weather on the power system, they approach the
problem in different ways. Panteli et al. [1] used fragility
curves to assess the impact of extreme weather on a sim-
plified 29-bus Great Britain transmission network. Panteli
et al. [2] used defensive islanding to improve resilience on
the simplified 29-bus network. )e improvement of the
system function in zones 2,3 and 4 was observed due to this
strategy. Najafi et al. [3] used a social welfare-based index
and genetic algorithm to improve resilience on an IEEE 33
node system. )e targeted improvement of the system in
zone 4 in sync with the codependent water system greatly
enhanced the resilience of the system in accordance with the
demand. Gao et al. [4] used Linear Integer Programming
(LIP) to emulate all feasible paths of restoration of the
system to determine the optimal restoration of critical loads
on an IEEE 123 node feeder system. )e targeted im-
provement of the system resilience in zone 4 was highly cost-
effective. Xu et al. [5] also used LIP to restore critical loads on
the microgrids of the distribution system of Pullman,
Washington and were focused on the improvement in zone 4
of the system resilience. Ma et al. [6] used the greedy search
algorithm to minimize the cost of hardening of system and
load shedding to improve resilience in a modified Electric
Power Research Institute (EPRI) test circuit. )e im-
provement to both zone 2 and zone 4 was significant. Farzin
et al. [7] used Mixed Integer Linear Programming (MILP) to
enable the smart distribution of resources in a three
microgrid test system to improve resilience. )e research
was targeted toward improvement in zones 3 and 4 while
minimizing the cost of the improvement. Bajpai et al. [8]
used Graph theory and Choquet Integral to maintain critical
load supply in IEEE 123 node distribution system.)e target
was to reduce the impact on zone 2 and increase the recovery
in zone 4. Li et al. [9] used a combination of fragility curves
and the Monte Carlo method to determine the optimal
location for the integration of DERs in an IEEE 37 bus
network. )e target was to improve the resilience in zone 1
and reduce impact in zone 2. Huang et al. [10] used a nested
column-and-constraint generation decomposition, genera-
tor redispatch, topology shifting, and load shedding to
improve the resilience of a modified PJM 5 bus system, IEEE
one area RTS-96 system, and IEEE three area RTS-96 system.
)e improvement was observed in zones 1, 2, 3, and 4. Zarre-
Bahramabadi et al. [11] used MILP optimization to deter-
mine the optimal placement of switches to improve the
resilience of Bus 4 of the Roy Billinton test system. Zones 1
and 2 showed improvement due to this method. Mousa-
vizadeh et al. [12] used MILP to analyze the resilience of a
modified 118 bus test system and one 20 kV distribution
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network in Tehran, Iran. Gholami et al. [13] observed the
working of a resilient microgrid using a two-stage stochastic
programming approach and its ability to reduce the impact
of electric interruption by using the microgrid capabilities of
the IEEE 33-bus test system used. Eshghi et al. [14] proposed
metrics for the grading or ranking of optimal operation of a
smart grid using state estimation and adaptive response
techniques and their advantages. Chanda and Srivastava [15]
used percolation theory and a hierarchical analytical process
to define and quantify the resilience of an electrical distri-
bution system with multiple microgrids. Panteli et al. [16]
used time-dependent resilience metrics to quantify and
analyze the different phases that a power system may ex-
perience during an extreme event of the 29-bus Great Britain
transmission network. Panteli et al. [17] gave a compre-
hensive understanding of the use of hardening and imple-
mentation of smart control as strategies to improve
resilience on the 29-bus Great Britain transmission network.
Xu et al. [18] used a look-ahead load restoration strategy to
determine the optimal restoration strategy to improve the
resilience in zone 4 of the modified IEEE 342-node low
voltage network. Singaravelan and Kowsalya [19] used load
shedding and fuzzy logic techniques to prolong the supply of
power to the islanded microgrids of a modified IEEE 34-
node sample system and thus improved the resilience in
zones 2 and 3 of the network. Nikmehr et al. [20] used
metaheuristic algorithms under the condition of uncer-
tainties of loads and DERs to determine the optimal
scheduling of generators on a microgrid-based smart grid.
Chen et al. [21] used a sequential service restoration
framework and MILP techniques to optimally integrate
smart grids, such as a modified IEEE 123-node test feeder. Ji
et al. [22] used Soft Open Point (SOP) and MILP techniques
to improve load recovery and increase the resilience in zones
4 and 5 of the IEEE 33-node and IEEE 123-node test feeders.
Chanda et al. [23] used and evaluated a dynamic optimi-
zation algorithm to change the operating criteria to increase
the ability of the two connected CERTSmicrogrids to ensure
quality supply to the most critical loads of the system. Chen
et al. [24] used MILP, remote-operated switches, and DERs
to restore critical loads of a modified IEEE distribution rest
system and increase resilience in zone 4 of the system.
Panteli and Mancarella [25] used a sequential Monte Carlo-
based time-series simulation and fragility curves to improve
the resilience of an IEEE 6-bus test system in order to reduce
the impact of severe weather on the system. Gholami and
Aminifar [26], MILP, and Benders' decomposition tech-
niques were used to facilitate restoration, reduce outage
duration, and reduce damage to critical system components
of an IEEE 39-bus system to increase resilience in zones 1, 2,
3, and 4 of the system. Reed et al. [27] used fragility, outage
restoration, and interdependency analysis techniques to
understand and quantify the behavior and resilience of the
system using data collected during Hurricane Katrina. Arab
et al. [28] used MILP and Benders' decomposition algorithm
to determine the optimal repair schedule, generator com-
mitment, and network configuration of an IEEE 118-bus test
system to increase its resilience to disasters and improve
resilience in zones 1, 2, 3, and 4 of the system. Eder-

Neuhauser et al. [29] used the implementation of a
decentralized and self-organizing structure to qualitatively
evaluate the resilience and security of a smart grid with an
Information and Communication Technology (ICT) to-
pology. Eskandarpour and Khodaei [30] used machine
learning-based outage prediction to determine the potential
outage of the power grid components in a hurricane. Liang
et al. [31] used the control of Electric Springs implemented
in a microgrid with ES Topology to enhance the resilience of
microgrids using frequency and voltage control. Liu et al.
[32] used a four-loop switching controller implemented in a
modified IEEE 16-generator 68-bus power system to im-
prove the transient stability of power systems with wind
power integration. Liu et al.[33] used the Monte Carlo
method to improve the resilience of IEEE 30-bus and 118-
bus systems by determining the optimal microgrid clus-
tering of the system and also studied [34]. An optimal active
power dispatch can also be done by using deep reinforce-
ment learning [35].

Ali et al. [36–38] discussed the optimal planning of
autonomous microgrids in the presence of uncertain PV and
wind generation units, PEV charging stations/parking lots,
and proposed a bilevel metaheuristic and a two-level mul-
tiobjective evolutionary algorithm-based solution to address
the complex planning model.

From the literature, it is made clear there is a need to
develop a methodology to address and study the resilience of
a microgrid subjected disrupting events having a larger
impact on the microgrid. In this work, it is proposed to use a
combination of Monte Carlo simulation and load shedding
to improve the resilience of the power system. Monte Carlo
simulation is used to simulate the effect of wind on the
system using random variables with normal distribution and
the effect of load shedding on the resilience of the system.

)e rest of the paper is organized as follows. Section 2
presents the fragility modeling, the resilience of the power
system, and possible strategies to improve resilience. Section
3 presents the overview of the simulation, test models of the
power system used, a brief overview of the Monte Carlo
simulation method and load shedding algorithm used, the
overall simulation flowchart, and the results obtained from
the simulation. Section 4 summarizes and concludes the
paper.

2. FragilityModeling andResilienceAssessment

2.1. Fragility. Fragility is the probability of failure of a
structure based on a specific parameter. In a system, the
probability of failure depends on the fragility of the weakest
or the most vulnerable component in the system. )is de-
pends heavily on the intensity of the parameter in question.
A fragility function is a mathematical relation between the
failure probability of a component and the specific pa-
rameter intensity acting on or experienced by the compo-
nent either directly or indirectly. For example, the fragility
function of a transmission pole depends on the intensity of
the shaking of the ground in an earthquake or the force
experienced by the transmission pole due to the high-speed
spiraling wind blowing on it in a cyclone. Figure 1 shows the
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fragility curves for transmission lines subjected fragility of
poles, conductors, and combinations. From the figure, it is
clear that poles are impacted at higher wind speeds, and
conductors have an adverse impact even at lower wind
speeds, and it is also shown the combined fragility of the
system.

2.2. Resilience. )e ability of the system, including gener-
ating sources, transmission, and distribution, to bounce back
from high-impact low-frequency events is called resilience.
)is could include events that are natural, such as cyclones,
earthquakes, or ice storms, etc., as well as man-made, such as
cyber or physical attacks on grid infrastructure. )e system
is represented by a system function F(t) which indicates the
state of the system at a time t, as illustrated in Figure 2.

2.2.1. Zone 1 (Normal State). )is represents the state of the
system before the disruption event. )is is the designed state
of the system. )e system will continue to be in this state
until there is a disruption to the system.

2.2.2. Zone 2 (Disruption State). )is represents the state of
the system after the disruption until the failure of the system.
)e system function falls due to either the failure of system
components or due to preventive measures programmed
into the system in response to specific stimuli. )e degree of
fall in the system function depends upon the severity of the
disruption and the preventive measures taken by the
implemented control system.

2.2.3. Zone 3 (Fail State). )is represents the state of the
system after the failure of the system until the recovery of the
system is attempted. )e system function stays in this state
until the repair or replacement of damaged components of
the system after the disruption event is over. )e duration of
this state depends upon the severity of the disruption event
and its duration.

2.2.4. Zone 4 (Restoration State). )is represents the state of
the system after the attempted recovery starts until the
system reaches the recovered state. In this state, the power
system undergoes repair or replacement of damaged com-
ponents of the system. )e level of recovery of the system
function and the rate of recovery depends on factors such as
the measures taken by the system operator, the resilience of
the system, etc.

2.2.5. Zone 5 (Recovery State). )is represents the state of
the system after the system reaches the recovered state. )e
system continues to be in this state until there is another
disruption or heavy repairs or replacement of damaged
components due to the disruption. )is state does not
change until there is a change in the structure of the power
system.

2.3. Possible Solutions. )ere are a wide variety of strategies
that can be implemented to improve the resilience of a
system. )ese strategies can either be individually imple-
mented or implemented together in a group. )e strategy to
be implemented depends upon the zone of the resilience of
the system to be targeted for improvement. A few strategies
categorized by their targeted zone of improvement are as
follows.

2.3.1. Zone 1 Improvement. In this zone, the goal of im-
provement is to prevent damage to the system. )is can be
achieved by predicting the occurrence of the disruption by
analyzing previous disruptions, determination of weak
points in the system, analysis of the cause of the disruption,
and forecasting the conditions in which the disruption
occurs. )ese strategies work well with the strategies
implemented in zones 2 and 5.

2.3.2. Zone 2 Improvement. In this zone, the goal of im-
provement is to reduce the severity of the impact of the
disruption or reduction in the rate of degradation of the
system, or both. )is can be achieved by hardening of the
most vulnerable power system components, increasing the
level of redundancy in the system.)ese strategies work well
with the strategies implemented in zones 1 and 3.

2.3.3. Zone 3 Improvement. In this zone, the goal of im-
provement is to reduce the duration of the failed state. )is
can be achieved by implementing backup reserves, optimal
placement of service centers in an area, and improving
identification of the location of the damaged components of
the system. )ese strategies work well with the strategies
implemented in zones 2 and 4.

2.3.4. Zone 4 Improvement. In this zone, the goal of im-
provement is to increase the rate of recovery of the system or
improve the level of recovery, or both. )is can be achieved
by implementing load shedding, prioritization of load, in-
stallation of optimally placed DERs, and optimal clustering
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of microgrids. )ese strategies work well with the strategies
implemented in zones 3 and 5.

2.3.5. Zone 5 Improvement. In this zone, the goal of im-
provement is to maintain the new stable state of the system
and bring the system back to its original state. )is can be
achieved by a restructuring of the system, replacement of
damaged components, analysis of the effect of the disrup-
tion, and archiving of the same for future use, etc. )ese
strategies work well with the strategies implemented in
zones 4 and 1.

2.4.Proposed Index. It is observed that after theMonte Carlo
simulation, we can find the average power generated by a bus
in all the scenarios run by the simulation. )e probability of
being in a specific state of the power generation in each bus is
determined by counting the number of occurrences divided
by the number of simulations. )e Average Total Power
Generated (ATPG) and the Average Total Power Consumed
(ATPC) at each bus are also determined from the simulation
data as follows:

ATPG �


iter
i�1TPG(i)

iter
, (1)

where iter is the total no. of iterations of the Monte Carlo
simulation, TPG(i) is the Total Power Generated in ith it-
eration of the Monte Carlo simulation as follows:

ATPG �


iter
i�1TPC(i)

iter
, (2)

where iter is the total no. of iterations of the Monte Carlo
simulation, TPC(i) is the total power consumed in ith it-
eration of the Monte Carlo simulation as follows:

PG �
ATPG

Total base power generated
,

Ls �
(ATPC − Total base power consumed)

Total base power consumed
∗ 100,

resilience index(RI) � a∗PG(  + b∗ Ls( ,

(3)

where a and b are coefficients assigned to the system as
follows:

a �
1

no of buses in the system
,

b �
1

no of loads in the system
.

(4)

3. Modeling and Simulation

)e probability of failure of the power system components is
determined by using the fragility function with wind speed
as input and the probability of failure as the output. It is
determined to use the fragility curve of a power line as it is
the most sensitive to wind speed. In this case, the conductors
are the weakest link in the power system distribution chain
and are most likely to be a point of failure due to the pressure
caused by the wind [3]. )erefore, the equation for the
fragility of a conductor becomes as follows:

pfc � 0∀ws〈wmin,

pfc �
ws − wmin( 

wmax − ws( 
∀wmin ≤ws ≤wmax,

pfc � 1∀ws〉wmax,

(5)

where pfc is the probability of failure of a conductor, ws is
the speed of the wind in the local area, wmin is the minimum
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Figure 2: Representation of system resilience.
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wind speed required for failure below which the conductor
does not fail due to the wind, and wmax is the maximumwind
speed above which the conductor is sure to fail.

3.1. Systems Studied. )e models used for simulation are as
follows, IEEE 5-Bus system depicted in Figure 3, is used for
simulation of the power system consisting of five buses and
seven lines. IEEE 5-Bus system depicted in Figure 4 is used
for simulating power system configuration, which consists of
14 buses and 20 lines.

)e simulation and implementation of the solution to
the test cases in consideration would be meaningless without
comparison with base steady-state data obtained using
power flow equations. Of the wide variety of power flow
equations available to determine the flow of power in the
system at a steady state, a few are the Gauss-Seidel method,
Newton-Raphsonmethod (NRmethod), fast decoupled load
flowmethod, DC load flowmethod, etc. Each method has its
own advantages and disadvantages based on the assump-
tions made in the calculation of the power flow. Of these, we
use NR load flow to determine an accurate load flow with a
very small number of steps. )e disadvantage of longer
calculation time and larger memory requirement of NR load
flow method is overcome by the speed and capability of the
latest computers and also the vast boost to computing power
afforded by graphical processing units (GPUs) that perform
a large number of calculations simultaneously.

3.2. Monte Carlo Simulation. It is one of the deterministic
approaches to the solution of a problem in which multiple
random variables are used to make numerical estimations of
complex situations. It is generally used to calculate the
impact of a parameter on the system by running a large
number of iterations of the simulation of the system in which
the parameter in question is slightly different in value or
completely random based on a selected random distribution.
It gives us the probability of the system being in a certain
state by adding up the number of times the target state is
achieved during the course of the Monte Carlo simulation.
)e selection of the type of random distribution is decided
based on the parameter in question and its behavioral
tendencies. Generally, the random number is chosen to be
with a uniform distribution where all possible values within

a range are equally probable, or it is chosen to be with
normal distribution to emulate the probabilities found
naturally in nature.

)e Monte Carlo simulation technique is used to em-
ulate the effect of high-speed wind on the test system by the
use of a normally distributed random number to represent
the wind speed and comparison with the reduced fragility
function adjusted to the natural tendency of wind to de-
termine the failure state of the transmission line in question
and its effect on the system. Since the goal is to quantize the
resilience of the system, the state of the system is observed
using specifically designed indices. In this case, the total
power generated, the total load supplied, the ratio of power
generated to the power consumed, etc. )e end goal is to
maximize the total load supplied while minimizing the total
generation shift during a failure.

3.3. Load Shedding. It is not always possible to satisfy all the
loads in a system during a breakdown of one of its com-
ponents. In such cases, load shedding is one of the solutions
implemented to temporarily reduce the demand on the
system to a more manageable state depending upon the
generating capability of the system.

G

Load 3

Load 2

Load 4

4

G

1 3

2 5

Figure 3: Single line diagram of an IEEE 5-bus System.
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)e process of load shedding is traditionally done by
either completely dropping the smallest noncritical load or
reducing the highest noncritical load by a nominal amount.
)ere are large variations of this method available for use
based on the demand and individual requirements. Critical
loads are always a priority and are to be supplied at any cost,
even if all the noncritical loads must be shed to do so. Only in
the event of a risk of a hazard is a critical load to be shed. In
extreme conditions where power grid supply is not available,
and the installed DERs in the network do not have enough
capacity to supply the demands of the islanded microgrid
network, load shedding is the last hope for the continuation
of supply after all other methods fail.

In the case of the current experiment, the Monte Carlo
simulation is run both with and without load shedding to
compare both strategies and their effect on resilience by
comparison of the resilience indices.

3.4. Simulation Flowchart. )e simulation flowchart is
shown in Figure 5.

3.5. Result. Upon Monte Carlo simulation of the test sys-
tems, we obtain the probability distribution of the power
generated at each bus of the system. )e cumulative power
distribution curve gives the cumulative probability of the
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the with fragility function to determine

failure state of the line

Run NR load flow

Save the solution

Run the load shedding algorithm

Run NR load flow

Save the solution

Monte Carlo
iterations over?

Save the solution
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Figure 5: Flowchart representation of the simulation.
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power et al. values of power. )e most probable power
magnitude is obtained by identifying the largest change in
the cumulative probability within the neighborhood of the
tolerance of the power value. )e probability density curve
gives the density of probability of the value of power. )e
probability of a specific power magnitude is the area under
the curve around the neighborhood of the power value. )e
commutative power distribution for PV and PQ buses (buses
1–5) before load shedding for the IEEE-5 bus system is
shown in Figures 6 and 7.

For the IEEE 5-Bus system without load shedding, the
total power generated was found to be 234.3689MW
compared to the base power generation of 21.4769MW.
While total power consumed was found to be 1.2235MW
compared to base power consumed at 1.699MW. )e
weights a� 1/5 and b� 1/3.

)erefore, LS � 27.98, PG � 10.91, and RI� 11.50.
)e power density distribution for buses 1,2, and buses

3,4, and 5 before load shedding for the IEEE-5 bus system are
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Figure 9: Power density distribution at buses 3–5.
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Figure 10: Cumulative power distribution at buses 1 and 2.
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shown in Figures 8 and 9. Figure 8 shows the slack and
generator buses, and Figure 9 shows for load buses.

)e commutative power distribution for PV and PQ
buses (buses 1–5) after load shedding for the IEEE-5 bus
system is shown in Figures 10 and 11.

For the IEEE 5-Bus system with load shedding, the total
power generated was found to be 172.8266MW compared to
the base power generation of 21.4769MW. While total
power consumed was found to be 1.2236MW compared to
base power consumed at 1.699MW.)e weights a� 1/5 and
b� 1/2.

)erefore LS � 27.98, PG � 8.04, and RI� 15.9.
)e power density distribution of buses 1, 2, and buses 3,

4, and 5 after load shedding for the IEEE-5 bus system are
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shown in Figures 12 and 13. Figure 12 shows the slack and
generator buses, and Figure 13 shows for load buses.

)e commutative power distribution for PV and PQ
buses (buses 1–14) before load shedding for the IEEE-14 bus
system is shown in Figures 14 and 15.

For the IEEE 14-Bus system without load shedding, the
total power generated was found to be 383.0761MW
compared to the base power generation of 35.6310MW.
While total power consumed was found to be 1.9295MW
compared to base power consumed at 2.6922MW. )e
weights a� 1/14 and b� 1/11.

)erefore LS � 28.32, PG � 10.75, and RI� 3.34.
)e power density distributions at buses before load

shedding for the IEEE-14 bus system are shown in Figures 16
and 17. Figure 16 shows the slack and generator buses, and
Figure 17 shows for load buses.

For the IEEE 14-Bus system with load shedding, the total
power generated was found to be 383.0761MW compared to
the base power generation of 35.6310MW. While total
power consumed was found to be 1.9295MW compared to
base power consumed at 2.6922MW. )e weights a� 1/14
and b� 1/10.

)erefore LS � 28.32, PG � 10.75, and RI� 3.59.
)e commutative power distribution for PV and PQ

buses (buses 1–14) after load shedding for the IEEE-14 bus
system is shown in Figures 18 and 19.

)e power density distributions at buses after load
shedding for the IEEE-14 bus system are shown in Figures 20
and 21. Figure 20 shows the slack and generator buses, and
Figure 21 shows for load buses.
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Figure 18: Cumulative power distribution at buses 1, 2, 3, 6, and 8.
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)e comparison between the resilience indices of the
systems shows a rise in resilience due to load shedding.

4. Conclusion

)e Monte Carlo simulation for the IEEE 5-Bus and IEEE
14-Bus systems, both with and without load shedding, is
simulated, and the results are analyzed. )e resilience index
of both systems reveals that load shedding increases the
resilience of the system, as evident from the rate of increase
in resilience in each system due to load shedding. )e in-
crease in radial lines also causes the simulation to have a
higher chance of failure to converge in an NR load flow
solution introducing several Not a Number (NaNs) errors.
)e analysis of the results also reveals that the resilience of a

smaller microgrid is larger than the resilience of a larger
microgrid. It is also determined that after a certain number
of iterations, an increase in the number of iterations does not
influence the results of resilience analysis. )e open chal-
lenge in microgrid resilience is to improve it, and one place
to start is by evaluating all possible risks and potential
impacts of man-made and natural hazards on the electricity
system.
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ATPC: Average total power consumed
PG: Power generation
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