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Kenya is experiencing a fast increase in grid-connected intermittent renewable energy sources (RESs) to meet its increased power
demand, and at the same time be able to ful�ll its Paris Agreement obligations of abating greenhouse gas emissions. For instance,
Kenya has 102MW of grid-tied solar power and 410MW of grid-tied wind power. However, these sources are very intermittent
with low predictability.  us, after their installation and integration into the grid, they impose a new challenge for the secure,
reliable, and economic operation of the system. Tomitigate these and to ensure proper planning of the system operations, accurate
and faster prediction of the generation output of the wind energy resources and optimal design and sizing of storage for the large-
scale wind energy integration into the grid are of paramount importance. Arti�cial intelligence (AI) and metaheuristic techniques
have proven to be e�cient and robust in o�ering solutions to complex nonlinear prediction and optimization problems.
 erefore, this study aims to utilize backpropagation neural network (BPNN) algorithm to conduct hourly prediction of the
generation output of Lake Turkana Wind Power Plant (LTWPP), a 310MW plant connected to the Kenyan power grid, and
optimally size its battery energy storage system (BESS) using genetic algorithm (GA) to guarantee its dispatchability. e historical
weather data, namely wind speed, ambient temperature, relative humidity, wind direction, and generation output from LTWPP,
are employed in the training, testing, and validation of the neural network. LTWPP and BESS are modelled in MATLAB R2016a
software.  ereafter, the developed BPNN and GA algorithms are applied to the modelled systems to predict the wind output and
optimize the storage system, respectively. BESS optimization with neural prediction reduces the BESS capacity and investment
costs by 59.82%, while the overall dispatchability of LTWPP is increased from 73.36% to 90.14%, hence enabling the farm to meet
its allowable loss of power supply probability (LPSP) index of 0.1 while guaranteeing its dispatchability.

1. Introduction

 e utilization of renewable energy sources (RESs) has
experienced remarkable growth in electrical grids world-
wide.  is is attributed largely to critical factors, namely a
fast and unprecedented surge in volatile fuel prices, the
scarcity of available primary energy resources utilized in
conventional power plants, and the need to abate green-
house gas emissions.

Wind power constitutes the renewable energy technol-
ogy (RET) that has exhibited swift growth in comparison to

other RETs being investigated currently.  e capacity of
wind worldwide is far larger than the world’s total energy
consumption and the potential for development is sub-
stantial [1]. Globally, total capacities of about 651GW of
wind have been installed, with a yearly production of
60.4 GW in 2019 alone [2]. By 2023, it is foreseen that RES
will be able to supply above 70% of the increase in electricity
generation worldwide, with wind and solar taking the lead
positions [3].

In Kenya, for example, at the beginning of the last de-
cade, wind energy constituted only 0.24% of the total share
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of electricity generation. ,is has grown tremendously to
constitute 11.74% by the end of the same decade, with still
many more planned or incepted wind energy projects such
as 100MW Aeolus Ngong’ Wind and 60MW Aperture
Green Ngong’, among many others mentioned in [1]. ,e
least-cost generation simulation included wind as a candi-
date project in Kenya for system optimization [4]. Still, there
is a small level of competency and expertise in utilizing wind
energy for large-scale power production in Kenya. Never-
theless, interest and awareness are gradually growing. ,e
latest large investment in wind power is the 310MW Lake
Turkana Wind farm, the largest in Africa. LTWPP was
anticipated not only to reduce the overall cost of energy but
to reduce the greenhouse gas emission, hence placing it as a
competitive energy source.

However, these merits and development of wind power
come with several challenges while integrating it with the
existing grids. ,ese include erratic wind flow patterns/
profiles which might introduce harmonics into the grid,
interfere with the voltage levels, affect grid stability, and
bring about unit commitment and scheduling problems
[5–7]. To take care of these shortcomings, AI techniques
such as artificial neural network (ANN) play a critical role in
the development of faster and cheaper predictions for short-
term, intermediate, and long-term predictions.

Recently, several wind impact researches have been
conducted in various parts of the world in an attempt to
address those challenges. ,e outcomes of these researches
are normally linked to different aspects of wind power,
notably its randomly varying nature, generator technologies,
and sizing of the storage of the wind energy resources
(WERs). Very few studies of that nature have been carried
out in Kenya despite the increasing WER development
projects. In January 2021, Clir Renewables, a Canadian
software company, signed a contract with LTWPP to op-
timize power generation at the power station with the overall
objective of improving the efficiency of the power plant,
improving power output (reducing unnecessary turbine
downtime), and grid stability [8].

In addition, it is worth noting that very few studies have
integrated both the wind energy prediction and optimal
storage sizing. In [9], the simulation performed demon-
strated the efficiency of predicting the RES using a high-
order neural network trained with an extended Kalman filter
(EKF) and optimally sizing the grid-connected storage
system utilizing both the GA and clonal selection algorithms
to reduce CO2 emissions. ,us, there is a need to conduct
studies to efficiently and precisely analyze and predict the
fluctuating weather patterns associated with such renewables
and be able to perform optimal storage designs that will
make the grid robust and reliable in its operations. ,is
study has explored a different prediction algorithm, that is,
BPNN trained with Levenberg–Marquardt (LM) optimiza-
tion and optimally sizing its BESS using GA to guarantee the
dispatchability of LTWPP.

Despite the fact that Kenya has the largest wind power
plant in Africa and is experiencing a fast growth of in-
termittent renewable sources, it does not have any BESS
installations. ,is study therefore attempts to solve an

existing problem that at the moment there is no available
documentation that shows there is previous research that
has been done on the same. ,e problem is that of the
intermittent power output of WER at LTWPP which re-
quires to be minimized so that the plant output can be
dispatchable just like the other plants (geothermal, heavy
fuel oil, and hydros) connected in the same grid. ,is
intermittency has caused serious problems to the spinning
generators having to undergo excessive hunting. ,is
hunting has led to extensive bearing damages to the other
generators called upon to either increase or decrease their
outputs during intermittency periods. By researching the
LTWPP output characteristic and arriving at the approx-
imate contribution of this to the Kenyan grid, the authors
were able to perform optimal sizing and costing of BESS
required to take care of this intermittency. ,is study,
therefore, contributes the following: First, it provides a
unique research opportunity to analyze the incorporation
of a large BESS system into LTWPP to achieve guaranteed
and improved dispatchability. Second, it puts forward an
optimized sizing strategy based on BPNN prediction, for
calculating the optimal size and cost of BESS which meets all
constraints. Finally, the study validates the results obtained
and demonstrates the efficiency of this strategy via simula-
tions of different scenarios.

,e rest of the article is organized as follows: Section 2
presents a background overview of the literature review and
mathematical modelling of the system components. ,e
methodology used and problem formulation are described
in detail in Section 3. Section 4 entails the performance
analysis of BESS, while Section 5 presents a brief description
of the case study. Section 6 provides the simulation results
obtained and the accompanying discussions. Finally, the last
section gives the conclusion of the study.

2. Literature Review

2.1. Background Overview. A simple time series-based ap-
proach for wind power prediction was first developed in 1984
by Brown et al. [10] by utilizing the utility’s power curve.
,ereafter, systematic investigations have been conducted in
the field of predicting wind power or speed produced byWER
and this has immensely contributed to the development of
numerous techniques as well as reliable and effective tools
which have been used with different success rates in various
wind farms as proposed and reviewed in [11]. As a result,
these accurate prediction tools have been found to yield better
unit commitment and scheduling plans, achieve desired
control of wind turbines [12], minimize the overall costs of
operations, and enhance reliability linked with the increased
penetration of wind power into the existing electrical grids
[13–15]. ,e most widely used approaches have been sum-
marized in Table 1. Among all the techniques used, AI
techniques, especially neural networks, have emerged to be
more accurate and reliable while contrasted with traditional
statistical models [12].

Using historical data and ANN modelling, the authors in
[17] presented a tool that would be used by operators of RES
systems to realize improved management and monitoring of
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their systems.,e development of the prognostic tool was able
to give an adequate forecasts 8 hours ahead of the absolute
minimum, maximum, and mean hourly wind power. For
short-term and long-term wind farm prediction, the ANN
prediction models developed in [18] using the data mining
approach were found to outperform the rest of the models.

Using the input parameters such as generation hours,
relative humidity, and mean wind speed, the neural network

model developed in [19] offers a reliable indicator for the
output power from wind farms. ,e authors in [20] used
ANN technique to approximate the wind speeds at a par-
ticular location utilizing the speeds of wind at a strong
correlation location among neighboring locations. A wide
comparison based on time horizons, performance analysis,
and statistical distribution of normalized errors is conducted
between five different types of ANNmodels, ARMAmodels,

Table 1: Comparison of different wind forecasting techniques [16].

S.
No Prediction approach

Key features
Merits Demerits

1.

Statistical approaches (e.g., autoregressive (AR)
model, moving average (MA) model,

autoregressive moving average (ARMA)model,
autoregressive integrated moving average

(ARIMA) model

(i) No need of expert skill.
(i) Not possible to perfectly capture
the intermittent nature of forecast
parameters.

(ii) Very reliable since it uses the readily
available historical weather data.

(ii) Huge amount of historical input
values required by these approaches.

(iii) Very easy to determine the prediction
intervals (iii) For long-term predictions, they

have proven less accurate(iv) For short-term predictions, they have
proven accurate.

2. Persistence methods (i) For very short-term predictions, they have
yielded high accuracy.

(i) For long-term predictions, the
accuracy decreases.

3. NWP/Physical techniques

(i)Utilizes the physical description of the
wind farm site, for example obstacles,
orography, etc., to model its conditions

(i) Inapplicable for short-term
predictions owing to computational
difficulties.

(ii) Able to address computational fluid
dynamics (CFD) for simulating the
atmosphere.

(ii) Very challenging to obtain
physical data for the input to the
model.

(i) Best suited for long-term prediction. (i) Much time required due to the
intensity of calculations.

4. Support vector machine-based approach

(i) Considered among one of the best
supervised learning algorithms.

(i) Its optimization structure is very
complex

(ii) Exhibits better generalization capabilities.

(ii) ,e accuracy of the model
depends on the correct adjustment
of parameters.
(iii) Requires longer training time

5. ANN-based techniques

(i) Applicable in modelling very nonlinear
complex relationships and is very sensitive
even to the slightest variation in data.

(i) Requires an optimal training
algorithm and a large dataset to
train the model.

(ii) It is a knowledge-based system hence it
learns by training and explicit mathematical
expressions not required

(ii) It could be challenging to design
the model.
(iii) As the neural network becomes
larger, it requires more processing
time.

6. Fuzzy logic techniques

(i) Simple to implement. (i) Model becomes complex, hence
the increase in computational time.

(ii) Able to handle uncertainties and
nonlinearities.

(ii) Exhibits weak learning ability
compared to ANN.

(iii) Considered relatively less complex
technique for models hard to design
precisely. (iii) Dependent on the expertise and

intelligence of humans(iv) Rule-based learning betters the accuracy
of predictions.

7. Hybrid AI technique

(i) Employs the best characteristics of the
above single forecasting techniques to
minimize their limitations.

(i) Difficult to design and train.

(ii) Applied for bigger systems. (ii) Input data should be
preprocessed to obtain accurate
forecast generalization capability.(iii) Minimizes the risk from extreme events
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and ANFIS models in [21]. ANN models showed better
performance. Local dynamic recurrent neural network
models employed in [22] for long-term prediction of wind
power and wind speed outshined the static rivals with
reference to the improvement gained and forecast errors
over the persistent method. ,e authors in [23] predicted
wind speed automatically employing a hybrid neural net-
work approach, comprising a radial basis function neural
network (RBFNN) and a self-organizing map (SOM). ,e
results indicated that the suggested method yielded im-
proved output with small error rates.

An in-depth comparison study of three kinds of classical
ANN approaches—adaptive linear element (ADALINE),
radial basis function (RBF), and feed forward back propa-
gation (FFBP)—is conducted in [24]. Results indicated that
different model structures, inputs, and learning rates had a
direct effect on the prediction accuracy. An advanced study
was performed by the authors in [25] who proposed
Bayesian model averaging (MBA) technique to merge the
forecasts received from diverse ANN models, namely RBF,
BPNN, and ADALINE neural networks. Utilizing their
posterior model probabilities, BMA approach weights the
individual forecasts. ,e better performing predictions ac-
quire higher weights than the worse. ,is approached
proved to be effective as shown by the simulation results.

Other various promising approaches for enhancing the
accuracy of the prediction models includes: hybridizing
different forecasting or numerical weather prediction
(NWP) models as discussed in [26–32], filtering of sys-
tematic errors emanating from NWPs using Kalman fil-
tering [33], proper selection of input parameters [34], or the
combination of any of the abovementioned promising ap-
proaches [15, 35]. Nonetheless, hybrid techniques may not at
all times outperform the single techniques for all forecasting
time horizons investigated as shown by the studies in [27].

Due to its ability to construct complex nonlinear rela-
tionships via training, and its ease of construction, ANN has
been found to be generally a good choice for wind energy
prediction. Most forecasting studies using ANN have offered
the best performance compared to other techniques [12]. A
more cost-effective option may be to utilize some optimal
storage at the wind farm to mitigate the abovementioned
problems as depicted by many ongoing studies and projects
around the globe [36, 37]. Many researches have employed
metaheuristic techniques such as GA, PSO, ABC, or a hybrid
combination of AI and evolutionary computation such as
ANN-PSO to optimally design and operate RES-based hy-
brid energy systems.

For instance, in [38], the optimization of an off-grid power
system that consisted of the PV, WTG, diesel generator, and
energy storage system (ESS) was investigated using GA. ,e
proposed algorithm was found effective to aid the distribution
network operators to reduce the total system cost that was
related to the operation of a microgrid system. Authors in [39]
performed simulations employing GA and the rule-based ap-
proach to optimize the cost of operation, while in [40], the
authors used the firefly algorithm and considered the BESS’s
depth of dischargewhilemodelling the BESS operation cost.,e
cost of operation was well reduced as indicated by the results.

Various strategies have been suggested for obtaining the
optimal size of BESS. For instance, a life cycle planning
methodology of BESS in an off-grid was put forward in [41].
Using decomposition coordination algorithm, the optimal
allocation of distribution energy resource (DER) capacity
was carried out to match the demand growth while con-
sidering dynamic factors, namely demand growth and
components’ uncertainties. Authors in [42] used an incre-
mental cost approach to obtain the optimal values of BESS to
realize the least running cost for an islanded DC microgrid,
while in [43], the authors employed the grasshopper opti-
mization algorithm to size the BESS while considering the
energy cost and power supply probability efficiency.

In [44], the study found out that the grid-connected
BESS was cheaper to operate than the stand-alone one, hence
deserving consideration for efficient dispatch of wind power.
Owing to the uncertainty of solar PV and wind, [45] asserted
that capacity sizing was vital to completely meet the load
demand. ,ey formulated PSO algorithm to determine the
optimal size for hybrid wind-PV with BESS while consid-
ering the unreliability in solar and wind energy generation.

To improve reliability, reduce cost, and to determine the
optimal sizes of RES and BESS for a grid-connected
microgrid system, the study in [46] used two constraint-
based iterative search algorithms. Authors in [47] used ANN
to validate the predicted load model and utilized GA to solve
a chance-constrained model that handled the variability
linked to RES. ,e results from the study showed that the
storage system plays an essential role in renewable energy
integration and in the reduction of environmental pollution.

From the background overview, it could be noted that
the integration of RES into the existing large grids is very
current and is gaining momentum globally, Kenya included.
When a sector is new, there is always room for further
studies. WER prediction offers one solution of efficiently
integrating intermittent sources into the power grids while
BESS acts as another solution as highlighted in the current
studies reviewed in this section. Unlike these studies which
have majorly employed these solutions independently, this
study is unique in that it has employed the strength of both
solutions to yield a better and improved way of guaranteeing
dispatchability of LTWPP whereby the predicted output of
the wind farm is utilized to optimize the BESS.

2.2. Mathematical Modelling

2.2.1. /e Wind Turbine Generator (WTG) Model. ,e
power output of WTG is estimated [38] according to the
following equation:

Pwtg �
1
2
ρAV

3
Cpηgηb, (1)

where ρ is the density of air ( ≈ 1.225 kg/m3); V is the free
wind speed (m/s); A is the area swept by the rotor (m2); Cp is
the power coefficient (dimensionless), ηg and ηb are gener-
ator efficiency (%) and gear or bearing efficiency (%),
respectively.

From the WTG profile in Figure 1, the wind power is
given by the following equation [44]:
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Pwtg,t �

0, 0≤Vt,s ≤VCIorVt,s ≥VCO,

Pmax
wtg
Vt,s − VCI
VR − VCI

, VCI ≤Vt,s <VR,

Pmax
wtg , VR ≤Vt,s ≤VCO

,




(2)

where Pwtg,t represents the wind power produced at time t,
Vt,s represents the wind speed at any hour t, VCI represents
the cut-in wind speed, VR represents the rated wind speed,
and VCO represents the cut-out wind speed.

2.2.2. BESS Modelling. Storing the surplus energy available,
Pbalance, produced by the WER is the �rst requirement that
should be addressed in optimal BESS sizing [48] as shown in
the following equation:

Pbalance(t) � Pwtg(t) − Pload(t), (3)

where Pload(t) represents the demanded power at any given
time t, Pwtg(t) represents the predicted output power from
WTG at any given time t.  e positive value of Pbalance(t)
indicates that the wind farm produces surplus power, while
the negative sign indicates a de�cit in demand that the wind
farm cannot meet.

 e strategy is �rst to store the available energy from the
WTG during hours of higher wind output and discharge the
BESS when the output power is less than the demand until
the BESS reaches a given minimum state of charge (SOC).
 e variable SOC(t) at any particular hour is the amount of
energy stored in the BESS at that particular instant and is
formulated as follows:

SOC(t) � SOC(t − 1) −
Pbess(t) × Δt( )

Ebess
∀t ∈ T, (4)

where SOC(t − 1) is the SOC at time t − 1, Pbess(t) repre-
sents the charge or discharge power at time t, Ebess represents
the BESS capacity, and Δt represents the incremental time
for the optimization.

 e BESS in this study is modelled based on the SOC and
depth of discharge (DOD) limits. Increase in DOD increases
the cost of BESS due to more power discharged by the BESS.
Cost is a very key factor in the development of BESS.  us, a
cheap BESS would be the most economically feasible.  e
minimum SOC is given as follows:

SOCmin �(1 −DOD)SOCmax. (5)

 e charging and discharging energies at any given time
are given in equations (6) and (7), respectively [49].

Ecbess(t) � Ebess(t − 1) + Pcbess(t).Δt.ηc, (6)

Edbess(t) � Ebess(t − 1) −
Pdbess(t).Δt

ηd
, (7)

where ηd and ηc are the discharge and charge e�cacy of the
BESS (%), respectively, while Pdbess(t) and Pcbess(t) are the
discharged and charged powers, respectively.

 e following assumptions are made in the optimal
sizing of BESS:

(i) Temperature a�ects the lifespan of lithium BESS.
LTWPP site has a mean temperature 28°C, hence a
temperature correction factor of 0.964 will be con-
sidered [50].
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Figure 1:  e power curves of V52-850 kW turbine at di�erent sound levels.
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(ii) As reported in [51], “sudden deaths” of batteries
occur when its nominal capacity reaches 80% of its
initial value and this usually marks the end of its life.
It is for this reason that the aging correction factor of
20% has been selected since the aging process is
accelerated after this point.

3. Methodology

3.1. Wind Data Analysis and Preprocessing of the Parameters
in LTWPP Farm. First, the data which were obtained from
Meteoblue [52] were preprocessed before being applied as a
forecast model input.  is was for eliminating any sharp
peaks or errors in the data and to ascertain that there were
not any missing data points. e wind speeds at a hub height
of 80mwere then converted to the LTWPPWTG hub height
of 44m using the following expression [53]:

vh � vo
h

ho
( )

α

, (8)

where vh denotes the speed of wind at height h, vo denotes
the average speed of wind at ho, and α denotes the friction
coe�cient or the Hellman’s exponent and is always de-
pendent on the topography at a given site. For our case, α
was taken as 1/7 since it is an open land.

3.2. Wind Power Output Prediction Using BPNN. BPNN has
two stages in its learning algorithm. First, the training input
parameters are fed to the network source nodes and are
propagated from one hidden layer to another until the
output parameter is produced at the output layer. Second, if
the value of this parameter deviates from the anticipated
output, an error is evaluated, which is propagated backwards
as the network weights are modi�ed.  e common structure
of BPNN is depicted in Figure 2.

 e demerit of utilizing BPNN is its long training du-
ration with very many iterations. To tackle this problem,
Levenberg–Marquardt (LM) optimization was employed to
train BPNN. Training was performed in batch model. First,
the data were normalized.  e database was then con-
structed from the historical real data collected from the

LTWPP since it commenced its operation (October 2018 to
September 2021).

Data for the �rst 2 years were used to train and validate
the network while the remaining ones for a year, which was
used to test the network.  e optimum architecture of the
BPNN, that is the choice of the optimal number of hidden
layers, was performed using a combination of trial-and-error
method and the proposed method in [24], where the optimal
number of hidden layers (h) is given by the whole number
near to log (T), where Tdenotes the total number of vectors
used for training.  e training, validation, and testing
process of BPNN is illustrated in Figure 3.

 e proposed optimal sizing strategy ±owchart based on
BPNN prediction for evaluating the BESS size and cost is
shown in Figure 4.

3.3. Optimal Sizing of Battery Energy Storage System

3.3.1. Selection of BESS. Batteries have so far demonstrated to
be an economically feasible energy storage technology. Pre-
viously, low round trip e�ciency and high costs hampered the
mass deployment of BESS.  e high e�ciency and reduction
in cost of lithium-ion batteries led to the surge of BESS usage
in the last few years for both large-scale grid-level deploy-
ments and small-scale behind-the-meter installations [54].
Table 2 shows the distinguishing characteristics of the various
battery technologies currently in the market. It can be clearly
seen that Li-ion ranks the best due to the superior charac-
teristics it possesses in comparison to other battery types.  e
critical review done by [55] indicates that Li-ion batteries as
the most suitable and with high potential for RES integration
into the power grid. However, their cost still needs to be
minimized if they are to be embraced fully.  erefore, this
study proposes to use lithium-ion batteries.

3.3.2. BESS Sizing.  e daily BESS average energy need,
EbessAv. (MWh/day), depicted below is obtained from
Pbalance(t), evaluated from equation (3).

EbessAv.(MWh) � max ∑
N

i�1
Pbalance(t) × Δt





. (9)

Wind Speed

Input
Layer

Output
Layer

Wind Speed or 
Power Forecase

Hidden Layer

Wind Direction

Temperature

Figure 2:  e common topology of a BPNN model.
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Based on the considerations and assumptions made in
Section 2, the required BESS capacity (MWh) is given by [50];

Ebessmax �
Cf × EbessAv.(MWh/day) × D

DOD%
, (10)

where Cf is the correction factor for the effects of battery
aging and temperature degradations and D represents the
days of autonomy.

By applying GA, the BESS size obtained in (10) is further
minimized with Ebessmax used as the maximum boundary
limit. GA is a heuristic evolutionary algorithm used for
hybrid search and optimization problems. It mimics the
Charles Darwin’s theory of natural selection [56].

Two of the most notable merits of GA over other op-
timization algorithms are: parallelism, which helps in false
peak reduction [47], and its capability in handling complex
problems. It can effectively handle different kinds of opti-
mization, whether the fitness function is linear or nonlinear,
or continuous or discontinuous. Nevertheless, GA has few
drawbacks. For the fitness function formulation, the choice
of critical parameters, namely, crossover and mutation rates,
and the selection criteria of the new population must be
done carefully, otherwise it will be difficult for the algorithm
to converge. GA still remains one of the most widely used
techniques in modern nonlinear optimization despite the
abovementioned disadvantages [57]. ,e GA optimization
algorithm flowchart is shown in Figure 5.

Start

Load the wind speed, generation hours
and humidity data

Initialization
Network weights & Biases

Selection of Activation function

Network Training

Network Validation

End

Bias and Weight
Adjustments

Satisfactory
Performance

Adopt the
Model

Evaluating the network
performance

(MAE, RMSE & MAPE)

Error Evaluation
(MSE)

Error = 0.01?
or less

YES

YES

NO

NO

Figure 3: ,e BPNN training algorithm flowchart.

Journal of Electrical and Computer Engineering 7



3.4. ProblemFormulation. Stable, e�cient, and economical
operation of the grid incorporated with WER is largely
dependent on the accurate forecasting of the wind power
output and optimally sized storage to take care of the

uncertainty caused by the variable and intermittent nature
of wind.  ere is a need to optimize WER when it is
available. To improve the prediction accuracy of our
system, other parameters that a�ect the wind speed and

Start

Selection of prediction model inputs Post-processing of forecasted output data, Pwtg (t)

Obtain the estimated load demand, Pload (t)

Evaluate the deficit/surplus Power (Pbalance)

Evaluate the optimal BESS capacity required to
improved the system using GA under various constraints

t = 1

Yes

Yes

Yes

No

No No

No

Evaluate BESS SOC (t)

Pwtg (t) > Pload (t)

SOC (t) > SOCmax

End simulation
time

Stop

BESS is fully charged
SOC (t) = SOCmax

Pcbess (t) = 0
Ebess = Ebessmax

BESS is fully charged
SOC (t) = SOCmin

Pdbess (t) = 0
Ebess = Ebessmin

BESS charged with
surplus power

Ebess (t)
= Ebess (t – 1)

+ Pbalance (t).∆t.ηc

Discharge BESS to
meet deficit power

Ebess (t)
= Ebess (t – 1)

+ Pbalance (t).∆t/ηc

SOC (t) > SOCmin

Next iteration
t = t + 1

Pre-processing of inputs data for the prediction model

Evaluate Pout (t) (prediction model output data)

Split data into training, validation & testing

Initialize, train & test the ANN model

Obtain the forecasted output

Figure 4: Proposed sizing strategy ±owchart.
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the average power production by theWTG such as relative
humidity, wind direction, and temperature are added as
inputs to the backpropagation neural network (BPNN)
with Levenberg–Marquardt (LM) optimization technique.

 e wind power output from the forecast is used to
calculate the excess surplus power in equation (3), which
is the �rst key requirement in �nding the optimal BESS
size.

YES

YES

NO

NO

Start

Create Initial population

Create Constraints feasibility for all the
genomes in the population,

Feasible: Retain
Infeasible: Randomly Change

All
genomes
generated

Evaluate Score of all the genomes
(Fitness function)

Create the next genomes using
mutation, cross over and reproduction

Max.
Generations

GA Global
solution

(Optimal Solution)
End

Figure 5:  e GA optimization algorithm ±owchart.

Table 2: Distinguishing characteristics of various battery technologies [54].

Time-scale Power density (kW/Kg) E�ciency (%)
(Round trip) Lifespan (years) Environmental friendliness

1. Lithium-ion battery 150–250 95 10–15 Yes
2. Sodium-sulfur (Na-S) 125–150 75–85 10–15 No
3. Redox ±ow battery (RFB) 60–80 70–75 5–10 No
4. Nickel-cadmium (Ni-Cd) 40–60 60–80 10–15 No
5. Lead-acid battery 30–50 60–70 3–6 No

Journal of Electrical and Computer Engineering 9



3.4.1. /e Objective Functions. ,e proposed study aims at
sizing an optimal BESS by minimizing the total cost of the
lithium BESS investment, when incorporated into grid-
connected LTWPP farm, the following equation represents
an objective function (OF) to be minimized;

Min Ctotal Ebess(   � CBESS × Ebess( .CRF, (11)

CBESS � C
BESS
Cap + rBESS.C

BESS
Cap + 20 − rBESS − 1( .C

BESS
O&M,

(12)

where Ebess is the storage capacity of BESS in MWh, CBESS is
the per-unit cost of the lithium BESS(US$/MWh), CBESS

Cap is
the capital cost of the lithium BESS(US$/MWh), rBESS is the
number of BESS replacements, and CBESS

O&M represents the
operation and maintenance cost (US$/MWh). ,e capital
cost consists of the buying, power conversion, and instal-
lation costs.

CRF is given equation (13) and represents the capital
recovery factor. It enables the calculation of annual pay-
ments, which are spread equally over a stipulated time based

on the initial payment where n is the BESS lifespan and i is
the discounted interest rate.

CRF �
i(i + 1)

n

(i + 1)
n

− 1
. (13)

3.4.2. Constraints. ,e objective function given by equation
(11) is subject to:

(1) Balance Constraint. ,e total demanded power by the
users must be equal to the total produced power by theWER
and BESS, as depicted in the following equation:

Pwtg(t) + Pbess(t) � PLoad(t). (14)

(2) BESS Constraints. ,e power for charging and dis-
charging BESS must be restricted according to the following
equations:

0≤P
c
bess ≤P

c
Bessmax � min

E
max
bess
Δt.ηc( 

,
E
max
bess − Ebess(t − 1)( 

Δt.ηc
 , (15)

0≤P
d
bess ≤P

d
Bessmax � min

E
max
bess .ηd( 

Δt
,

Ebess(t − 1) − E
min
bess .ηd 

Δt
⎧⎨

⎩

⎫⎬

⎭. (16)

Moreover, the energy stored must be within Emin
bess and

Emax
bess at all times as depicted in the following equation:

E
min
bess ≤Ebess(t)≤E

max
bess∀t ∈ T, (17)

E
min
bess � (1 − DOD)E

max
bess , (18)

where Emin
bess and Emax

bess represents the lowest and highest BESS
energy rating, respectively.

,e BESS operates within SOCmin and SOCmax as shown
in the following equation:

SOC
min ≤ SOC(t) ≤ SOC

max
. (19)

(3) WTG Power Limits. ,e forecasted wind power output is
also limited by its rated power as presented in the following
equation:

P
min
wtg ≤Pwtg(t)≤P

max
wtg . (20)

(4) Reliability Constraint

LPSP< lpspcr, (21)

with lpspcr representing the maximum allowed LPSP.

4. The Case Study

LTWPP, the largest wind farm in Africa, is located in
Sarima (2.49Â°N 36.8Â°E), between the foot slopes of Mt

Kulal and the southeastern end of Lake Turkana, in
Loiyangalani District, Marsabit County, Kenya. ,e area,
often labelled as “,e windiest place on Earth,” has dis-
tinct geographical conditions whereby the variations of
daily temperature produce strong wind streams between
the desert hinterland (with steep temperature variations)
and Lake Turkana (with relatively constant temperature).
It comprises of 365 Vestas V52, doubly fed asynchronous
WTGs, each with a capacity of 850 kW, which generate a
total of 310.25MW of electricity. ,e technical specifi-
cations of the WTGs are given in Table 3. ,e power
generated from the WTGs is transmitted to the wind farm
internal overhead electric wires (collection grid) with the
voltage of 33 kV via 0.69 kV/33 kV transformers to a
sectionalized 33 kV substation that is located within the
premises. ,rough a 33/220 (400) kV substation, the wind
farm is AC-connected to the grid via a 400 kV high-
voltage double transmission line [60]. Figure 6 shows the
topology of the LTWPP incorporated with BESS.

5. Performance Analysis of Battery Storage

5.1. Reliability Model. In sizing BESS, the power reliability
analysis is very crucial. When the energy generated by WTG
plus the energy stored in the BESS fails to meet the load
demand at hour t, the system experiences loss of power
supply (LPS) [49] and is expressed in equation (22) as;
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LPS(t) � Pload(t) − Pwtg(t) + P
d
bess(t)[ ].ηinverter, (22)

where ηinverter is the e�ciency of the inverter.
Using LPS, the loss of power supply probability (LPSP) is

evaluated as follows [9]:

LPSP �
∑Tt�1 LPS(t)
∑Tt�1 Pload(t)

. (23)

 e key aim in sizing BESS is to ensure that
LPSP< lpspcr which is 0.1 in this study.

5.2. Power Shed. When Pwtg <Pload, it necessitates load
shedding in order for the RES without storage to match the
dispatch curve. Alternative sources of energy such as diesel
generators are usually assumed to cater for this de�cit power.
 us, the revenue loss due to power shed, RLshed, is given by
the following equation [50]:

Pshed(t) � Pload(t) − Pwtg(t),

RLshed �∑
T

t�1
Pshed × Cdiesel × t,

(24)

where Cdiesel is the cost of diesel generators and is estimated
to be US$ 0.27/KWh of electricity.

Table 3: System parameters.

System model Parameter Value

1. V52-850 kW WTG data [58]

Rated power output: 850 kW
Rotor diameter swept area by the rotor 52m

Cut-in wind velocity 2,124 m2

Nominal wind velocity 4 m/s

Cut-out wind velocity 16m/s
25m/s

2. Li-ion BESS data [50, 59]

 e capital cost $ 0.469/wh
Maintenance and operation cost $0.000115/wh

Total life cycles 3500 cycles
DOD 80%

Charge e�cacy 99%
Discharge e�cacy 95%

Total charge/discharge lifecycles 3500

33 kV
Sectionlizer

33 kV Bus

Converter

Lithium ion
BESS

Grid at Suswa

33/400 kV
Sub station

400 kV Bus

0.69/33 kV
Transformers

365 WTG
LTWPP

Figure 6:  e topology of the LTWPP incorporated with BESS.
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6. Simulation Results and Discussion

Figure 7 is a representation of the histogram of various
wind speeds at LTWPP from 01/09/2018 to 15/09/2021.
 e average value of the collected hourly wind speeds was
between 10.5 and 11.5m/s. Weibull parameters for the
above data were found to be scale factor, c � 10.9096 and
shape factor, k � 4.1525.  e wind rose of LTWPP with 16
directions is represented in Figure 8. It can be deduced
that the dominant wind which averages at 11m/s blows

from ESE direction.  e data obtained from Meteoblue
[52] were found to be good for usage since there were no
missing data for the period under study as shown in the
relative humidity, ambient temperature, wind speed data,
and the calculated output power in Figure 9. In addition,
the data were within the normal expected range and the
overall pattern and mean are the same as the ones found in
the literature [61].

 e BPNN training performance results are tabulated in
Table 4.  e best performance MAE, MSE, and RMSE were
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found to be 2.29 × 10− 5, 2.35 × 10− 5, and 4.85 × 10− 5,
respectively.

 e regression and performance plots for the BPNN
training are depicted in Figures 10 and 11(a), respectively.
Results on Figure 11(b) indicates the e�ectiveness of the
proposed algorithm in forecasting the output wind power of
LTWPP since the predicted power output curve is almost the
same as the actual power output curve.  is neural fore-
casted output is used in the optimal sizing of the BESS.

 e average per hour daily load demand to be supplied
by LTWPP is given in Figure 12, while the hourly data for the
12months used in this study is shown in Figure 13 for the
period between October 2018 and September 2019. As it
stands now, there is no speci�c amount of demand that is
allocated to LTWPP. Instead, it is supposed to supply all
power that it generates at any time. However, this poses a
challenge to the system in terms of economical dispatch
scheduling of other sources since either the geothermal or
diesel generators have to be in standby mode to cater for any
shortage unmet by LTWPP. In addition, the sudden ramping

up or down of these standby sources causes mechanical
stresses, hence reducing their longevity.

 erefore, with the incorporation of BESS to LTWPP, it
can be able to supply a speci�c allocated amount to the grid.
Any ±uctuations of the wind are taken care of by the BESS,
hence guaranteeing its dispatchability.  is study assigns
LTWPP to supply 17% of the total demand on the grid.  is
arises from the fact that LTWPP contributes an average of
approximately 17% of the total demand on the Kenyan grid.

 e variations in the predicted supply and demand allo-
cated to LTWPP for a period of 1 year and for 1 day (11 April,
2019) are depicted in Figure 14. It is from these curves that the
excess/de�cit power that needs to be stored/discharged in the
BESS is obtained. From the daily curve, it could be clearly seen
that the power demanded in the very early hours of the day
when people are still asleep is less than that produced by the
LTWPP. However, when it is most needed during the day,
especially between0900and1600 hrs, enough isnotproduced.
 us, from the curves, we can deduce that without storage, we
cannot guarantee the dispatchability of the power supplied to
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Figure 9: Preprocessed wind data for the time period under the study.

Journal of Electrical and Computer Engineering 13



Table 4: BPNN training performance results.

Activation functions in the
input, hidden and output
layers, respectively

Performance
parameters

Number of hidden layers, h Overall comment on
performanceLog (T) 4 8 15 20

1. “Logsin”
“tansig”
“purelin”

MAE 2.39 × 10− 5 7.65 × 10− 4 2.98 × 10− 5 2.61 × 10− 5 1.59 × 10− 4 Excellent compromise
between speed and

performance
MSE 6.32 × 10− 9 2.49 × 10− 6 6.65 × 10− 9 1.15 × 10− 8 4.59 × 10− 7

RMSE 7.95 × 10− 5 0.0016 8.16 × 10− 5 1.07 × 10− 4 6.78 × 10− 4

2. “Tansig”
“logsin”
“purelin”

MAE 4.94 × 10− 5 2.97 × 10− 4 9.45 × 10− 6 1.84 × 10− 5 6.06 × 10− 5
Faster but poor
performanceMSE 1.75 × 10− 8 7.26 × 10− 7 3.26 × 10− 9 6.73 × 10− 9 2.26 × 10− 8

RMSE 1.32 × 10− 4 8.52 × 10− 4 5.71 × 10− 5 8.20 × 10− 5 1.50 × 10− 4

3. “Tansig”
“tansig”
“purelin”

MAE 2.29 × 10− 5 1.46 × 10− 4 4.14 × 10− 4 2.16 × 10− 5 2.50 × 10− 4
Longer training but best

performanceMSE 2.35 × 10− 9 6.66 × 10− 8 9.48 × 10− 7 9.29 × 10− 9 6.73 × 10− 7

RMSE 4.85 × 10− 5 2.58 × 10− 4 9.74 × 10− 4 9.64 × 10− 5 8.20 × 10− 4
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Figure 10: Regression plots for the BPNN training, testing, and validation.
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meet the load demanded.,e system revenue losses resulting
from power shedding amount to a sum of US$ 67,179,299.73
annually with a LPSP ratio of 17.44%.

,e size and total lithium BESS cost required are eval-
uated using equation (10), and the results are tabulated in
Table 5. By applying GA, the BESS size obtained in (10) is
further minimized with Ebessmax used as the maximum
boundary limit. ,e GA parameters that provide the opti-
mum performance are depicted in Table 6. Table 5 also gives
the results obtained after optimization.

Optimization of the BESS yielded remarkable changes in
the investment costs of the system. ,e size is reduced to
19.65% of the BESS size evaluated using equation (10). ,e
BESS size thus evaluated is approximately 14.31% of the
rating of the LTWPP. ,ese results, based on the proposed
methodology, are found to be consistent and, in some in-
stances, better compared to the ones got from previous
studies. In a feasibility study conducted in [62], the authors
suggested a BESS capacity of approximately 24% of the
capacity of PV-wind system. ,e BESS size obtained
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Figure 11: (a) Best validation performance plot for the BPNN. (b) Wind power forecasting performance.
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utilizing optimization was 6–10% according to [63], while in
[64] the battery size of 15–25% of hybrid RES size is pro-
posed to be adequate for dispatching power e�ectively. And
according to the study carried out in [65] using fuzzy and
neural controllers, the BESS size was estimated to be
30–34%. Hence, a BESS of smaller size about 14.31% is
proved to be su�cient in this current study.

Gains realized and energy dispatched before and after
incorporating BESS with the LTWPP are contrasted. BESS
aided to improve the power dispatched by 14.47%, therefore
making it possible for the LTWPP to meet the planned
dispatch curve for most of the times, thus decreasing the
LPSP to 0.0986, which is below the reliability index, LPSP of
0.1. Losses due to power spillage are reduced considerably

and hence, the energy saved is used to meet the demand
when wind is unavailable. It is worth noting that the power
delivered matches the load curve after the incorporation of
BESS as shown in Figure 15. Moreover, the feed-in tari� rate
for wind power in Kenya is �xed (at US$ 0.11).  us, any
gains earned are as a result of the reduction in power losses
through spillage and shedding.

For the period under simulation, the total power dis-
charged to the grid from the BESS is 73406.16MW.  is
presents a contribution of 20.52% of the total power supplied
by the LTWPP-BESS system. Plots in Figure 16 show the
variation of SOC of the BESS with time for a period of 2.5
days. Figure 17 depicts the charging and discharging BESS
power. During charging, the BESS power is positive while it
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Figure 14: A 1-day (a) and an annual (b) supply and demand curves for LTWPP.

Table 5: BESS sizing without and with optimization.

Type Capacity in MWh Investment cost in US$

Lithium-ion BESS BESS sizing without optimization 84,601,948.21903.6676

Lithium-ion BESS BESS sizing with GA optimization 16,626,212.98177.5913
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Figure 15: (a) Predicted LTWPP output power without BESS. (b) Predicted LTWPP with BESS.

Table 6: GA parameters.

Parameter Value
1. Maximum iterations 100
2. Population size, Pop 1000
3. Cros over rate, nc 0.7
4. Extra range factor for crossover, c 0.4
5. Number of offspring nc × Pop

6. Mutation rate, nm 0.1
7. Number of mutants nm × Pop
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becomes negative during discharging. e SOC varies within
98–19.6% limits.  is demonstrates the e�ective usage and
performance of the BESS.

 e lifespan of any BESS largely depends upon the
number of discharge/charge cycles it performs.  is was
determined to be approximately 300–350 cycles/year.
Consequently, the lifetime of lithium-ion BESS in this study
is calculated to be approximately 10 years since the total life
cycles of the lithium-ion BESS is 3500 cycles.  is result

shows a better lifetime operation compared to those per-
formed elsewhere. For instance, according to [66], the
battery life is estimated to be 2–10 years using a battery
dispatch strategy developed to maximize its lifetime.
 erefore, this sizing strategy yields an optimal usage of
BESS that ensures better dispatchability of LTWPP. To
further demonstrate how e�ective the proposed method-
ology is, a contrast based on investment cost among diverse
possible solutions is shown in Table 7.
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Table 7: Comparison of di�erent cases.

Case
scenarios Description Capacity

in MWh
Investment cost

in US$
Dispatchability
of LTWPP (%)

Case 1a LTWPP (no forecasting) with no BESS — 102,634,351.63 (revenue loss incurred
due to load shedding) 73.36

Case 1b Neural prediction of LTWPP with no BESS — 67,179,299.73 (revenue loss incurred due to
load shedding) 82.56

Case 2a LTWPP (no forecasting) with BESS (no
optimization) 1273.5096 119,239,941.70 78.26

Case 2b LTWPP (no forecasting) with BESS
optimization using GA 442.7888 41,458,745.73 72.97

Case 3 Neural forecasted LTWPP without BESS
optimization 903.6676 84,601,948.21 94.06

Case 4a Neural forecasted LTWPP with BESS
optimization using GA 177.5913 16,626,212.98 90.14

Case 4b Neural forecasted LTWPP with BESS
optimization using PSO 177.5912 16,626,212.98 90.14

$0.00

$20,000,000.00

$40,000,000.00

$60,000,000.00

$80,000,000.00

$100,000,000.00

$120,000,000.00

$140,000,000.00

Case 1a Case 1b Case 2a Case 2b Case 3 Case 4a Case 4b

In
ve

stm
en

t C
os

t i
n 

U
S$

Case Scenarios

Comparison of Investment Costs 

Figure 19: Comparison of investment cost under di�erent scenarios.
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Case 1: (a) and (b) represent LTWPP with no BESS.  e
second cases represent LTWPP with no forecasting but with
BESS. Case 3 represents neural forecasted LTWPP with
unoptimized BESS while the �nal cases represent neural
forecasted LTWPP with BESS optimization using both GA
and PSO. For the cases of LTWPP with no forecasting, the
assumption made was to take the previous year data (Oc-
tober 2017 to September 2018) and use it as the estimate for
the period October 2018 to September 2019. From the results
in Table 3, various analyses were conducted as illustrated in
Figures 18–22.

It can be noted that BESS optimization is very critical as
depicted in Figure 18. Optimization reduces the BESS ca-
pacity for non-forecasted LTWPP and the neural predicted
LTWPP by 65.28% and 80.35%, respectively.  is has a

direct e�ect on the investment cost as illustrated in Figure 21.
 e BESS calculated without optimization and without any
prior forecasting of wind power exhibits the highest in-
vestment cost, while the neural forecasted LTWPP with
BESS optimization exhibits the lowest cost.

Wind energy prediction also plays a very critical role.
First, the dispatchability of LTWPP to meet its scheduled
demand is found to be generally low for all cases without
wind power forecasting as shown in Figure 20. In addition,
for Case 1, the neural prediction amounted to a reduction of
revenue losses incurred due to load shedding by 34.55% and
improved on the dispatchability of the wind farm by 9.2%,
without considering any storage as illustrated in Figures 19
and 20, respectively. Furthermore, comparing Case 2a with
Cases 4a and 4b, it is found that BESS optimization with

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

Case 1a Case 1b Case 2a Case 2b Case 3 Case 4a Case 4b

D
isp

at
ch

ab
ili

ty
 in

 %

Case Scenarios

Comparison of Dispatchability of LTWPP

Figure 20: Comparison of dispatchability of LTWPP under di�erent scenarios.

0

200

400

600

800

1000

1200

1400

$0.00

$20,000,000.00

$40,000,000.00

$60,000,000.00

$80,000,000.00

$100,000,000.00

$120,000,000.00

$140,000,000.00

Case 1a Case 1b Case 2a Case 2b Case 3 Case 4a Case 4b
BE

SS
 ca

pa
ci

ty
 in

 M
W

h

In
ve

stm
en

t C
os

t i
n 

U
S 

$ 

Case Scenarios

Comparison of BESS investment cost & Capacity Under different Scenarios 

Capacity in MWh
Investment cost in US$

Figure 21: Comparison of BESS capacity and investment costs.

Journal of Electrical and Computer Engineering 21



neural prediction reduces the BESS capacity and investment
costs by 59.82%, while improving the dispatchability of
LTWPP to 90.14% from 72.97% (Figure 21).

As demonstrated in Figure 22, neural forecasting and
BESS incorporation has a direct e�ect on the dispatchability
of LTWPP. It could be seen that the highest dispatchability
(94.06%) occurs when we have the prediction of wind to-
gether with the large unoptimized BESS capacity. However,
the investment cost for this case is very high.  erefore, the
optimum dispatch (90.14%), although lower, meets the al-
lowable reliability index of 0.1 and realizes a well-minimized
investment cost.  is way, by managing the surplus energy
through optimizing its storage, the dispatchability of the
neural predicted WTG system is improved by 16.78%.

7. Conclusion

Kenya is set for a remarkable growth in the renewable
energy sector.  is study has suggested an optimized
sizing strategy based on BPNN prediction. To e�ectively
minimize the cost of the BESS, the optimization uses a
genetic algorithm. Based on di�erent scenarios, perfor-
mance metrics were analyzed to explore the viability of the
LTWPP-BESS system, a grid-connected RES. Due to
uncertainties in wind power, BPNN prediction employed
improved reliability of the system by improving its dis-
patchability by 9.72%. A better performance, that is
dispatchability improvement of 16.78%, was obtained by
utilizing both the predicted output of LTWPP and opti-
mized storage. Moreover, this study found that BESS
optimization with neural prediction reduces the BESS
capacity and investment costs by 59.82%. LPSP is reduced
from 17.44% to 9.86%, while overall dispatchability of
LTWPP is increased from 73.36% to 90.14%, hence

enabling the farm to meet its LPSP index while guaran-
teeing dispatchability. Simulation results indicated the
sizing methodology based on the BPNN forecasting and
dispatch strategy to be e�ective and e�cient since con-
gruous and better results were achieved, in comparison to
other previous studies and di�erent scenarios investigated
herein.

However, the study did not attain 100% dispatch-
ability, implying that there is still room for further im-
provement.  is could be explored further in future
comparative studies using other AI and metaheuristic
technique combinations such as ANN-fuzzy and PSO,
ANFIS and hybrid ABC-PSO, among many others, which
have not been covered in this study. Investigations on the
impact of climate change on WER prediction is also of
great interest.  is proposed research did not include such
and could also be included in advancing this study. In-
clusion of other key factors that a�ect the BESS, such as
temperature and capacity fade in the constraint, which
were excluded in this study, could also be considered.
Lastly, future studies should test the designed LTWPP-
BESS system on the Kenyan power grid or the equivalent
standard IEEE system to evaluate its impact on various
power qualities and stability issues.
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