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Tis research proposes a noncontact heart rate measurement method using medical radar and artifcial intelligence techniques.
Tis technique has a signifcant role in the design and development of a wireless system that monitors the body’s vital signs. Firstly,
based on a signal model describing chest surface movement, we propose a method to create a dataset for the training process using
the long-short-termmemory model. Secondly, a novel method to extract chest motion from the received radar signal is proposed.
Finally, the heart rate will be estimated by using the obtained model and the received motion signal. Te performance of the
proposed method is evaluated through the root mean square error parameter as well as compared with other methods. Ex-
perimental results evaluated according to Bland–Altman achieved an accuracy of 96.67%.

1. Introduction

Te evolution of wireless technologies has promoted new
applications in the medical feld, especially, in health
monitoring. Recent studies have mainly explored the ap-
plication of radar in noncontact monitoring of human vital
signs such as heart rate and breathing rate [1–12]. Te radar
used in monitoring the body’s vital signs can be ultra-
wideband (UWB) radar [2, 3], continuous wave (CW) radar
[4–8], and frequency-modulated continuous wave radar
(FMCW) [9].

With the development of artifcial intelligence, machine
learning models are being studied and applied to the feld of
signal processing to improve the accuracy of systems. Some
recent studies refer to the use of artifcial intelligence in
health monitoring using radar [7, 8]. Te application of
artifcial intelligence in heart rate extraction from radar
signals guarantees simple system operation while improving
accuracy. However, the shortage of training and testing data
sets is a major challenge in the machine learning feld that
signifcantly afects the accuracy and quality of the machine
learning models.

From the above challenges, this paper proposed a novel
heart rate measurement system by using a medical radar
system and artifcial intelligence. To address the shortage of
training and testing data for the artifcial intelligence model,
we proposed a technique to model the heartbeat signal
obtained from the radar based on the theories of radar
transceivers. Ten, we generated data with the corre-
sponding heart rate labels as input to the deep learning
model. CW radar is used to ensure simplicity in radio
structure, low energy consumption, and large detection
range. However, the raw received signal from the radar
includes information on many factors such as the vibration
of the chest surface caused by heartbeat, respiration activity,
and noise.Terefore, in order to solve this problem, the chest
motion extraction method is proposed. Based on the gen-
erated data, the deep learning algorithm long-short-term
memory (LSTM) is used to develop the estimation model
which will calculate the heart rate from the fne-tuned chest
motion signal. Heart rate classifcation results are referenced
with the signal from the photoplethysmography (PPG)
device. In this study, to evaluate the performance, the ac-
quired machine learning model will be tested on 2 data sets:
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the data set published on [13] and the data set collected from
the proposed system.

Te article layout is organized into fve sections. Section
2 presents the materials and methods used in this research.
Te proposed system is described in Section 3. Section 4
shows the experiments in practical and received results. And
the conclusion is in Section 5.

2. Materials and Methods

2.1. Medical Radar System. In this work, a CW radar,
NJR4262 J, is used with an operating frequency of 24GHz, a
MMIC chip for radio frequency processing, a built-in an-
tenna, and an I/Q output with high accuracy and long-term
frequency stability.

Te NJR4262 J radar transmits a continuous wave to the
target chest surface, which is moving because of respiration
and cardiac activity, and then receives the refected signal.
Te frequencies of these two signals difer due to the Doppler
efect caused by the movement of the target’s chest surface. A
built-in mixer compares the transmitted and received sig-
nals. Information on the chest motion is extracted by cal-
culating the diference between the transmitted signal and
the received signal. In the output, there are the in-phase
signal I and the quadrature signal Q.

Te acquired signal from the radar is digitalized via a
converter named ADC NI USB-6008. Te outputs from the
radar module are connected in turn to the analog input ports
of the ADC. To collect the digital data, LabVIEW software is
used to connect the analog-digital converter to computers.
Te data is sampled with a sampling rate of 100Hz and
recorded as csv-extension fles. Figure 1 visualizes the
connections of the system.

2.2. Model Architecture. Long-short-term memory is a re-
current neural network architecture-based version that
addresses the problem of long-term dependence for se-
quence signals in the time domain. Each node in the network
contains a memory cell that can store or forget previous
information if necessary [14]. LSTM networks are widely
used for prediction problems involving sequence signal data.

In this study, the LSTM network is used, which acts as
the feature extraction layer of the signal. Te output of this
layer is linked to a classifer with a fully connected 3-layer
architecture. Te network architecture diagram is shown in
Figure 2. Te fltered motion signal will be fed into the
network and normalized to a vector with a length of 2000.
Te inputs to the frst and second fully connected layers are
1024 and 512, respectively, with the nonlinear activation
function ReLU, and produce an output of size 256. At the last
fully connected layer, the soft-max function is used to give
the label with the highest probability. Te outputs are labels
corresponding to a heart rate range of 50 to 140 beats per
minute. Te labels are encoded as one-hot encoding and
assigned to each signal data. Training processing uses the
categorical loss entropy function and the optimization
function in this work is ADAM.

To evaluate the performance of the trained model, root
mean square error is applied with the formula as follows:

RMSE �

������������

􏽐
N
i�1 xi − 􏽢xi( 􏼁

2

N

􏽳

, (1)

where 􏽢xi is the estimated heart rate. In this work, heart rate
values are determined through the peak detection algorithm
and the proposed method. xi is reference heart rate value
obtained from the PPG device. N represents the number of
test signal samples.

3. Proposed System

Figure 3 presents the general picture of the proposed system.
Te system is divided into the following 5 functional blocks:
data generator, training model, data acquisition, motion
extraction, and heart rate estimation. In the data generator
block, the amplitude of motion of the chest surface is
modeled by using mathematical formulas. Tese signals are
generated based on amplitude, frequency, and phase char-
acteristics. Tis signal set is then divided into datasets
corresponding to heart rate, forming a database that acts as
the input to the training model block. After the model
training, the trained model will be used to estimate the heart
rate.

Te data acquisition and motion extraction blocks
perform the acquisition of radar data from a noncontact
medical radar system. Te baseband signals are collected,
normalized, and corrected. From the processed baseband
signals, the target motion is extracted and passed through a
bandpass flter. Motion signals will be fed through amachine
learning model that has been trained to estimate heart rate.
Tis process is executed in the heart rate estimation block.

3.1. Signal Modeling

3.1.1. Signal Modeling of CW Radar. Te transmitter
transmits a signal expressed by the following formula:

T(t) � AT cos(2πft + ϕ(t)). (2)

Radiofrequency waves are emitted from the radar, di-
rected towards the target surface of the chest of the indi-
vidual being measured. In which, AT is the amplitude of the
transmitted signal, f, is the carrier frequency, and equals
24GHz, ϕ(t) is the phase of noise. According to the Doppler
principle, the refected wave will have a diference in fre-
quency due to the movement of the chest surface caused by
respiration and the impact of the heart on the chest wall.
Tus, the refected signal is modeled as follows:

R(t) � AR cos 2πft −
4πd0

λ
−
4πx(t)

λ
+ ϕ t − 2d0c( 􏼁􏼢 􏼣, (3)

where AR is the amplitude of the received signal, λ is the
wavelength and equals (c/f), is the speed of light, d0 is the
initial distance between the radar and the body surface, and
x(t) represents the motion of the body surface.
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When there is a received signal, the received and
transmitted signals will be put through a frequencymixer. Its
output will give two baseband signals. Te signal I is an in-
phase signal, denoted by BI(t). Te other signal is a
quadrature-phase signal Q, denoted by BQ(t). Te two
signals are out of phase by an angle of π/2.

BI(t) � AI cos
4π x(t) + d0􏼈 􏼉

λ
+ Δϕ(t)􏼢 􏼣, (4)

BQ(t) � AQ sin
4π x(t) + d0􏼈 􏼉

λ
+ Δϕ(t)􏼢 􏼣. (5)

3.1.2. Chest Surface Movement Modeling. Te amplitude of
chest surface motion is afected by three components: res-
piration, cardiac efects on the chest wall, and noise, which is
assumed to be white noise:

x(t) � xr(t) + xh(t) + xm(t). (6)

Based on [6], the authors demonstrated that for the
motion of the chest surface due to cardiac action, the am-
plitude could be modeled as a sinusoidal pulse, a half-

sinusoidal pulse, a Gaussian pulse, or a combination of two
diferent pulses per heartbeat. Te sinusoidal pulse can be
chosen to represent the action of the heart on the chest wall.

xh(t) � Ah sin 2πfht + ϕh( 􏼁, (7)

where Ah is the amplitude of the chest vibration that is
afected by the heart, fh is the heartbeat frequency, and ϕh is
the initial phase.

For the vibration component due to respiration xr(t),
the motion consists of two phases such as inhalation and
exhalation. Te authors in [15] proved that the vibration of
the chest surface caused by the respiration component is
modeled as the following formula:

xr(t) �

−Kb

TiTe

t
2

+
KbT

TiTe

t, t ∈ 0, Ti􏼂 􏼃,

Kb

1 − e
− Te/τ( )

t
2

e
− t− Ti( )/τ − e

− Te/τ( )􏼒 􏼓, t ∈ Ti, T􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(8)

where Kb is the amplitude at which respiration causes
thoracic surface movement, T is the duration of one re-
spiratory cycle, Ti and Te are the inhalation and exhalation
duration in one respiratory cycle, respectively, τ is the time
constant.

3.2. Data Generation. Based on the analysis of radar signal
structure along with the above mathematical analysis of
chest surface movement, this study proposes to develop a
database of chest surface motion signals corresponding to
possible human heart rate values ranging from 50÷140 beats
per minute (bpm). Te signal carrying heart rate informa-
tion was determined by using (7). Heart rate varies between
50 and 140 bpm, corresponding to a frequency fh of 0.83 to
2.33 Hz. Te signal amplitude carrying heart rate infor-
mation Ah ranges in magnitude from 0.2 to 0.5mm, which
was reported in [16, 17].

Te efect of respiration on the chest wall was presented
in [15] and expressed in (8). Terefore, the respiratory rate
varies between 10 and 22 beats per minute, corresponding to
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Figure 1: System diagram.
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Figure 2: LSTM architecture.
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the period T from 2.73 to 6 seconds. Te amplitude of chest
wall change caused by respiration Kb is shown in [18, 19],
with a magnitude ranging from 4 to 12mm.

Te goal of the proposed method is to model the signal
and extract the signal carrying heart rate information from
the chest wall motion. As shown in (6), the signal contains
heartbeat information along with the respiratory signal and
noise that are components of the chest surface motion signal.
Te chest surface movement is the major cause of the
Doppler efect on the receiver of the radar. Since the fre-
quency components of the heartbeat signal are mainly lo-
cated in the x(t) signal, the modeling heartbeat signal was
obtained using a bandpass flter to extract the heartbeat
signal from the modeling signal x(t) instead of the BI(t) and
BQ(t) signals from (4) and (5). Figure 4 presents the
modeled chest surface motion signal. Te signal consisted of
heartbeat, respiration, and noise components. Te chest
surface motion signal in the frequency domain is shown in
Figure 5. Te chest surface motion signal contains the
frequencies of the respiratory, heartbeat signal, respiratory
harmonics, and white noise. Te efects of respiratory
harmonics were presented in [11].

Figure 6 shows a modeling signal carrying heart rate
information which is extracted using a 5th order Butterworth
flter with the chest surface motion modeling signal. Tis
signal would be the input of the training process.Te dataset
generated for training includes 91 labels of heart rate data
ranging from 50 to 140 beats per minute. Each label includes
4000 samples of heart rate data. Te dataset is then divided
into two sets of training and validation according to the data
ratio of 80 : 20.

3.3. Motion Extraction Method. Data collected from the
radar is obtained simultaneously with the reference device
PPG. Te signal from the PPG device is an analog signal,
digitized and sampled at a frequency of 100Hz via the NI
USB-6008 ADC.

3.3.1. Correcting Baseband Signals. As analyzed above, the
motion of the target surface infuences the baseband sig-
nals. In fact, there are many factors that afect the am-
plitude and frequency, causing the received signal to be
distorted, and afecting the amplitude and phase compo-
nents of this baseband signal. Tis causes the received
signal to deviate from the signal models obtained at the
database creation step.Terefore, the signals received at the
radar need to be processed and restored. In this study, we
propose to apply the Eclipse Fit method to process and
restore the distortion-afected signals mentioned above
[20]. In practice, baseband signals are represented by the
following formulas:

BI
′(t) � AI cos

4π x(t) + d0􏼈 􏼉

λ
+ ϕI􏼢 􏼣 + DCI, (9)

BQ
′(t) � AQ sin

4π x(t) + d0􏼈 􏼉

λ
+ ϕQ􏼢 􏼣 + DCQ. (10)

Under ideal conditions, AI � AI và ϕI � ϕQ. However,
the signal distortion factor makes the above components
unequal and creates imbalance factors, Ae � (AQ/AI) and
ϕe � ϕQ − ϕI. Based on [20], (10) and (11) are varied to get
the following equation:

BQ
′
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−
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􏼠 􏼡

2

+
BI
′
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􏼠 􏼡

2

− 2
BQ
′

AQ

−
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􏼠 􏼡
BI
′
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−
DCI

AI

􏼠 􏼡sin ϕI( 􏼁 − cos2 ϕI( 􏼁 � 0.

(11)

Consider BI
′ as values on the horizontal axis and BQ

′ as
values on the vertical axis in the Cartesian coordinate sys-
tem, the normalization equation of an ellipse can be written
as:

B
′2
I + A × B

′2
Q + B × BI

′ × BQ
′ + C × BI

′ + D × BQ
′ + E � 0.

(12)
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According to (11), the imbalance factors can be esti-
mated as follow:

Ae �

��
1
A

􏽲

, (13)

ϕe � arcsin
B

2
��
A

√􏼠 􏼡. (14)

For the whole data with N points (N>> 5), these data
points will satisfy the formula:

A × B
2
QN + B × BIN × BQN + C × BIN + D × BQN + E � −B

2
IN.

(15)

Te coefcient matrix can be written as:

M �

B
2
Q1 BI1 × BQ1 BI1 BQ1 1

⋮ ⋮ ⋮ ⋱ ⋮

B
2
QN BIN × BQN BIN . . . 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (16)

b �

−B
2
I1

⋮
−B

2
IN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (17)

Finally, the parameters A, B, C, D, and E can be de-
termined using the following equation:

A

B

C

D

E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� M
T
M􏼐 􏼑

− 1
M

T
b. (18)

From there, the imbalance factors values can be esti-
mated through (13) and (14).

After the baseband signals are corrected for amplitude,
based on [21] the 1-dimensional components will be found
by optimizing the following function based on the gradient
descent algorithm:

F DCQ, DCQ, DCQ􏼐 􏼑

� min 􏽘

n

k�1

����������������������������

BI
′[n] − DCI( 􏼁

2
+ BQ
′[n] − DCQ􏼐 􏼑

2
􏽲

− AR􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

(19)

3.3.2. Extracting Motion Signals. After determining the DC
components, the baseband signal data will be corrected
using the Gram–Smith procedure.

BIc

BQc

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ �

1 0

−tanϕe

1
Ae cosϕe( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

BI
′ − DCI

BQ
′ − DCQ

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦. (20)

where BIc andBQc are the corrected baseband signals.
Arctangent modulation is applied to extract motion

signals from BI and BQ baseband signals as follows:

ϕ(t) � arctan
BIc(t)

BQc(t)
􏼠 􏼡. (21)

4. Experiments and Results

4.1. Evaluation with Published Data. First, the proposed
method will be implemented with the dataset collected by
the authors in [13]. Tis dataset includes 30 volunteers. Each
participant was asked to perform sampling for 5 diferent
scenarios: normal breathing, sleep apnea, Valsalva, and tilt
up and tilt down. Te collected radar data was synchronized
with the electrocardiogram (ECG) signal. Details of the
sampling time for each context are presented in [13]. In this
study, we only used the data of volunteers in the case of
normal breathing.

Data for each volunteer is approximately 10–14 minutes
in length for normal breathing. Te data samples are split
with signal windows of length 20 s. Te target motion signal
is then extracted through arctangent modulation and fltered
using a Butterworth flter in the range of 0.83 to 2.33Hz.
Tese fltered signal samples are fed into the model for
estimation.Tis result is then averaged to fnd the number of
beats per minute for each volunteer over the measured
periods. Te estimated results of the proposed method will
be compared with the arctangent method with the refer-
enced standard value from the ECG signal published in [13].

Te comparison results between the method applying
only arctangent modulation and the proposed method are
presented in Table 1. Te results indicate that there is a huge
improvement when applying the trained machine learning
model to the heart rate estimation. Te RMSE of the pro-
posed method is 2.35 bpm, signifcantly lower than 8.74 bpm
when only the arctangent modulation method is applied.

4.2. Evaluation with Experimental Data. Tis section pres-
ents the results of evaluating the efectiveness of the pro-
posed system with the actual experiment. Te actual
measured data is also tested with the arctangent method and
peak countingmethod and then compared with the results of
the proposed system.Te reference data for this comparison
is the PPG data collected simultaneously during the
measurement.

4.2.1. System Establishment. Figure 7 illustrates a volunteer
participating in the proposed system in practice. Te vol-
unteer sat at an initial distance of approximately 30 cm away
from the radar.Te radar altitude was adjusted to be equal to
chest height. His right hand was ftted with the PPG device to
obtain reference data. Te radar and reference data were fed
into the ADC, which transferred the data from the equip-
ment to the computer.

4.2.2. Data Acquisition. Te chest wall motion signal ob-
tained from the radar, after being processed into the
baseband, will be passed through a 5th-order Butterworth
bandpass flter to obtain the heartbeat signal. Te signal is
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then amplitude normalized as an input to the classifcation
model. Figure 8 depicts the motion signal extracted from the
radar. To obtain the heartbeat signal, a bandpass flter with a
frequency range of 0.83Hz to 2.33Hz is used to obtain a
heart rate with a range of 50 to 140 bpm. Te fltered
heartbeat signal is presented in Figure 9.

Te Fourier transform of the signal was performed as
shown in Figure 10. Te signal was strongly infuenced by
two major frequency components. Te frequency

component of 1.55Hz was the frequency of the heartbeat,
and the frequency component of 0.95Hz was caused by the
harmonics of respiration. Te other noise components were
also signifcant in magnitude relative to the desired fre-
quency. High-intensity noise components still existed in the
frequency band of the heartbeat signal because the system
did not apply harmonic removal and noise reduction
methods. Tis is also an important basis to evaluate the
classifcation ability of the model in noisy conditions. To
evaluate the results of heart rate classifcation, a PPG ref-
erence signal was used as shown in Figure 11.

4.2.3. Heart Rate Estimation Results. Te process of testing
the trained model for real data is presented in this section.
Te study participants are students fromHanoi University of
Science and Technology, who are between the ages of 18 and
23. Te system evaluated the results on 30 samples. After
collecting data and using the proposed method, combined
with a comparison with the peak counting method, the
arctangent method, and the PPG reference device, the ob-
tained results are shown in Table 2.

From the data shown in Table 2, the proposed method
gave quite good results with the RMSE value of 3.18 bpm.
Tis value is better than that obtained by the original

Table 1: Comparison of mean, RMSE between arctangent method, proposed method, and reference data.

No. Arctangent method (bpm) Proposed method (bpm) Reference (bpm)
1 75 72 72
2 63 65 64
3 58 57 56
4 72 72 72
5 60 65 63
6 64 59 57
7 62 62 63
8 53 56 57
9 60 59 60
10 52 81 91
11 53 57 57
12 61 62 62
13 66 65 66
14 68 74 79
15 67 68 67
16 52 51 51
17 54 60 60
18 66 66 69
19 64 53 50
20 60 59 59
21 51 62 64
22 56 56 56
23 59 59 59
24 68 67 67
25 67 67 67
26 57 60 60
27 59 58 59
28 56 56 56
29 70 60 59
30 52 51 52
Mean 60.83 61.97 62.47
RMSE 8.74 2.35 —

Medical Radar
ADC

PPG Sensor

Figure 7: Experiment scenario.
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Figure 9: Heart rate signal fltered through a 5th order Butterworth flter.
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Figure 10: Heart rate signal after fltering on the frequency domain.
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arctangent modulation algorithm (RMSE� 5.74 bpm) and is
clearly superior to the peak counting method
(RMSE� 10.51 bpm). Obviously, it can be said that the
proposed method has better performance than the

previously published methods in the context of imple-
mentation in real-time applications.

Te correlation between the estimated value from the
proposed method and the reference value was investigated.
Te correlation between two datasets from two measure-
ments, A and B, is expressed by the Pearson correlation, r,
expressed by the following formula:

r �
􏽐

n
i�1 ai − a( 􏼁 bi − b􏼐 􏼑

������������

􏽐
n
i�1 ai − a( 􏼁

2
􏽱 ������������

􏽐
n
i�1 bi − b􏼐 􏼑

2
􏽱 . (22)

where n � 30 is the number of samples; ai and bi are data
points from two measurements A and B, respectively; a and
b are the averages of two measurements A and B,
respectively.

Te coefcient r indicates the strength of the correlation
between two data sets. Based on the data in Table 3, the
correlation coefcients between the peak counting algo-
rithm, the arctangent modulation algorithm, and the pro-
posed method with reference data are calculated. Te
arctangent technique and the reference data had a corre-
lation coefcient of 89.57%, the algorithm to the peak had a
correlation value of 50.27%, and the suggested approach had
a correlation coefcient of 96.64%. Te correlation coef-
cient between the proposed method and the reference data
shows a large correlation between the two measurements.
Tus, the application of a machine learning model can
improve the correlation and accuracy of the heart rate es-
timation problem.

Te B and A plots are shown in Figure 12. Te
standard deviation (SD) of the diference between the two
measurements was 3.40 bpm. Te mean diference be-
tween the two measurements was 0.967 bpm and is shown
as a solid line. Te space between the two dashed lines
above and below the mean diference line (±1.96∙SD)
represents the acceptable limit. Te results from the
above graph show that 29/30 data points are within the
allowable diference range (−1.96∙SD, +1.96∙SD),
reaching a rate of 96.67%.
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Figure 11: PPG signal.

Table 2: Comparison of mean and RMSE between peaks counting
method (PCM), arctangent method (AM), proposed method (PM),
and reference data.

No. PCM (bpm) AM (bpm) PM (bpm) Reference (bpm)
1 69 75 74 76
2 75 93 94 92
3 72 69 69 66
4 81 75 75 76
5 75 63 64 66
6 75 57 51 56
7 72 66 66 66
8 72 72 72 72
9 63 51 51 54
10 75 60 59 56
11 69 57 56 54
12 66 63 64 60
13 75 72 74 78
14 78 81 74 78
15 69 57 65 62
16 75 72 72 72
17 66 60 61 64
18 72 99 99 96
19 66 54 71 70
20 63 54 59 62
21 69 69 68 64
22 63 84 84 82
23 81 99 99 102
24 69 51 65 68
25 66 72 71 70
26 63 63 59 58
27 66 72 63 62
28 72 66 80 70
29 66 66 57 60
30 66 54 54 54
Mean 70.3 68.2 69.0 68.87
RMSE 10.51 5.74 3.18 —
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Te results obtained by the proposed method are
compared with the results of previous studies as presented in
Table 3. Studies [22] and [23] have achieved positive results
in heart rate monitoring. But the heart rate monitoring
results are still fuctuating due to the impact of the envi-
ronment. LSTM helps to minimize the efects of noise be-
cause this extraction layer is capable of learning and
extracting the most characteristic information. Terefore,
based on the results from the study in [7], the application of
the LSTM network has improved the results better than the
application of ANN. Obviously, compared with previous
studies, the proposed method has improved the accuracy as
well as reduced the system complexity.

5. Conclusion

Tis study proposed a new high-precision heart rate mea-
surement method with uncomplicated implementation. In
this study, we achieved the following positive results. Te

frst is modeling datasets describing chest surface movement
caused by respiratory and heartbeat components. Te signal
generated from the modeling formulas serves as the training
data for the LSTM model. Te second is applying artifcial
intelligence to estimate heart rate from noncontact medical
radar signals. Te LSTMmodel is trained from the modeling
dataset.Te collected radar data will be processed and passed
through the LSTM model to estimate the heart rate. Te
results of this study can be applied to develop a system in
practice to assist doctors in diagnosis.
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