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A mobile robot path planning method based on improved deep reinforcement learning is proposed. First, in order to conform to
the actual kinematics model of the robot, the continuous environmental state space and discrete action state space are designed. In
addition, an improved deep Q-network (DQN) method is proposed, which takes the directly collected information as the training
samples and combines the environmental state characteristics of the robot and the target point to be reached as the input of the
network. DQNmethod takes the Q value at the current position as the output of the network model and uses ε-greedy strategy for
action selection. Finally, the reward function combined with the arti�cial potential �eld method is designed to optimize the state-
action space. �e reward function solves the problem of sparse reward in the environmental state space and makes the action
selection of the robot more accurate. Experiments show that compared with the classical DQN method, the average loss function
value is reduced by 36.87% and the average reward value is increased by 12.96%, which can e�ectively improve the working
e�ciency of mobile robot.

1. Introduction

With the continuous integration of informatization and in-
dustrialization, the intelligent industry represented by robot
technology is booming, which is also the key development �eld
of scienti�c and technological innovation in various countries
[1]. In many application scenarios of robots, the working
environment of robots is complex, diverse, and unpredictable.
Completing the task of path planning in a complex and un-
known environment requires the robot to have a certain degree
of intelligence, that is, the ability of autonomous learning and
the ability to explore the environment [2–4]. On the other
hand, because the robot does not have enough environmental
information in the unknown environment, in order for the
robot to successfully and e�ciently realize path planning in an
unknown environment, the robot needs to have a certain
degree of adaptability to its working scene and the ability to
deal with emergencies [5–7].

Arti�cial intelligence is one of the important methods of
robot navigation [8–11]. In recent years, with the continuous
e�orts of experts and scholars at home and abroad in the
�eld of arti�cial intelligence and the continuous progress of
arti�cial intelligence technology, some technologies have
been successfully applied to human daily life, including
speech recognition and machine translation. As one of the
research hotspots in arti�cial intelligence technology, deep
reinforcement learning (DRL) has made a breakthrough
[12]. AlphaGo defeated the world’s top Go experts. �rough
deep reinforcement learning algorithm, the DeepMind team
can well control YALi arcade games after training, even
surpassing the level of ordinary game players, showing the
powerful advantages of this method and greatly increasing
the con�dence of researchers and experts in the research of
arti�cial intelligence technology [13]. Deep reinforcement
learning is an autonomous learning method, which does not
need to mark the training data, learns appropriate behavior
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from the environmental state, and allows the robot tomodify
its strategy according to the received reward or punishment
[14]. By introducing the deep reinforcement learning
method into the robot path planning, the robot is equivalent
to having a “brain” for autonomous learning and walking. In
the unknown and complex information scenes, the robot can
adjust the walking path and plan the path independently. In
the actual robot path planning task, the deep reinforcement
learning method still has some problems to be solved and
optimized, such as algorithm training efficiency, reward
function design, and convergence stability [15, 16]. Taking
the deep reinforcement learning method as the path plan-
ning algorithm in the robot path planning task has strong
scientific research significance and practical application
value for improving the intelligent degree of the robot.

In order to solve the problems of poor exploration ability
and sparse reward of environmental state space in mobile
robot path planning in unknown environment, a mobile
robot path planning method based on improved deep re-
inforcement learning is proposed. (e innovations of the
proposed method lie as follows:

(1) (e DQNmethod is improved.(e sensor senses the
surrounding environmental information, combines
its own location information and the target point to
form a state space as the input of the network, takes
the Q value at the current location as the output of
the network model, and uses -greedy strategy for
action selection to improve the operation efficiency.

(2) Combining the artificial potential field method with
the reward function, the state-action space is opti-
mized, the reward value of the method is improved,
and the reward sparsity of the environmental state
space is improved.

2. Related Works

Traditional robot path planning methods cannot meet the
requirements of modern robot path planning tasks, such as
genetic algorithm, artificial potential field method, and
neural network [17–19]. (ese traditional methods require
the robot to fully understand the surrounding environment
information. When the working environment of the robot is
complex and the state is changeable, these traditional
methods cannot effectively complete the task of path
planning. At the same time, these path planning methods
cannot improve the self-study ability, exploration ability,
and environmental adaptability of the robot [15]. In order to
overcome the shortcomings of these methods, researchers at
home and abroad have explored various solutions. Reference
[20] used the depth Q-network algorithm to conduct the
robot navigation simulation experiment in the maze scene.
(e experiment directly took color image with a size of
160×120 as input. (e output was in three states: straight
ahead, right turn, and left turn. (e experimental results
showed that the robot not only successfully realized obstacle
avoidance but also had the ability of self-learning. Reference
[21] combined double DQN with competitive architecture
DQN, adopted multiview strategy, and took the data

collected by four cameras from four different directions as
input. (e experimental results verified the effectiveness of
this method. In order to obtain more training data, reference
[22] proposed a deep reinforcement learning method of
nonstrategy training based on deep Q function by using the
multithreading method. (is method adopted the concur-
rent method, which could quickly collect the samples re-
quired for training to a certain extent without too much
manual intervention and effectively ensure the training time.
Reference [23] proposed a distributed asynchronous strategy
method for multirobot cooperative learning because mul-
tiple robots could share their experience with each other and
learn a strategy together. Each robot used local neural
network strategy to optimize the behavior of each robot in
different scenes and then saved the training samples of all
robots to the same server, so as to supervise the training of
global neural network strategy. (is method effectively re-
duced the learning time of robot. Reference [24] applied
DQN to model-free obstacle avoidance path planning, but
there was a problem of overestimation of state-action values,
resulting in sparse rewards for mobile robots, and the
planned path was not optimal. Reference [25] proposed an
end-to-end path planning method of safety constrained
robot based on deep reinforcement learning. Reference [26]
proposed a path planning method of mobile robot based on
TPR-DDPG. (is method preprocessed the state through
various normalization methods and designed a complete
reward function to make the mobile robot quickly reach the
target point through the optimal path in the complex en-
vironment. Reference [27] proposed a deep reinforcement
learning method based on double deep Q-network (DDQN),
which made the robot have the ability of autonomous
navigation. However, the above methods often have prob-
lems such as poor exploration ability and sparse reward in
environmental state space, so it is difficult to obtain the
optimal planning path.

To overcome the above problems, a mobile robot path
planning method based on improved deep reinforcement
learning is proposed.

3. Path Planning Method Based on Deep
Reinforcement Learning

3.1. Robot Kinematics Model. Pioneer3-AT is a four-wheel
differential driving robot composed of front steering wheel
and rear driving wheel. (e driving wheel moves forward at
the speed v and uses the speed difference between the left and
right wheels for steering operation. (e model diagram of
Pioneer3-AT in plane coordinate system is shown in Fig-
ure 1. If the midpoint of the robot’s rear axle is selected as the
reference point, the robot’s attitude at time t can be
expressed by a three-dimensional vector P(xt, yt, θ). (xt, yt)

is the coordinate of the robot in the system coordinate. δ is
the steering angle, which is used to describe the angle of the
robot’s steering wheel. θ is the direction angle, which is used
to describe the included angle between the spatial fixed
coordinate system and the robot’s fixed coordinate system,
and d is the distance between the front wheel and the rear
wheel.
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Under the spatial fixed coordinate system, the kinematic
model of pioneer3-AT is
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where [xtytθ]T represents state vector at time t.
(e discretization equation for obtaining the position

and attitude of the robot is

xt+1 � xt + Tv cos θt

yt+1 � yt + Tv sin θt

θt+1 � θt +
Tv tan δt

d
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, (2)

where T is sampling time.

3.2. Environmental State Space Design. State space is the
feedback of the whole environment and the basis for agents
to choose action space. (e robot is equipped with Lidar
with a detection range of 10 meters and a scanning range of
360 degrees. Considering the accuracy and calculation, only
180 degrees in front of the robot is considered, and the Lidar
data in 9 directions are taken, as shown in Figure 2.

We use sio to indicate the distance of obstacles detected
by the Lidar in all directions and use the Lidar’s measure-
ment span to normalize sio. (e final azimuth state infor-
mation is [S1o, S2o, . . . , S9o].

Sio �
sio

S
, (3)

where S is the maximum range of Lidar.
In order to enable the robot to move towards the target

point, the angle β between the current orientation of the
robot and the target point is taken as an input state, as shown
in Figure 3. When the target point is on the left side of the
robot, the value range of β is [0, 180∘]. When the target point
is on the right side of the robot, the value range of β is
(−180∘, 0).

3.3. Action State Space Design. (e motions of Pioneer3-AT
robot include rotational motion and translational motion.
(e robot controls the moving direction according to the
rotational motion. (e action space of the robot is con-
tinuous and will produce a huge action space. Because the
huge action space will make the deep reinforcement learning
method difficult to converge, the translation motion of the
robot is set as 0.8m/s, and the rotation motion is divided
into five discrete actions according to

A � Ai, i � 1, 2, 3, 4, 5  � 0∘, ± 30∘, ± 45∘{ }. (4)

When the robot turns right according to its own motion
direction, the action Ai is a negative angle;When it turns left,
Ai is a positive angle. Each rotation angle corresponds to a Q
value.(eQ value of each rotation angle is obtained through
neural network, and then the corresponding rotation angle is
selected according to the Q value.

3.4. Improved Action Selection Strategy. (e model of the
proposed method is shown in Figure 4. (e robot takes the
directly collected depth information as the training sample,
combines its own environmental state characteristics and the
target point to be reached as the input of the network, takes
the Q value at the current position as the output of the
network model, and uses the ε-greedy strategy for action
selection to reach the next state. When the next step is
reached, the corresponding reward value r is calculated to
obtain a complete data tuple (s, a, r, s′), so the series of data is
stored in the experience playback pool P, and then a small
batch of samples is extracted from the experience playback
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Figure 1: Robot motion coordinates.
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pool P and put them into the neural network for training. In
the process of exploring the optimal path, it is very important
for the robot to select the reward value r from the experience
playback pool P. (e reward value r determines the quality of
the robot path planning.(e robot sends the reward value r to
the optimization objective function to update the network
parameters and iterates until the training is completed.

In the process of network training, if the robot uses
sensors to identify obstacles, the robot can effectively avoid
obstacles by improving the deep reinforcement learning
method. (e design of the improved deep reinforcement
learning algorithm is shown in Algorithm 1.

3.5. Reward FunctionDesign. (e reward function is used to
evaluate the quality of the decision-making of the deep
learning framework and reward each step of the decision-
making. It plays a guiding role in the whole learning process.
(e neural network makes specific decisions according to
the state, the environment is updated according to the
decision, and the reward value is calculated. (e neural
network updates the network parameters according to the
feedback reward value, so that the network can make better
decisions in the next calculation. (e quality of reward
function directly affects the effectiveness and convergence of
the whole reinforcement learning framework. (e reward
function is designed as follows:

R �

−100 d(t)<do,

−2 others,

−1 d(t) � d(t − 1),

1 d(t)<d(t − 1),

2 d(t)< dg,

20 d(t)< dg,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

R � rate ∗ norm P0 − P1(  + 1 − rate( ∗R, (6)

where d(t) represents the distance between the robot and the
target point at the current time; d(t − 1) represents the
distance between the robot and the target point at the last
time; do represents the safe distance of the obstacle. If
distance is less than do, it indicates the obstacle is en-
countered; dg represents the threshold value from the target
point. If distance is less than dg, it is considered to have

reached the target point; dn represents the distance close to
the target point. A positive reward will be given when
reaching this range, which can promote the robot to reach
the target point faster. When the position of the robot is an
obstacle, it will get a negative reward; When the robot
reaches the target point, it will get a larger positive reward.
When the robot approaches the target point, it will get 1 as a
reward; When the robot stays in place, it will get −1 as a
reward. In other cases, it will get −2 as a reward. (is reward
is smaller than 1 because it can prevent the robot from
moving back and forth to obtain a positive reward and
promote the robot to find the shortest path.

In order to solve the problem of blind selection of action
by traditional methods, the artificial potential field method is
introduced as an auxiliary of early training, so that the
system can train the model faster. After selecting the action
space, first calculate the next position P0 of the robot
according to the artificial potential field method and then
update the environment to get the actual position P1 of the
robot. On the basis of the original reward function, add the
distance between P0 andP1. In equation (5), norm(P0 − P1) is
calculation of the distance between 2 positions. rate is a
weight value, which represents the weight of the artificial
potential field method. In the early stage, rate has a large
proportion and guides the robot to the end faster. With the
increase of training times, the weight gradually decreases.

4. Experiment and Analysis

4.1. Simulation Environment Construction and Parameter
Setting. Considering that the environment of the actual
robot is diverse, the shapes of obstacles in the experimental
environment are diverse, and the placement positions are as
random as possible. (e configuration environment of the
computer used in the experiment is NVIDIA GTX 2080Ti
GPU server, and the operating system is Ubuntu 16 04.
Pioneer3-AT robot and its working environment are sim-
ulated with ROS and Gazebo. Python programming lan-
guage and TensorFlow framework are used. Some relevant
parameter values in the experiment are shown in Table 1.

4.2. Comparison between Loss Functions and between
Average Value of Rewards. (e parameters are updated it-
eratively through the loss function L(θ) and Adam optimizer.
Under the framework of Keras based on TensorFlow, using
GPU acceleration, all training samples pass through 1000
epochs to complete the training of the proposed improved
deep reinforcement learning model. Figure 5 shows the
comparison of the loss function values in the training process
of the network model. It can be seen that the loss values of the
twomethods tend to be stable with the continuous increase of
the number of training iterations. (e value of loss function
tends to be stable when the training times of DQN algorithm
reach about 270. When the training times of the proposed
method reach about 200, the value of the loss function can
quickly become stable. (e average loss function value of
DQN algorithm is 0.178, and the average loss function value
of the proposed method is 0.112, which is 36.87% lower than
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Figure 4: Improved DQN method model.
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that of DQN algorithm. (erefore, the improved method has
certain advantages and speeds up the convergence speed of
the network.

Figure 6 shows the comparison of the average reward
values between DQN algorithm and the proposed method.
At the beginning of training, the reward value is between −9
and 0, which is the process that the robot just begins to
explore, learn, and avoid obstacles, and it fails to make
correct judgment on obstacles, so getting a negative reward
value. When the reward value is (0∼80) stage, the training

times reach 100, and the robot is in the exploratory learning
stage, which means that the robot begins to recognize and
can avoid some obstacles, but it is still learning interactively
with the environment and further adjust the action selection
strategy to obtain the corresponding positive reward value.
When the reward value is (80∼160) stage and the training
times are 100∼200, the reward value obtained by the robot in
DQN algorithm and improved DQN algorithm is unstable.
When the training times reach about 300, the reward value
obtained by DQN algorithm tends to be balanced. When the
training times of the improved method reach about 200, the
average reward value tends to be stable. (e average reward
value of the improved DQN is 12.96% higher than that of
DQN. (erefore, the improved method can shorten the
network training time, improve the average reward value,
and improve the reward sparsity.

4.3. Comparison of Several Methods of Path Planning. In
order to prove the advantages of the proposed improved
DQN mobile robot path planning method, path planning
methods in reference [25, 26] are compared with the pro-
posed method under the same experimental conditions. (e
comparison indicators include the following two: the

Inputs: information ε � [st, at−1], target point G, the parameters of Q network is θ, and the parameters of target Q network is θ′.
Output: action direction of robot.
Initialization: initialize st, experience playback pool P with capacity of N, action value function Q, the weights of target Q network is
θ, θ′ � θ.
for episode� 1, M do
for t� 1, T do
Get from experience pool P, input st � [sp, sp−1, . . . , s0]

(e robot chooses a random action at with a certain probability ε; otherwise, it chooses the optimal action at � maxaQ′((st), a; θ)

Perform action at in the environment, get reward rt � 2v2 cos(2vw) − 0.1 and st+1, put (st, at, rt, st+1) into experience pool P.
Randomly take a small batch of samples (sj, aj, rj, sj+1) from the experience pool P
Loss function is L(θ) � E[(y′ − Q(s, a, θ)2)]

Perform policy gradient update
End for

End for

ALGORITHM 1: Improved deep reinforcement learning algorithm for mobile robot.
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Table 1: Experimental parameters of robot path planning.

Parameter Value
Learning rate 0.005
Reward decline 0.8
Network update frequency 400
Experience pool size 10000
Number of batches 16
Number of samples in each layer 15
β 0.3
Starting value, ε 0.1
Termination value, ε 0.0001

Journal of Electrical and Computer Engineering 5



planned path length and the number of turning points in
planned path. (e obtained path planning diagram is shown
in Figure 7, and the comparison data is shown in Table 2.

Figures 7(a)–7(c) are the paths planned by reference
[25, 26] and the proposed improvedDQNmethod according
to the action corresponding to the maximumQ value output
by the network after 500 iterations. From the path planning
map and Table 2, each method has planned a collision-free
path. In terms of the advantages and disadvantages of the
path, the proposed DQNmethod plans an optimal path with
a path length of 28.627 and a number of turning points of 4,
while the methods in reference [25, 26] do not plan an
optimal path. Although the path length is the same as the
proposed method, the number of turning points of the two
methods are 5 and 7 respectively, which increases the time-
consumption of robots. (e proposed method aims at the
global path planning and combines the artificial potential
field method with the reward function to optimize the state-
action space, improve the reward value of the method, and
guide the robot to the target faster. (e comparison method
has the problem of overestimation of state-action value,
resulting in sparse rewards for mobile robots, and the
planned path is not optimal. In the actual environment, the
reduction of turning points in path planning will also reduce
the time spent by the robot from the starting point to the
target point.

5. Conclusion

In the face of mobile robot path planning in unknown
environment, the current research often has the problems of
poor exploration ability and sparse reward in environmental
state space, so it is difficult to obtain the optimal planning
path. In order to overcome the above problems, a mobile

robot path planning method based on improved deep re-
inforcement learning is proposed. (e continuous envi-
ronmental state space and discrete action state space are
designed, an improved DQN method is proposed to speed
up the path search speed, and an improved reward and
punishment function is designed to improve the reward
value of the method, which alleviates the problem of sparse
reward to a certain extent. Experiments show that compared
with the comparative references, the proposed method can
effectively improve the working efficiency of mobile robot.
Using images as data input will get richer environmental
information than Lidar. In the future, robot autonomous
path planning through camera will be studied. In addition,
multirobot cooperative path planning task is also the focus of
the next research of this topic.
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