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Cloud computing has become the most challenging research �eld in the current information technology scenario. In this, a set of
user tasks are scheduled and allocated to numerous kinds of heterogeneous virtual machines (VMs) in cloud data centers (CDCs),
and these VMs are hosted by diverse types of heterogeneous physical machines (PMs). It extends several features, encompassing
elasticity, safety, sustainability, and even adequate maintenance compared to traditional data centers. �ere are numerous
techniques available for VM scheduling and allocation. However, it still requires the existence of new mechanisms that can reduce
the execution time (ET) of the tasks, improve the optimization of energy usage and resource utilization (RU), and reduce time
consumption. Along with optimization, VM scheduling (VMS) and VM allocation (VMA) are two-level issues that need to be
considered with essential policies to govern these mechanisms. Hence, for executing optimal VMS and VMA in the data center,
new optimization methodologies, such as enhanced shark smell optimization algorithm (ESSOA) at the �rst level and Brownian
movement-centered gravitation search algorithm (BMGSA) at the second level, are proposed in this work to de�ne the policies.
Firstly, the user requests for VMs are reserved on the most appropriate PM by the proposed ESSOA, which has the lowest
execution cost within deadline limits, and the proposed BMGSA decides the allocation of the chosen VM on the most appropriate
PM within the resource limitations at the second level. To demonstrate the proposed algorithm’s e�ciency, the simulations are
carried out using the Java language-based CloudSim simulator, and the proposed mechanism outcomes acquired are compared
with the existing approaches. �e simulation results show that the suggested algorithm is e�cient in terms of the execution cost,
degree of imbalance (DOI), make span (MS), and resource utilization (RU).

1. Introduction

Cloud computing [1] is the most favored option amongst
users in this era to access cloud services [2–4] from any place
and at any time via the internet. Cloud providers maintain
these con�gurable computing resources, and they can be
quickly provisioned and released [5]. RCloud computing is
centered on a signi�cant concept encompassing abstraction
and the notion of pooling physical resources using virtu-
alization methodology [6]. Cloud providers use virtualiza-
tion technology that creates diverse kinds of cloud services
on the internet, creating the potential feasibility for cloud

computing. �e infrastructure is given as a service, like the
Amazon EC2. �e runtime environment, like Google App
Engine, is termed as a platform and a service. Lastly, the
software is provided as a service, e.g., salesforce.com [7]. For
all these services to be carried out e�ciently, resources must
be provisioned.�ere are 2 types of service provisioning that
may be initiated in a cloud data center, which are as follows:
(i) task scheduling (TS) and (ii) VM scheduling. In task
scheduling, each task is assigned to the cloud without
considering the optimization of resources at the data center,
and vice-versa is carried out in VM scheduling. Figure 1
exhibits the VM scheduling architecture [8]. Every scheduler
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could have features for scheduling the resources. It may be
homogeneous or heterogeneous requests [9]. Hence, map-
ping and scheduling tasks on appropriate VMs is crucial
[10]. If cloud computing accomplishes a lesser makespan,
lesser execution time of tasks, and effective utilization of
resources, then the mapping between the tasks and needed
resources is accomplished productively. Additionally, the
task must be executed quickly, and a response must be
transmitted to the user [11].

Scheduling is carried out at 2 levels, which are as follows:
in the 1st level, jobs produced by users are given to ap-
propriate task schedulers, and these jobs are assigned to the
VMs using cloud resources [12]. Every job/task contains
numerous dependent tasks, which form directed acyclic
graph (DAG) [13]. VM scheduling is the 2nd level of tasks
carried out in the datacenter. (e VMs are mapped to
appropriate PMs, which are competent in offering the
necessary resources (i.e., memory, disk space, and processor)
using VM allocation [14]. A few of the PMs could be shut
down if the VMs were classified as per the utilization, along
with a few selectively migrated, which would decrease the
cloud platforms’ whole energy consumption (EC) [15, 16].
(erefore, the effective management of VMs is of greater
challenge in cloud data centers and can direct the cloud
service provider to satisfy their organization’s objectives
[17]. (rough VMs, VMS and VMP are linked. Hence, these
issues are mainly coupled with one another. (ey are
identified as NP-hard optimization issues [18, 19].

Typically, it is complex to design the algorithms in cloud
computing to yield optimal solutions for VM scheduling
[20] and allocation. In discovering a single solution, mul-
tiobjective optimization has a massive scope of interest
amongst the investigators regarding different aspects of an
issue for VMS and VMA [21]. However, the algorithms are
created to handle both issues separately. However, for
producing an efficient solution for cloud users and pro-
viders, the issues must be managed together and integrated.
To efficiently carry out VM scheduling and allocation for the

cloud platform, this research adopted new optimization
approaches, such as ESSOA and BMGSA.

(e rest of the paper is arranged as follows: the asso-
ciated literary works are exhibited in Section 2.(e proposed
research technique is illustrated in Section 3. (e outcomes
and discussion part are exhibited in the 4th section. Finally,
the conclusion is given in the 5th section.

2. Literature Review

Many research scholars worked on cloud data center
technology to improvise the QoS parameters for the effective
utilization of the resources. However, the improvisation can
be done by optimizing the resources at the virtualization
layer. (e latest works created in the cloud platform for VM
scheduling and allocation are reviewed in this section.

Abualigah and Diabat [22] propounded a hybrid ant lion
optimization (ALO) approach by leading centered differ-
ential evolution to solve multiobjective task scheduling
difficulties in cloud platforms described as modified ALO
(MALO). (e system originated from the requirement to
concurrently reduce makespan while increasing resource
utilization. Utilizing the CloudSim tool kit, 2 trial series were
performed on real trace datasets. (e outcomes showed that
the proposed MALO surpassed other renowned optimiza-
tion algorithms.

Fu et al. [23] put forward a particle swarm optimization
(PSO) genetic hybrid system centered on phagocytosis
(PSO_PGA) to execute task scheduling in the cloud plat-
form. Firstly, the entire population was divided into nu-
merous subpopulations in PSO_PGA. (en, utilizing the
phagocytosis approach and crossover, as well as a mutation
in the genetic algorithm (GA), the particle’s position in every
subpopulation was updated to expand the model’s search
range. Finally, all subpopulations were fused to escape from
local optima, which guaranteed diversity as well. At last, it
was ensured that the particle population could constantly
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Figure 1: (e architecture of the VM scheduling process.
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push in the way of an excellent solution. (e outcomes
exhibited that the algorithm improved the cloud task’s entire
completion time (CT) and had the highest convergence
accuracy compared to the prevailing methods. Furthermore,
the findings exhibited that the proposed algorithm improved
the cloud tasks’ overall CTs through simulation experiments
and had higher convergence accuracy than existing
techniques.

Arul Xavier and Annadurai [24] suggested a swarm
intelligence of societal spiders with chaotic inertia weight-
centered random choice on implementing VM scheduling in
the cloud environment that focused on lowering the overall
makespan. In discovering the finest optimized VM for the
user task amongst the VMs with the lowest makespan and
balanced resource utilization, the algorithm prevented the
local convergence and investigated the intelligent global
searching. (e outcomes significantly improved the make-
span with the balanced VM distribution while utilizing the
presented model.

Lu et al. [25] recommended an improved GA (I-GA) to
resolve the VM allocation issue. To merge with GA, the
model offered virtual hierarchy architecture. By establishing
the I-GA’s preliminary population generation step, the
model accomplished a near-optimal solution in solving
accessibility and energy consumption concerns. (e out-
comes have shown the considerable enrichment of the
datacenter’s energy efficiency and the successful preserva-
tion of its higher availability.

Tripathi et al. [26] employed an improved dragonfly
method for VM allocation for predominant resource utili-
zation in a cloud environment. In an easy dragonfly algo-
rithm to suit it well and intended for the VM allocation issue,
some alterations, like the employment of time, were made.
In addition, a V-shaped transfer function, a solution gen-
erator function, and so on were integrated. Nevertheless, the
model surpassed other prevailing methodologies because of
the more extensive coordination and the competency to
handle a principal balance between exploration and
exploitation.

(e following are the few research gaps identified based
on the previous literary works.

(i) (e scheduling strategies mentioned above have
relied on the connections between requests and
VMs. However, they do not consider the actual state
of the physical nodes, which might cause the out-
comes to fall short. (erefore, it is another addi-
tional consideration in scheduling virtual machines
on physical nodes.

(ii) (at is to say, effective VM scheduling is to be
provided based on the real workloads running on
them, however, most literary works did not consider
the real workloads.

(iii) (ese studies did not adequately account for the
effective balance of supply and demand between
users and cloud providers since they either focused
on load balancing, migration costs over specific time
frames, or energy efficiency. On the other hand,

most prevailing scheduling algorithms enrich the
execution time and resource utilization while
implementing VM scheduling.

(iv) To deal with and provide efficient IaaS services in
the cloud, the prevailing works carry out VM
scheduling and VM allocation independently.
Hence, in a cloud platform, it is indispensable to
construct an optimal plan for VM scheduling and
VM allocation that plays a crucial part in enhancing
resource utilization [27].

(v) Most traditional approaches considered single ob-
jectives to implement to cope with VM scheduling
and allocation in the cloud environment.

To address the above-mentioned issues, new multi-
objective optimization algorithms are to be developed by
considering load balance, resource utilization, effective time
management, and SLA violations in this research.

3. Proposed Methodology

To implement VM scheduling and allocation as a co-opti-
mization procedure, a new optimization algorithm, such as
ESSOA and BMGSA, is proposed in this paper. At first,
utilizing an ESSOA execution cost is considered the critical
objective of the VM scheduling. (e tasks of the users are
assigned to an appropriate efficient VM by considering
energy, meantime, SLA Violation and the optimal chosen
VMs are positioned to the suitable PMs by considering the
suitable policies. Figure 2 shows the proposed research
model’s architecture. (e fundamental definitions for the
proposed model are as follows: the set of user tasks to be
assigned in VMs is represented in the following:

Ti � T1, T2, . . . , TQ, (1)

where the total count of tasks is Q. Every task is explicated as
Ti (Zi, Di, Si), where (Zi, Di, and Si) signify the task size
gauged by millions of instructions (MI), task deadline, and
start time of a task Ti. (e set of VMs for scheduling is
determined from the following:

VMj � VM1, VM2, . . . , VMM, (2)

where the total number of VMs is denoted as M. Every VMj

is explicated as VMj(psj, Pvmj), in which psj is the VM
processing capacity, articulated as million instructions per
second (MIPS), which is put as M through
􏽐

M
j�1 psj ≤Cphk.(e amount of payment used for utilizing a

VMj per hour is indicated by Pvmj . Cphk denotes the
capacity of the physical machine k. (e set of PMs for VM
scheduling is given as follows:

PMj � PM1, PM2, . . . , PMN, (3)

where the total number of PMs is signified by N. Each PMk

is described as PMj(psk), where the processing capacity of
the PM is symbolized as psk, which is stated regarding
MIPS.

Journal of Electrical and Computer Engineering 3



3.1. Virtual Machine Scheduling. By employing the en-
hanced shark smell optimization algorithm (ESSOA), the
VM scheduling of the proposed methodology is performed.
A population-centered technique that commences with a
random population is called SSOA. Imitating and simulating
the shark’s technique in discovering the target is the central
notion of SSOA. (e hunting methodology in sharks is
centered on their smelling sense of competency. Accom-
plishing the global value of the optimization problem is the
main aim of the work. In traditional SSOA, the local search
carried out by an algorithm has drawbacks, such as the
overflow of the search area and the disruption of random
flights, because of its huge searching steps. A bidirectional
search (BS) is integrated into SSOA, termed enhanced SSOA
(ESSOA), which is proposed to overcome these disadvan-
tages and enrich the local searching capability of SSOA for
optimization problems. It aids in implementing the local
search in the forward and backward directions. Whilst
choosing the direction, greedy selection is made. If the
solution ameliorates whilst traversing backwards, then
backward traverse is adapted. (is enhancement accelerates
SSOA’s convergence rate. Because of the VM’s execution
cost, the objective function of SSOA is calculated. (e

execution cost Eij of Ti is outlined as the multiplication of the
price of VMj along with the CT of Ti, which is given by the
following:

Eij � Pvmj ∗
Cij

3600
, (4)

where the price of VMj is symbolized by Pvmj, and the
completion time of executing a task is Ti on VMj is Cij. Cij
can be executed if the completion time Cij is within the
deadline. Otherwise, Cij cannot be executed. (e time that
VM consumes to carry out the task is called the execution
time. Waiting time is the time difference between the start
and end time of the VM.(erefore, the completion time that
VMj will take to perform VMi can be computed as follows:

Cij � Si + ETij, (5)

where the starting time of VMi is SI, and the time of carrying
out Ti on VMj at a provided time t is ETij. Centered on “2”
metrics, namely the task size STi (number of instructions
that Ti will require to implement on VMj) and the pro-
cessing speed of VMs psj, the ETij of the task is computed,
which is calculated as follows:
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ETij �
STi

psj

, (6)

where,

psj � NPj ∗Mj, (7)

where the number of processors in VMj is depicted by Npj,
and Mj is the MIPS of each processor in VMj. (e con-
straints regarded for VMS in SSOA are mentioned below. A
task should be allocated to a VM, i.e.,

􏽘

M

j�1
TV

i
ij � 1, ∀iε 1, 2, . . . , Q{ }, (8)

where i & j are the indexes of the task and VM, and TVt
ij is a

binary value signifying whether Ti it is designated VMj at a
given time t. It must guarantee that every task is completed
before its deadline, i.e.,

Cij ≤Di,∀iε 1, 2, . . . , Q{ }, (9)

where the deadline of task Ti is given byDi, and Cij is the CT
of executing a task Ti on VMj. (e need for resources for all
tasks hosted on VM should not go beyond the VM resource’s
utmost capacity, i.e.,

􏽘

Q

i−1
TCi ∗TVij ≤VCj, ∀iε 1, 2, . . . , M{ },

􏽘

Q

i−1
TMi ∗TVij ≤VMj, ∀iε 1, 2, . . . , M{ },

􏽘

Q

i−1
TNi ∗TVij ≤VNj, ∀iε 1, 2, . . . , M{ },

(10)

where CPU, memory, and bandwidth demands Ti are TCi,
TMi, and TNi, respectively. CPU, memory, and bandwidth
capacities VMj are VCj, VMj, and VNj, respectively. On any
given available VM, every task is permitted to be processed,
such that they fulfill the requirements of tasks, and every task
must be finished without interruption once begun (non-
preemptable). (us, the task will stay in the queue until the
primary task has finished its implementation if more than
one task comes simultaneously.

VMj and Ti are the input parameters of SSOA. Every
individual of SSOA signifies a VM, and along with the
computation of the VM is the execution cost. (erefore, the
individual’s dimension is equivalent to the number of VMs.
A VM(VMj) is randomly initialized when task i requires to
be processed. SSOA encompasses a population of the size j of
odor particles or VMs (Ops), where each Op has a dimension
d. Position (pg

j ,1 ≤ j ≤ M) and velocity (vg

j , 1 ≤ j ≤ M) are
the two components in each Op. (e term indicates the stage
number g(1 ≤ g ≤ gmax). (e position vectors for the 1st
stage of the population Op are given in (11), and the
components of the jth position vector in each dimension are
expressed in (12).

P
1
1, P

1
2, P

1
3, . . . , P

1
M, (11)

Pi � P
1
j,1, P

1
j,2, P

1
j,3, . . . , P

1
j,M􏼐 􏼑, 1≤ j≤M. (12)

(e velocity of the Op corresponding to the position
vector is given in (13), and the components of the jth position
vector in every dimension are symbolized in (14).

V
1
1, V

1
2, . . . , V

1
M, (13)

Vi � V
1
j,1, V

1
j,2, . . . , V

1
j,M􏼐 􏼑, 1≤ j≤M. (14)

Each Op is gauged by a fitness (F) function to judge the
solution’s quality to the issue. (e fitness function for the
VM scheduling process is calculated by the following:

Fi � Pvmj ∗Cij, (15)

where the price of VMj is denoted by Pvmj, and the com-
pletion time that VMj will take to carry out Ti is indicated by
Cij. From the initialized population, the individuals that have
the least fitness values as the best individuals are chosen. An
SSOA follows the forward and rotational movements to
attain optimal global solutions. (e search ensures in several
stages (g), in which both movements are executed. (e
shark’s velocity in the gth stage is updated in forwarding
movement utilizing the following:

v
g
j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � ηgr1∇(F)|P
g
j + λgr2V

g−1
j , (16)

where the gradient of the fitness function is depicted by
∇(F). A constant gradient value is indicated by ηg, and r1
and r2 are random numbers with uniform distribution [0, 1].
(e inertia constant for the stage g is λg ∈ (0, 1)g, which
restricts the shark’s current velocity, such that it does not
exceed a definite limit of its earlier velocity. (e velocity’s
upper bound is articulated in the following equation:

v
g

j,h

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 � min λg · r1
α(F)

α ph( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
p

g

i,j

+ λg · r2 · v
g−1
j,h

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, ψg · v
g−1
j,h

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌⎛⎝ ⎞⎠,

j � 1, . . . , h � 1, . . . , Nd, g � 1, . . . , G,

(17)

where the current stage velocity’s upper bound is given by
ψg. (e number of positions, dimensions, and stages is
denoted by the terms M, Nd, and G. (en, utilizing (18), the
new position in the gth stage is ascertained as follows:

R
g+1
j � p

g

j + v
g

j ∗Δtg, (18)

where the time duration for the gth stage is signified by Δtg,
and for all stages, it is assumed to be 1. (en, the rotational
movement is implemented as given below. Also, the local
shark search can be devised as follows:

S
g+1,u
j � R

g+1
j + r3R

g+1
j , (19)

where r3 is the random number, and the number of points
for a local search is denoted by u� 1,....,U. At this point, with
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the aid of BS, the local search is carried out, which is
computed as follows:

BS �

if Fi R
g+1
j + sl􏼐 􏼑<Fi R

g+1
j􏼐 􏼑⟶ R

g+1
j � p

g
j + sl􏽨 􏽩,

elseif Fi R
g+1
j − sl􏼐 􏼑<Fi R

g+1
j􏼐 􏼑⟶ R

g+1
j � p

g
j − sl􏽨 􏽩,

otherwise⟶ no change in the present position.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

(e current position of sharks, objective fitness function
value, and step length are symbolized by R

g+1
j , F(R

g+1
j ), and

sl, respectively. (e one with the lower cost is chosen to be
the next destination among the points searched on a global
and local scale. (e final OP is updated as follows:

p
g+1
j � arg min F R

g+1
j􏼐 􏼑, F S

g+1,1
j􏼐 􏼑, . . . , F S

g+1,U
j􏼐 􏼑􏼐 􏼑􏼐 􏼑. (21)

As mentioned before, the movement kinds are iteratively
repeated, unless a termination criterion is achieved. Algo-
rithm 1 depicts the proposed ESSOA.

3.2. VM Allocation. By utilizing BMGSA, the VMA on the
suited PMs is performed after VMS. In GSA, the bodies in
the universe are expressed by agents. GSA sometimes fails to
discover global optimum and is effortlessly trapped into local
optima because of the deficiency of a pre-eminent balance
between exploration and exploitation. A Brownian move-
ment (BM)-centered GSA called BMGSA is proposed to
conquer the premature issue and ameliorate the local
searching capability of GSA. Employing the BM, a modified
search equation with more helpful information from the
search experiences is established in the proposed algorithm
to yield a candidate solution wielded to evade trapping into
local optima.(ree metrics, namely the energy consumption
of PM, SLAV of PM, and meantime of PM before its
shutdown, are considered for BMGSA’s objective for VMA.
(e metrics for VMA are computed as follows:

Energy consumption: while they are idle, the servers
consume enormous power. It is given by the following:

fe � 􏽘 M
j�1 PM

pm

k − PM
pm

k􏼐 􏼑 × PMruk + PM
pm

k􏼐 􏼑 × Wk,

(22)

where the PM’s total power consumption is given by fe,
whilst PM

pmin
k � PM

pmax
k × 0.6 describes the minimum

power consumption of PMk. (e utilization ratio of re-
sources employed by PMk at instant t is symbolized by
PMruk, while Wk ∈ (0, 1) is equivalent to 1 if PMk is turned
on. Otherwise, Wk � 0.

SLAV: cloud computing attempts to fulfill the quality of
service (QoS) needs, which are modeled in the SLAV form to
augment the response time or minimize the throughput. As
stated in the subsequent equations, SLAV can be engendered
by a host.

fSLAV � A × B, (23)

where the average ratio of the period is symbolized by A if
the host experiences CPU usage of 100%. It is stated as
follows:

A �
1
N

􏽘 N
k�1

Gk

Ek

, (24)

where the active time of kth host is Ek, and the total time
when the kth host experiences 100% SLAV utilization is
depicted by Gk. Furthermore, the term illustrates the deg-
radation in the performance because of VM’s migration B. It
is described as follows:

B �
1

M
􏽘 M

j�1
CRj

CPj

, (25)

where the total CPU utilization required by VMj is indicated
by CPj, and the degraded performance that arises as of VM
migration is indicated by CRj.

Mean time before a host shutdown (MTBHS):
(is time is gauged in seconds along with the average

and is computed as follows:

fMTj �
1
N

􏽘 N
k�1Sdk, (26)

where Sdk signifies the host shutdown time. (e limitations
considered for VMA in the proposed model are as follows:

􏽘 N
k�1Ajk ≤ 1, ∀j ∈ 1, . . . , M{ }, (27)

􏽘
N
k�1VMcpuj × Ajk ≤PMcpuk, (28)

􏽘
N
k�1VMramj × Ajk ≤PMramk, (29)

􏽘
N
k�1VMhdj × PMjk ≤PMhdk, (30)

where Ajk� 0 unless the VMj allocates on PMk. VMj should
be performed on a single PMk when SLAVk is the least
priority in constraint (27). (e current physical machine
(PMk) must have adequate resources to work correctly and
serve all its VMs at an instant t in constraints (28)–(30). (e
following steps explain the above metrics and constraints
that are utilized in the VMA model.

Step 1: by the following equation (31), randomly
generate the initial population of individuals in the
search space.

Qk � q
1
k, q

2
k, q

3
k, . . . , q

d
k, . . . , q

D
k (t)􏽮 􏽯, k ∈ 1, 2, 3, . . . , N,

(31)

q
d
k(t � 0) ∼ U q

d
min, q

d
max􏼐 􏼑, (32)

where the position of the kth individual in the dth di-
mension is denoted by qkd, and the number of di-
mensions is depicted by D. (qd

min, qd
max) symbolizes the

search space’s boundary for d. (e velocities are ini-
tialized to zero.

Zk(t � 0) � 0. (33)

Step 2: appraise the individual’s fitness by the subse-
quent equation:
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F � fe, fSLAV, fMTj􏼐 􏼑, (34)

where fe indicates energy consumption, SLAV, and
fMT meantime value of the PMs is computed as
follows:
Step 3: the best and worst fitness through the pop-
ulation at the time t is recognized after examining the
entire population’s fitness. (e Best (Bt) and Worst
(Wt) in minimization problems are as follows:

Wt � max f1(t), f2(t), . . . , fk(t), . . . , fN(t)􏼂 􏼃,

Bt � max f1(t), f2(t), . . . , fk(t), . . . , fN(t)􏼂 􏼃,
(35)

where the size of the population is articulated by N.
Step 4: the population’s update phase follows the
recognition of (Bt) and Worst(Wt). (e masses of the
agents are the 1st phases that are to be updated. As per
its fitness ft

k, the mass of agent k, Mt
k, is mapped as

follows:

M
t
k �

m
t
k

􏽐
n
j�1 m

t
j

,

m
t
i �

f
t
k − Wt

Bt − Wt

.

(36)

Step 5: after that, the force acting on every agent is
updated. (e gravitational force acting on agent k
engendered by an agent j in the dth dimension Wd

kj(t) is
computed utilizing agent j’s mass, Mt

j, and agent k’s
mass, Mt

k .

W
d
kj(t) � gt

M
t
k · M

t
j

E
t
kj + ϵ

q
d
j (t − 1) − q

d
k(t − 1)􏼐 􏼑, (37)

where the Euclidean distance betwixt agent k and j is
delineated by Et

kj. (e term ϵ is a lesser constant that is
appended to the divisor to evade division by zero when
the agents are overlapping one another, and the
gravitational constant at a time t is gt, which is com-
puted as follows:

gt � g0 × e
−Φt/It , (38)

where the gravitational constant at the commencement
of the search is g0, and Φ is another constant. (e total
number of iterations is It.
Step 6: the total force acting on the agent i in dimension
d is given by the following:

W
d
k(t) � 􏽘 n

j�1,j≠ 1rd
d
j · W

d
kj(t), (39)

where a random number in the interval [0, 1] is rd. (e
Brownian movement (BM) is applied to the random
sequences to get a BM value rather than selecting
random numbers in the range of [0, 1].

BM � h∗ rand∗Lp,

h �

��
T

G

􏽲

,

G � 100∗T,

Lp �
1

h
���
2π

√ exp −
(D − agents)2

2h
2􏼠 􏼡,

(40)

where the motion period in the seconds of sharks is
indicated by T. (e number of sudden motions for the
similar agent in proportion to time is given by G. (e
search space dimension is denoted by D. (e agents in
GSA move subjected to Newton’s law of motion. (e
acceleration of agent k overdimension d ofId

k(t) can be
computed utilizing (41) as per Newton’s law.

I
d
k(t) �

f
d
k(t)

M
t
k

. (41)

Step 7: with the aid of equation (42), the agent’s ve-
locities along with positions are then updated.

Z
d
k(t) � rd

d
k × Z

d
k(t − 1) + J

d
k(t), (42)

q
d
k(t) � q

d
k(t − 1) + Z

d
k(t). (43)

(e above steps are repeated to the highest iteration till it
meets the stopping condition. Finally, algorithm-2 portrays
the pseudocode for the proposed VMA.

Complexity analysis: a function that links the input
problem’s size to the algorithm’s run-time may be used to
define the computing complexity of an algorithm. To il-
lustrate the computing complexity of the time usage of the
suggested ESSOA and BMGSA, Big-O notation is used here
as a known expression. (e number of sharks/positions(n),
the dimensions(d) of the presented problem, the number of
iterations(z), and the cost of the function assessment have a
role in the time complexity issue (c). (e time complexity
may be expressed in the following way:

O(ESSOA + BMGSA) � O(ProblemDef) + O(initialization)

+ O(SolUpdate),

(44)

where the following definitions apply to the time complexity
of the elements in (44).

(1) (e issue definition initialization takes O(1) time.
(2) Population generation initialization takes O(n X d)

time.
(3) (e cost function assessment takesO(Z X c X n) time.
(4) Evaluating the updated solution requires O(Z X n X

d) time.

(us, the following is an expression of the overall time
complexity of ESSOA and BMGSA.
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O(ESSOA + BMGSA) � 2O 1 + nd + Zcn + Znd( 􏼁. (45)

As was previously mentioned, the time complexity
problem for ESSOA and BMGSA is polynomial in order.(e
suggested ESSOA and BMGSA may thus be regarded as
computationally efficient optimization techniques. Briefly, it
can be shown from (45) how the primary variables affect and
how difficult it will be for ESSOA and BMGSA to solve an
optimization problem computationally. Since we apply at
two levels, constant 2 is taken into account.

Space complexity: the factors of the number of searches
and the size of the issue determine howmuch memory space
is required by ESSOA and BMGSA. It shows how much
space was needed for the beginning of the planned ESSOA
and BMGSA. For this, (46) may be used to express the space
complexity of ESSOA and BMGSA.

2O(nd). (46)

4. Results and Discussion

(e proposed model’s outcomes are discussed and com-
pared with the prevailing models regarding in respect of four
metrics: execution time, makespan, degree of imbalance
(DOI), and resource utilization (RU) of PMs. (e working
platform of JAVA-based CloudSim has been used in the
proposed model for the simulation. (e prevailing models,
such as genetic algorithm (GA), particle swarm optimization
(PSO) algorithm, shark smell optimization algorithm
(SSOA), and gravitation search algorithm (GSA) are con-
sidered for comparison. Google Cluster and PlanetLab
workloads are the two diverse workloads contemplated for
execution. Table 1 shows the different real workload traces
with Resources.

In our experiments, we have compared the proposed
algorithm with the existing approaches using the tools, test
configuration parameters, and methodology outlined in

Tables 1–3. Although this approach also allowed us to work
on different workload characteristics, it led to the explosion
of different test results, as shown in Figures 3–6.

(e makespan’s outcomes in the Google cluster and
PlanetLab workloads for algorithms like ESSOA, SSOA, GA,
and PSO are displayed in Figures 3(a) and 3(b). By varying
the tasks from 100 to 500, the makespan for both workloads
is assessed. (e algorithm’s makespan increases if the task
counts increase. However, when analyzed with the pre-
vailing algorithms, the proposed approach attained a very
low makespan for both workloads. For 100 tasks, the pro-
posed approach acquires the makespan of 8.32, while the
prevailing SSOA, GA, and PSO attained the makespan of
12.21, 20.102, and 22.58, which are higher than ESSOA in
Google Cluster workload. Similarly, the proposed approach
acquires the lowest values of makespan as compared to the
outcomes for the rest of the tasks of Google Cluster. Results
are also well relatable to PlanetLab workload.

Figure 4 exhibits the execution cost’s outcomes for al-
gorithms in the Google Cluster and PlanetLab workloads for
ESSOA, SSOA, GA, and PSO. When compared with others
in both workloads, the outcomes show that the execution
time accomplished by the proposedmodel is lower, implying
that the proposed approach yields improvement in per-
formance concerning lowering the VM scheduling cost. (e
task’s execution cost augments over the escalating number of
tasks. For the task counts like 100, 200, 300, 400, and 500, the
proposed approach obtains the execution cost of 10.25,
19.63, 29.36, 36.98, and 48.25 for Google workload, which is
lesser than SSOA, GA, and PSO. On the whole, extremely
poor performance is acquired by PSO and the average
performance is attained by GA.(e ESSOA and SSOA attain
excellent outcomes. However, when scrutinizing the whole
performance for both workloads, the proposed algorithm
outperformed others by their optimal process.

Figure 5 displays the degree of imbalance outcome
amongst VMs.(e execution abilities delineated the amount
of load distribution amongst the VMs. As a result, the

Input: set of VM lists, VMj
Output: optimally selected VMs for VM Scheduling

(1) Start
(2) Initialize the population of the algorithm as p1

1, p1
2, . . . , p1

M and set other parameters
(3) Compute the F of all individuals, Fi � Pvmj ∗Cij

(4) Initialize the stage counter z � 1
(5) for (z � 1: zmax)

//Perform the forward movement
(6) Compute each component of the velocity vector, |v

g

j |

(7) Obtain the new position of shark, R
g+1
j � p

g
j + v

g
j ∗Δtg

//Perform the rotational movement
(8) Obtain the position of the shark with the help of BS, S

g+1,u
j � R

g+1
j + r3R

g+1
j

(9) Select the next position of the shark based on the forward and rational movements, p
g+1
j

(10) end for Z
(11) Set Z�Z+ 1
(12) Select the best position for shark in the last stage, which has the minimum fitness value
(13) End

ALGORITHM 1: ESSOA for optimal VM scheduling.
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system’s load is highly balanced and efficient, denoted by the
minimum value of DOI. By varying the number of tasks
from 100 to 500, the average degree of imbalance for the
algorithms in Google Cluster and PlanetLab workloads is
plotted. Regarding VMs’ load balancing, it is perceived from
the outcomes that the proposed approach creates perfor-
mance enhancement. When compared to the prevailing
algorithms, it achieves a minimal value of degree of

imbalance for the whole varying tasks in both Google Cluster
and PlanetLab workloads. For tasks like 100, 200, 300, 400,
and 500, the degree of imbalance of the proposed work
maintains the level of 1, 1.2, 1.4, 1.6, and 1.2 for the Google
Cluster workload. Depending on the incoming tasks, the
system’s load may enhance or decrease. (erefore, when
compared to other approaches, the proposed approach
sustains a better load balance for the scheduling process.

200 300 400 500100
Number of tasks

0

20

40

60

80

100
M

ak
es

pa
n

PSO
GA

SSOA
ESSOA

(a)

0

500

1000

1500

2000

2500

M
ak

es
pa

n

200 300 400 500100
Number of tasks

PSO
GA

SSOA
ESSOA

(b)

Figure 3: Makespan of the proposed and existing algorithms. (a) Makespan using Google Cluster and (b) makespan using PlanetLab.
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Figure 4: Execution cost of the proposed and existing techniques. (a) Execution cost using Google Cluster and (b) execution cost using
PlanetLab.
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Figure 5: DOI of the proposed and existing techniques. (a) DOI using Google Cluster and (b) DOI using PlanetLab.
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Figure 6 displays the resource utilization of the proposed
and existing algorithms for the proposed approach in both
Google Cluster and PlanetLab workloads.(is metric reveals
how PMs are utilized to augment the physical hosts utili-
zation. Comparing this to the GSA, GA, and PSO, respec-
tively, it is observed from the figures that the proposed
approach has the greater resource utilization of physical
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Figure 6: Resource utilization of the proposed and existing techniques. (a) Resource utilization using Google Cluster and (b) resource
utilization using PlanetLab.

Input: set of PMs, PMk
Output: optimally selected PMs for VM

(1) Start
(2) for k� 1 to N
(3) for d� 1 to D
(4) Initialize Qk � q1k, q2k, q3k, . . . , qd

k, . . . , qD
k (t)􏼈 􏼉

(5) Initialize velocity, Zk(t � 0)

(6) next d
(7) Compute the fitness of each agent, F � (fe, fSLAV, fMTj

)

(8) next k
(9) end for
(10) for t� 1 to N
(11) Select the best agent and worst agent, Bt and Wt
(12) Update mass of each agent, mt

i

(13) Update force acting on each agent, Wd
kj(t)

(14) Update gt � g0 × e−Φt/It

(15) Compute total force acting on an agent by Brownian Movement sequence, Wd
k(t)

(16) end for
(17) end for
(18) for k� 1 to N
(19) for d� 1 to D
(20) Compute acceleration, Id

k(t)

(21) Update the position, qd
k(t)

(22) Update the velocity, Zd
k(t)

(23) next
(24) Compute the fitness value of the next agent
(25) next
(26) next
(27) end for
(28) end for
(29) end

ALGORITHM 2: BMGSA for optimal VM allocation.

Table 1: Different real workload traces with Resources.

Workload Size
Dynamic VM data

CPU Memory Disk
PlanetLab 1000 VMs Yes No No
Google cluster 12000 PMs Yes Yes Yes
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hosts. When scheduling VMs to apt Hosts, the proposed
algorithm considers resource utilization metrics like energy
consumption, SLAV, and meantime, whilst the prevailing
algorithms merely consider the execution cost within the
deadline. (e Resource utilization acquired by the proposed
approach is 84% and 89% for Google Cluster and PlanetLab
workload, which is significant, and it outweighed the GSA,
GA, and PSO. Regarding maximizing the resource utiliza-
tion of PMs, the proposed approach produces performance
improvement.

For Google Cluster and PlanetLab workloads, results
exhibit VMA algorithms that compare other metrics, such as
energy consumption, SLAV, and performance degradation,
because of VM migrations (PDVM). (e lower values de-
note the algorithm’s efficacy for every metric. (e proposed
approach acquires an energy consumption of 112.58, which
is lesser than PSO (156.98), GA (145.25), and GSA (13.58) for

the Google Cluster workload. Similarly, the proposed ap-
proach offers a lower energy consumption value for Plan-
etLab workloads. (e metrics of SLAV, along with PDVM,
also offer better outcomes. It acquires lower values of SLAV
and PDVM for both workloads, which indicates the efficient
performance of the proposed approach for VM scheduling
and allocation in the cloud data center. PSO exhibits the
worst performance. GA and GSA portray a moderate
performance.

5. Conclusions

In cloud data centers, the policy-based VM scheduling and
allocation are regarded as co-optimization problems. (e
proposed work provides solutions by implementing ESSOA
and BMGSA at two levels for VM scheduling and allocation.
Firstly, the execution time of VM scheduling is optimally
reserved for suitable PMs using ESSOA. (en, the chosen
VMs are hosted at the second level to appropriate PMs
utilizing BMGSA. A Java-based CloudSim has been used to
implement the proposed work by considering real work-
loads, such as Google Cluster and PlanetLab, and perfor-
mance metrics, such as energy consumption, meantime,
SLAVs, makespan, execution cost, degree of imbalance, and
resource utilization. (e findings of the proposed VM
scheduling and allocation algorithms are investigated
against the existing algorithms, such as SSOA, GA, PSO, and
GSA. Resource utilization acquired by the proposed ap-
proach is 84% and 89% for Google Cluster and PlanetLab
workload. Hence, considering the significance of the policies
defined through ESSOA and BMGSA, this research deduces
that scheduling and allocation can be carried out more
efficiently. Because of the security limitations in both
scheduling and allocation, the work will be expanded in the
future with the assistance of an advanced optimization
framework.
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(e labeled datasets used to support the findings of this
study can be obtained from the corresponding author upon
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