Hindawi

Journal of Electrical and Computer Engineering
Volume 2022, Article ID 6532852, 7 pages
https://doi.org/10.1155/2022/6532852

Research Article

@ Hindawi

Design and Implementation of Local Threshold Segmentation

Based on FPGA

Shangshang Gao (),' Yuanyuan Wang,' Zhaofeng Chen ©,' Feng Zhou ©,

Rugang Wang (,' and Naihong Guo®

1

ISchool of Information Technology, Yancheng Institute of Technology, Yancheng 224051, China
*Yancheng Xiongying Precision Machinery Company Limited, Yancheng 224006, China

Correspondence should be addressed to Rugang Wang; wrg3506@ycit.edu.cn

Received 19 March 2022; Revised 26 June 2022; Accepted 1 July 2022; Published 22 July 2022

Academic Editor: Mohamed Louzazni

Copyright © 2022 Shangshang Gao et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In the process of the development of image processing technology, image segmentation is a very important image processing
technology in the field of machine vision, pedestrian detection, medical imaging, and so on. However, the traditional image
segmentation technology cannot solve the problems of reflection and uneven illumination. This paper presents a local threshold
segmentation method based on FPGA, which can automatically select the optimal threshold according to different gray levels of
images. First, the image is processed by mean filtering to remove noise interference in the image. Then, the idea of the mean value
of the local neighborhood block and the Gaussian weighted sum in the local neighborhood is used to deal with the reflective and
uneven light on the image. The process is designed and realized on FPGA. Finally, the design algorithm is verified by ModelSim
simulation software and QT5 software. The experimental results show that the algorithm can effectively solve the problems of
reflection and uneven illumination on the image surface, and the segmentation effect is significantly improved compared with the
fixed threshold algorithm and Otsu algorithm. It also has certain reference value in medicine, agriculture, engineering, and

other fields.

1. Introduction

With the development of image processing technology,
digital image capture and processing technology is devel-
oping towards a higher level. The traditional image pro-
cessing system based on software platforms has been difficult
to meet the needs, so people put forward new requirements
for the image processing system. Due to the natural par-
allelism of image processing algorithms, the addition of
field-programmable gate array (FPGA) hardware platforms
has brought new vitality to image processing [1-6]. In ad-
dition, image segmentation is a very important image
processing technology, especially in the medical field. For
example, the lung image was segmented into cancer and
noncancer parts by a superpixel algorithm [7]. Therefore,
image segmentation technology has been concerned and
valued. Thousands of kinds of image segmentation

algorithms have been proposed, and new image segmen-
tation algorithms are constantly being born. Common image
segmentation methods include threshold-based segmenta-
tion methods, edge-based segmentation methods, and re-
gion-based segmentation methods [8-13]. In recent years,
Bo et al. [14] proposed a new deformable contour model for
ultrasonic image sequence segmentation, which can resist
the influence of misleading or weak boundary in ultrasonic
image segmentation. Hongyu et al. [15] proposed a rib
segmentation framework based on unpaired sample en-
hancement and a multiscale network, which has good
segmentation performance for multiorgan overlapping re-
gions and fuzzy regions. Zhao et al. [16] proposed an au-
tomatic segmentation method for small organs based on
limited training data, which is superior to cutting-edge deep
learning methods, traditional forest-based methods, and
multiatlas methods in small organ segmentation. Li and Zou

mailto:wrg3506@ycit.edu.cn
https://orcid.org/0000-0003-4714-3431
https://orcid.org/0000-0003-3492-6656
https://orcid.org/0000-0002-2906-8127
https://orcid.org/0000-0001-7617-9607
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6532852

et al. [17] proposed a portrait image segmentation method
based on the combination of an improved genetic algorithm
and threshold image segmentation, which solved the
shortcomings of unsatisfactory segmentation effect and low
segmentation accuracy when traditional algorithms were
applied to portrait image segmentation. For the threshold
segmentation method, if the image is interfered by external
factors, such as reflection and uneven illumination, resulting
in a large gap in the gray level of the image surface, then how
to solve this phenomenon has a certain challenge. Local
threshold segmentation can be used for multitarget seg-
mentation and local threshold selection, but the target
segmentation in the local threshold has poor connection and
contains noise, which is suitable for close recognition of the
target image. Therefore, this paper proposes a design based
on FPGA local threshold segmentation, using the local
neighborhood block means and the idea of Gaussian
weighted sum in the local neighborhood; in the case of the
image surface, the gray level gap is too large, completing the
selection of adaptive local threshold, through Modelsim
code simulation, and Visual Studio QT5 is connected to the
platform for debugging and running display.

2. Local Adaptive Threshold Algorithm

The size of the threshold determines the accuracy of the
image information. If the threshold is too high, some de-
tailed images will be filtered and the edges are seriously
interrupted. If the threshold is too low, more false edges of
the images will cause the judgment error of the image in-
formation. Local thresholding algorithms can enable local
image regions such as brightness, contrast, and texture to
have corresponding optimal thresholds.

Common local threshold segmentation algorithms in-
clude the mean value of the local neighborhood blocks and

dout (x, y) = <|
8'h00A (2r + 1)* x (di n(x, y)

« n

In this experiment, the radius of the processing
window is 7, and the constant K is 1. Bring them into
formula (4) to obtain the expression as follows:

dout (x, y) = {

3. FPGA Implementation

3.1. Overall Design. At present, pipelined video positioning
systems are based on universal processors and adopt
OpenCV machine vision technology, which has short-
comings such as long response time, poor real-time per-
formance, high cost, and insufficient flexibility, while FPGA

8'hffAQr+17 x(din(x,y)-p’>K*) Z
—u)? SKZZi:—ij:—r [I(x+i,y+) —ul”.

8'hf fA225x (di n(x,y) —p)> Y0 3"
8'h00A225 x (di n(x, y) - u)* < Zi?rzj?r [L(xe+iy+j) -l

Journal of Electrical and Computer Engineering

the Gaussian weighted sum of the local neighborhood
blocks. Based on this, the processing window is set as an
odd-number square window, assuming y is the mean value
of the pixels in the processing window, ¢* is the pixel
variance in the processing window, I (x, y) is the input pixel
value, and g(x, y) is the output pixel value. The calculation
formulas of y and ¢* and g(x, y) are as follows:

2ZZ:_TI(x+zy+]) (1)

i=—r

(2r+1

2 _

(2r+1)2 ZZ”U(“W“) i@

I, A(I(x,y)- y)z > Kzazforeground,

0, A(I(x,y)- ©

(x,y) = {
giey 1) < K*¢*background,

where “r” is the radius of the processing window and K is a
constant greater than 0. When K=1, the (I (x,y) - y)z > o2
inequality is always true, which indicates that the result of
segmentation is the same whether the foreground is high
brightness or low brightness. The schematic diagram of the
segmentation effect is shown in Figure 1.

Before segmentation, the center point of the picture
represents the foreground of different brightness, and the
gray level represents the background. After the segmentation
algorithm, black represents the foreground and white rep-
resents the background. The segmentation results of dif-
ferent brightness prospects are consistent. Therefore, the
problem caused by uneven light to the image can be solved
by (3). To understand and reduce the difficulty of writing the
FPGA code, let the current outputpixel is din (x, y), and the
pixel treated by the algorithm is dout(x, y). Convert
equation (3) to the transformed expression as follows:

H(x+i,y+j)— y]
(4)

I xeriy+) -l

(5)

has rich logic and storage resources and unique parallel
processing advantages. Therefore, this paper adopts the
pipeline way to achieve the local adaptive threshold on
FPGA. According to the requirements of equation (5), the
following steps are required: (1) calculate y in the processing
window; (2) make the difference between the center pixel of
the window din (x, y) and g and calculate the square of the

Journal of Electrical and Computer Engineering

Segmentation|

Before the split After the split

FiGure 1: Schematic diagram of segmentation effect.

difference (di n(x,y) - ‘u)z; (3) multiply the result of step
(2) by 225 to complete the calculation of the left inequality;
(4) calculate the 225-pixel values in the processing window
and complete the calculation of the inequality on the right
with the square sum of y; (5) compare steps (3) and (4) to
complete the local adaptive threshold segmentation; (6)
align the rows and columns, and complete the boundary
processing. The overall design of implementing locally
adaptive threshold segmentation in FPGA is shown in
Figure 2.

Among them, the window cache module and the mean
filtering module are used inside the data superposition
module. In order to ensure that the mean in the processing
window and the pixels of the current processing window
cache differ in the same timing, that is, the timing of the
mean filtering module and the window cache module should
be consistent, so a delay of 11 beats is required before the
current window cache module. Since the data superposition
module port does not support array entry, only the pixel data
after the square can be assembled into a vector and input to
the superposition module port. At the same time, the square
value of the center pixel of the left inequality does not be
recalculated and can be extracted directly from the new
vector. After calculation, the multiplication circuit consumes
only 2 beats, while the data superposition module uses 8
beats, so it needs to delay 6 beats after the multiplication
circuit. The timing alignment is compared to complete the
local adaptive threshold segmentation. Finally, the boundary
is reset according to the valid data flag bit. Some of the main
programs are as follows:

/ * The squared pixel data is spliced into a vector * /
assign square [(i+1) * 2% Bit W—1: i %2 Bit W]=
square_pixdift [i]

/ = Extract the square value of the difference between
the center pixel and the mean * /

parameter med_pix =num_all >> 1

assign square_med_pix = square[(med_pix + 1) * 2 Bit
W —1: med_pix * 2 * Bit W]

3.2. Design of the Window Cache Module. Sliding window
cache design is the basic operation commonly used in FPGA
when processing images, which is suitable for real-time and
efficient pipeline processing on FPGA. In this paper, the size
of the sliding window cache is set to 15x15 rectangular
boxes, which requires delaying 14-row direction and 14-
column direction image pixels, namely, consuming 14 lines
of FIFO to complete the line cache and 225 registers to
complete the column cache. When FPGA caches one line of
the image, the new line of image data is transferred to

Line_FIFO1, and Line_FIFO1 caches the image data. When
the Line_FIFO1 cache data reaches one row, Line_FIFO1
reads the cached image data before the next row arrives and
passes it to the next Line_FIFO. At the same time, the new
row of data is cached again into Line_FIFO1, until the image
data cache is complete. The 15 x 15 window cache structure
is shown in Figure 3.

3.3. Design of Data Stack Module. The function of the data
stack module is to add up all the pixel values in the pro-
cessing window. This experiment used two data superpo-
sition modules, one is seeking the cached data sum in the
processing window; the other is stacking the square sum of
the difference between the pixels and the mean in the
processing window. However, stacking 225 pixels in turn is
not only heavy work but also difficult for code readability
and maintainability. Therefore, this paper describes the data
superposition circuit by the recursive method. By summa-
rizing the rules, it is found that if the current number to be
added is # (odd number), n— 1/2 as an adder and n — 1/2 +
n%?2 as a register are required, that is, the number to be
added next time is n—1/2 + n%2. The bisection recursive
calling formula is shown in

(n-1)/2
sum (1, x) = Z [x(20) + x (2i + 1)]. (6)

i-0

The recursive summation block diagram is shown in
Figure 4. In Figure 4, the input of din_vector is the sum of
squares of the difference between all pixels and the mean in
the 225 processing window. The first_vector is the pixel
vector after the first superposition and serves as the input
vector for the next superposition, and the last_vector is the
pixel vector after the last superposition, completing the
superposition of 255-pixel data in this cycle.

3.4. Design of the Mean Filter Module. The mean filter
module is a linear filtering method with a simple algorithm
and high smoothness and has a good inhibitory effect on
periodic interference. Its main function is to reduce the
sharp change of the image gray value to achieve the purpose
of reducing noise. If is used to represent the radius of the
processing window, f (x, y) represents the input pixel value
of the current window and the output pixel value of g(x, y)
the processing window; the mean filter can be expressed by

gy =——— Y Y flxriy+) @)

2r+1) = =

In image filtering processing, when the image processes
the boundary pixels, the convolution core and the image use
area cannot match, which will cause calculation problems, so
the boundary should also be processed. Common boundary
processing methods include boundary filling of 0, boundary
filling of the nearest pixel values, and no boundary pro-
cessing. Boundary filling 0 is to expand each boundary of the
image and set the extended boundary to 0. Boundary filling
the nearest pixel value is also to expand each boundary of the

Journal of Electrical and Computer Engineering

Left side

. N Valid data marker
inequality

dout
Right side
inequality

4
din Mean filtering *225 Delay
20 beat 2 beat 6 beat
D D
Delay Window D [D S 5 The data stack
11 beat ™1 cache — .S §
eat 9 beat 1 [1 1 1 ER 8 beat
~HpHsuawrd{ D
FIGURE 2: Overall design.
o T T !
| | i
I

di Tine_FIFO

o e

I

1

Convert to a two-dimensional
Convert to a one-dimensional

F1GURE 3: 15 x 15 window cache structure.

|
1 nl new_nl !
_n2 D == |
! I
, n3 new_n2 }
! I 1] |
[1 1 T }
! I 1 I .
din_ | 'n22 frist_ new_nlll last_ | ' dout
vector| n22 D vector T vector| |
|
'n223 new_nll2 }
n224 E - :
! I
! I
1n225 | new_n113 !
| B ‘
! I
! I

FIGURE 4: Recursive summation block diagram.

image and set the extended boundary to the value of adjacent
pixels. In this paper, only the upper boundary is treated, and
the rest is not treated. The block diagram of the mean filter
module is shown in Figure 5.

4. System Test

4.1. Experimental System Design. To verify the effectiveness
of the algorithm, the system mainly uses the QT5 software
design program to convert the image and text files to each

& & dout
=) =)
< <
|
I
|
I 1
I
Lo
! I
1 |
I 1
I !
1 |
I
|
|
.|
din Window Data stack 1/225 Boundary | dout
— cache S M
module Circuit processing
module

FIGURE 5: Block diagram of the mean filter module.

Input image

!

Output image

f

VS2015+QTS5 test program

,,,,,,,,,,,,,,,,,, A ___
' | !
Image data file 1| Software algorithm
i processing
I
I
Analog video !
timing !
L gl !
. S5
Analog video gE ! Data
capture E %D | comparison
& by 1
£
Capture data Eg|
source |
Y |
Image processing | [Output comparison
algorithm Modelsim | result
S simulation _ |

FIGURE 6: System block diagram.

Journal of Electrical and Computer Engineering

;_Illl\llllllllllIIIIIIIlrllrllllIIIIIIIIlllﬂIIIllIlIlIYIIIIIIIIIIIIIIIIIIIlllllllilrllllllllllllllllllllllllllll TR A TR IIIlllllll|lllllllrllIIlDIIlIIIllIIIIlI!I'IIIlIIIIIIIIllI|IIII\;

.uJuuuuuun.uluuunuJummulmluul.mu.mmmumuuummmumuuul.mulmMnmmmmnnmumumummummmmmmmmmmmmmummmmuﬂmm

_

T
PN 1 1 T e T A T e T A T T AT
|

FIGURE 7: Simulation diagram of the video stream.

other, and the designed algorithm is simulated and tested by
the Modelsim software. Because it is a simulation test, first
simulate a video clock and then simulate the acquisition of
image data, according to the clock requirements to realize
the capture of image data. Finally, the captured image data is
transmitted to the designed algorithm for the simulation
test. Modelsim will output text data after the algorithm in
this article, which can be converted into image data and
displayed on the host computer through the QT5 software.
In addition, this paper also designs some commonly used
image processing algorithms for global threshold segmen-
tation through VS2015; compared with the algorithm used in
this paper, the final comparison results are output. The block
diagram of the experimental test system is shown in Figure 6.

4.2. Video Streaming Test. In this paper, images with a
resolution of 640 * 480 and a scanning frequency of 60 HZ
are tested. Then, the number of clock cycles required for one
frame of image is 1_050_000, and the total amount of data in
1 second is 63_000_000, that is, only when the clock fre-
quency is at least 63MHZ, 640 % 480Q60 video can be
scanned. Therefore, the clock period of the video is about
15.87 ns. The scan time used to measure a single frame image
is the product of the clock period and the number of clock
periods, about 16_666_666ns. The simulation diagram of
the video stream is shown in Figure 7. It can be measured
from Figure 7 that the scan time of one frame of image is
16_743_739ns and just enough can meet the scanning
frequency of 60 HZ.

4.3. Video Capture Test. Before video capture simulation, we
need to calculate the local clock, that is the capture clock.
Generally speaking, the local clock cycle is greater than 1/3
times the video clock cycle. The video clock cycle calculated
from the previous section is about 15.87 ns, and then the
period of the local clock is less than 47.61 ns. Therefore, for
the convenience of observation, the clock period of the
system video is 16 ns, and the local clock period is 40 ns. At
the same time, the asynchronous FIFO is used to solve the
problem of inconsistency between the local clock and the
pixel clock. The video capture simulation diagram is shown
in Figure 8. The right side of Figure 8 is the image data file

processed by QT5, and the left side of Figure 8 is the data
captured by the video. After comparison, it can be seen that
the captured data and image data are consistent.

5. Analysis of Test Results

This paper selects 4 images for testing, which are the paper
image; carve image; watch image; and cup cover image; their
size is 640 pixel x 480 pixels. The experimental results are
shown in Figure 9. The first row of paper images and the
second row of carved images in Figure 9 are both affected by
uneven lighting. The threshold of the fixed-threshold al-
gorithm is tested continuously, and the final threshold is 128.
The global threshold segmentation of the fixed threshold
algorithm and the Otsu algorithm is absolute, and a large
amount of noise is segmented in the bright part, resulting in
blurred images; the target in the dark part is even more
unrecognizable. The algorithm in this paper effectively
performs threshold segmentation on the images of the bright
part and the dark part. It can not only segment the small
objects in the paper image clearly and accurately but also
effectively segment the outline of the figure in the dark part
of the upper right corner of the statue image. The third row
of the watch and the fourth row of cup cover in Figure 9 are
both reflected by strong light. The threshold of the fixed-
threshold algorithm is tested continuously, and the final
threshold is 100. The fixed threshold algorithm and the Otsu
algorithm lost the digital information of “5” and “6” on the
dial of the reflective part in the lower right corner of the
watch image and the overall letter information of the cup lid
image during the segmentation process. The algorithm
solves the interference of the reflection phenomenon and
accurately retains the digital information of the dial in the
reflective part in the lower right corner of the watch image
and the letter information in the cup cover image. Compared
with the fixed threshold algorithm, the proposed algorithm
does not need to manually set the threshold with experience,
but can automatically set the optimal threshold according to
the brightness and darkness of the image. Compared with
the Otsu algorithm, the proposed algorithm can better deal
with the influence of uneven illumination. However, in the
carve of Figure 9, we can see that although the local
threshold algorithm can recognize the edge information of

6 Journal of Electrical and Computer Engineering
- Msgs | 4 grayData. txtEd |
e ™ 1 T [T 0 F—h [t [
::rst_n thi 2 5[
2 veyne thi 25
& heync ™o 24
+ o mage_data 8hoa Bhoa —
Pk ™o e, . G 25
& cEp_vsyne i 24
& cap_vid 1hi el -
1+ c2p_data h2s ol G Thas Thas Tones Tomee i) 2e
4ot 1610003 366 1) 31
¥ 2dd_ont1 1ht [35
& end_antt o
 fifo_wr_en o | 38
+ < fifo_wr_data #hoa §hoa 39
& fifo_rd_en tht |
+ < fifo_rd_data gha4 Fhoo_[8has) GV 2) EiFT] Tehze i 3c
+ 4 wrusedw 10h280 i Yighaze Tioh22d, Jagh2ze £ | o-
9 @p_veync.s e i 1 39
@ ©ap_vsync_pos 1ho | =
& @0_vsync_neg o | 37
2 4 ndex 3Zh00000008 37h00000000 (32100000004 3700000008 34
o fow EF S] 33
] 32
2d
1 2b
2a
2a
29
> Now 13183960 s R T T Y " T I 26
o Cursor1 | 834719.557ns | oo o 120,387 ns =% 26
2 Cursor 834839.944ns Ty 120,056 ns
- Cursor 3 834960 1 23

FIGURE 8: Video capture simulation diagram.

carve

watch

cup

(a) Original image

(b) Fixed threshold

(c) Otsu (d) Proposed method

FIGURE 9: Experiment comparison of various algorithms.

the image, there will be a lot of interference. Therefore, the
local threshold segmentation has certain limitations for
prospective images.

6. Conclusion

The main purpose of this paper is to solve the problem of
reflection and uneven illumination in the process of
image processing. A local threshold segmentation al-
gorithm based on FPGA is proposed. The algorithm
adopts the mean value of local neighborhood blocks and
the Gaussian weighted sum design idea in the local
neighborhood. First, mean filtering is used to remove the
noise interference in the image. Then, a local threshold
segmentation algorithm is designed on FPGA to solve the
interference caused by reflection and uneven illumination.

Finally, verify the designed algorithm through Modelsim
simulation software and design a fixed threshold algorithm
and Otsu algorithm on VS2015 to test the image. After
comparing the experimental results, the algorithm can ef-
fectively reduce the image interference caused by uneven
illumination and reflection and improve the segmentation
effect.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflicts of interest.

Journal of Electrical and Computer Engineering

Acknowledgments

This work was supported by the Jiangsu Graduate Practical
Innovation Project (nos. SJCX21_1517 and SJCX22_1685),
Major Project of Natural Science Research of Jiangsu
Province Colleges and Universities (no. 19KJA110002),
Natural Science Foundation of China under Grant no.
61673108, and Yancheng Institute of Technology High-Level
Talent Research Initiation Project (no. XJR2022001).

References

[1] F. J. Iniguez-Lomeli, Y. Bornat, S. Renaud, J. H. Barron-
Zambrano, and H Rostro-Gonzalez, “A real-time FPGA-based
implementation for detection and sorting of bio-signals,”
Neural Computing & Applications, vol. 33, no. 18, Article ID
12121, 2021.

[2] S. Ullah, S. Rehman, M. Shafique, and A Kumar, “High-
performance accurate and approximate multipliers for
FPGA-based hardware accelerators,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 41, no. 2, pp- 211-224, 2022.

[3] 1. Westby, X. Yang, T. Liu, and H Xu, “FPGA acceleration on a
multi-layer perceptron neural network for digit recognition,”
The Journal of Supercomputing, vol. 77, no. 12, Article ID
14356, 2021.

[4] H. Jing and X. Xiaogiong, “Sports image detection based on
FPGA hardware system and particle swarm algorithm,” Mi-
croprocessors and Microsystems, vol. 80, 2021.

[5] F. Zhang, N. Wang, Z. Hu et al., “A study of UDP and TCP
FPGA implementation for data acquisition system,” Journal of
Instrumentation, vol. 16, no. 07, Article ID P07044, 2021.

[6] D. D. Nguyen, A. El Ouardi, S. Rodriguez, and S Bouaziz,
“FPGA implementation of HOOFR bucketing extractor-based
real-time embedded SLAM applications,” Journal of Real-
Time Image Processing, vol. 18, no. 3, pp. 525-538, 2021.

[7] F. Shafiei and S. Fekri-Ershad, “Detection of lung cancer
tumor in CT scan images using novel combination of super
pixel and active contour algorithms,” Traitement du Signal,
vol. 37, no. 6, pp. 1029-1035, 2020.

[8] Z. Ye, H. Li, and W. Zha, “A visual detection method of tool
damage using local threshold segmentation,” Hsi-An Chiao
Tung Ta Hsueh/Journal of Xi'an Jiaotong University, vol. 55,
no. 4, pp. 52-60, 2021.

[9] M. Han and A. Wang, “Multi-threshold segmentation of
remote-sensing image based on genetic algorithm,” Interna-
tional Journal of Earth Sciences and Engineering, vol. 8, no. 1,
pp. 86-91, 2015.

[10] L.-S. Wu, W. Cheng, and Y. Hu, “Image segmentation of
multilevel threshold based on improved cuckoo search al-
gorithm,” Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin
University (Engineering and Technology Edition), vol. 51, no. 1,
pp. 358-369, 2021.

[11] X. Zhai, M. Eslami, E. S. Hussein et al., “Real-time automated
image segmentation technique for cerebral aneurysm on
reconfigurable system-on-chip,” Journal of Computational
Science, vol. 27, pp. 35-45, 2018.

[12] R. Ratnakumar and S. J. Nanda, “A high speed roller dung
beetles clustering algorithm and its architecture for real-time
image segmentation,” Applied Intelligence, vol. 51, no. 7,
pp. 4682-4713, 2021.

[13] S. B. Alagarsamy and S. Kondappan, “Ear recognition system
using adaptive approach Runge-Kutta (AARK) threshold

(14]

(15]

(16]

(17]

segmentation with ANFIS classification,” Neural Computing
& Applications, vol. 32, no. 15, pp. 10995-11006, 2020.

N. Bo, L. Zhiyuan, C. Xiantao, N. Michele, and W. Shaohua,
“Segmentation of ultrasound image sequences by combing a
novel deep siamese network with a deformable contour
model,” Neural Comput & Application, Springer, Berlin,
Germany, 2022.

W. Hongyu, Z. Dandan, D. Songtao, G. Zhanyi, F. Jun, and
W. Shaohua, “Rib segmentation algorithm for X-ray image
based on unpaired sample augmentation and multi-scale
network,” Neural Comput & Application, Springer, Berlin,
Germany, 2021.

Y. Zhao, H. Li, S. Wan et al., “Knowledge-aided convolutional
neural network for small organ segmentation,” IEEE Journal
of Biomedical and Health Informatics, vol. 23, no. 4,
pp. 1363-1373, 2019.

M. Liand C. Zou, “Research on threshold image segmentation
method based on improved genetic Algorithm,” Software
Engineering, vol. 25, no. 01, pp. 37-40, 2022.

