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Accurate wind power forecasting can help reduce disturbance to the grid in wind power integration. In this paper, a short-term
power forecasting model is established by using complete ensemble empirical mode decomposition adaptive noise (CEEMDAN)
and nonlinear �tting characteristics of support vector machines (SVM) to accurately predict wind power. First, the wind power
data are preprocessed and decomposed to 6 stable power components using CEEMDAN, thus reducing the impact of excessive
forecasting errors of oscillatory points at peaks and valleys.�en, particle swarm optimization (PSO) based on improved empirical
mode decomposition is designed to optimize the kernel function and penalty factor of the SVM. It establishes a new short-term
power forecasting CEEMDAN-combined model. Finally, each stable component data is processed using the power forecasting
model, and then, the results are combined to get the �nal power forecasting value. Analysis of test results and comparative studies
show that the RMSE and MAPE of the new model are only one-third of that of the traditional SVM algorithm. �e forecasting
accuracy and speed meet the requirements for safe operation of wind farms.

1. Introduction

Wind energy is one of the most valuable renewable energy
sources for large-scale development and utilization [1]. Due
to volatility and instability of wind energy, large-scale grid
connection of wind power may a�ect the security of the grid.
At the same time, when the wind power system is connected
to the power grid, it becomes vulnerable and often su�ers
some attacks, such as advanced persistent threats (APTs).
For the weakness of the Internet of �ing (IoT) system in
such wind power systems, researchers proposed some
methods to improve security, such as constructing the en-
vironment for threat detection and situational awareness
[2–4]. Accurate wind power forecasting will facilitate the
adoption of e�ective control measures when wind power
grid integration encounters disturbance [5]. Both pros and
cons display the necessity of wind power.

�e main focus of our work is the research on the al-
gorithm of wind power prediction. For the algorithm of
wind power prediction, researchers have made great e�orts.
According to the classi�cation of prediction models, wind

power prediction models can be divided into physical
methods, statistical methods, learning methods, and the
above model combination methods.

�e numerical weather forecast (NWP) model is used
to predict wind speed according to the contour line,
roughness, obstacles, air pressure, temperature, and other
information around the wind farm. �e results are usually
used as input for other statistical models or power pre-
diction of new wind farms. �is method is a relatively
mature and accurate medium- and long-term wind power
prediction method. Most wind farm prediction systems at
home and abroad are based on physical methods. At the
same time, in the speci�c prediction process, the corre-
sponding sample analysis and learning methods are
combined to optimize NWP data and improve the ac-
curacy of prediction. Because the physical method does
not need a large amount of historical data accumulation, it
is mainly used in new wind farms at present, but the
calculation process is relatively complex and requires the
assistance of a large computer, so it has certain limitations
for a wide range of practical applications.
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Statistics and learning methods usually do not consider
the physical process of wind speed change, but build a
mapping relationship between historical statistics and wind
farm output power for prediction. (e prediction accuracy
of this kind of method decreases with the increase of the
prediction time, so it is mostly used for short-term pre-
diction. (e latest statistical and learning methods include
the Kalman filter method, artificial neural network method,
wavelet decomposition method, support vector machine
method, probability prediction method, and chaos predic-
tion method.

(e combination method makes use of the information
provided by different models and gives play to their re-
spective advantages and selects the appropriate weighted
average form to get the combination prediction model. (e
combination forms usually include the combination of
physical and statistical methods, the combination of short-
term and medium-term forecasting models, and the com-
bination of statistical models. Compared with the single
model prediction, the wind power prediction using the
combination method can reduce the occurrence of large
errors and improve accuracy. At present, the latest method is
to combine the advantages of multiple models to improve
the accuracy of prediction.

To accurately forecast wind power, researchers first
proposed a statistical forecasting method. Landberg pro-
posed a Prediktor forecasting system [6] to analyze and
process wind speed and wind direction data and determine
the corresponding relationship between wind speed and
output power, thus deriving a wind power curve. (e sta-
tistical method has a simple principle, but low accuracy.
Reference [7] used a mixed forecasting model whose fore-
casting effect was superior to a single forecasting model.

In recent years, a type of forecasting method using ma-
chine learning and artificial intelligence has been widely used.
Reference [8] established a hybrid RT-ELM model embedded
with CEEMDAN, variational mode decomposition (VMD),
and AdaBoost in view of the nonlinear problem of wind speed
time series. (is model can well capture the nonlinear char-
acteristics of wind speed time series but lacks forecasting
accuracy. Reference [9] proposed a wind speed forecasting
model based on ensemble empirical mode decomposition
(EEMD) and autoregressive integratedmoving average model.
Reference [10] proposed a short-term wind speed forecasting
method based on a hybrid particle swarm algorithm, which
realized short-term wind speed forecasting under different
quantiles, but the original power data forecasting had an
excessive gap between the peak and valley errors. Reference
[11] proposed a wind speed forecasting method based on
CEEMDAN, FPA with chaotic local search (CLSFPA), and
neural network classification tree (NNCT). (e CEEMDAN-
combinedmodel had the advantages of individual models.(e
algorithm was effective in high-precision wind speed pre-
dictions. Reference [12] proposed a particle swarm optimi-
zation-based support vector machine for power forecasting,
but there were problems with excessive errors.

(e Danish RISO laboratory had perfected and applied
Prediktor [13]. Imm Research Institute developed a Wind
Power Prediction Tool (WPPT) wind power forecasting

system, which could forecast multiple wind farms and
regional wind farms. (e DTU School of Modeling and
Mathematics developed a short-term wind power fore-
casting system Zephry by using a combination of physical
methods and statistical methods to improve forecasting
accuracy [14]. By integrating multiple linear regression,
neural networks, fuzzy logic clustering, and other statis-
tical models, AWD Truewind designed the eWind fore-
casting system, which had been applied in wind power
plants [14].

Reference [15] established the EEMD autoregressive
model (AR) wind speed prediction model and preprocessed
the wind speed sequence data through EEMD. Reference
[16] established an ultrashort-term wind speed prediction
method based on the CEEMDAN. CEEMDAN was used to
decompose the wind speed time series into several sub-
components to reduce the nonstationary characteristics of
the wind speed time series, then calculated the sample en-
tropy of each component, and constructed a combination
prediction model based on the no negative constraint theory
for the components with higher sample entropy.

(is paper proposes a new PSO-SVM short-term wind
power forecasting algorithm based on CEEMDAN mode to
solve the problem of low forecasting accuracy. Compared
with some other power prediction algorithms, the algorithm
is simpler and has higher power prediction accuracy.

(e structure of the paper is as follows. First, the original
wind power sequence is preprocessed to obtain 6 relatively
stable power components; second, particle swarm optimi-
zation is used to optimize the kernel function and penalty
factor of the support vector machine to establish a short-
term power forecasting model; finally, the decomposed
stable component is processed by forecasting algorithm, and
the results are superimposed and summed to obtain the final
power forecasting value.

2. CEEMDAN Mode

(e CEEMDAN [14, 15] is developed on the basis of em-
pirical mode decomposition (EMD) [17–24] and EEMD,
which reduces the reconstruction error of EEMD and in-
creases the completeness of signal decomposition. As it
implants adaptive white noise in each process of signal
decomposition and then solves the undetermined and only
one residual signal, the remaining modal components can be
obtained by further analysis of the process on this basis. (e
specific decomposition process of the CEEMDAN algorithm
is as follows:

Step 1. Add K times of Gaussian white noise with a mean
value of 0 to the signal x(t) to be decomposed to construct a
sequence to be decomposed xi(t)(i � 1, 2, . . . , K) involving
a total of K experiments.

xi(t) � x(t) + εδi(t), (1)

where ε is the weight coefficient of Gaussian white noise;
δi(t) is the Gaussian white noise generated in the i-th
processing.
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Step 2. Perform EMD decomposition on the above sequence
xi(t) to get the first intrinsic modal component (IMF), then
take its average value as the first IMF obtained by CEEM-
DAN decomposition.

IMF1 �
1
K



K

i�1
IMFi1(t),

r1(t) � x(t) − IMF1(t),

(2)

where IMFi
1(t) represents the first modal component ob-

tained by CEEMDAN decomposition; IMFi
1(t) represents

the first IMF obtained after EMD decomposition; r1(t)

represents the residual signal obtained after the first
decomposition.

Step 3. After decomposing the residual signal obtained from
the stage j to the specific noise, proceed with EMD
decomposition.

IMFj(t) �
1
K



K

i�1
E1 rj−1(t) + εj−1 δi(t)(  ,

rj(t) � rj−1(t) − IMFj(t),

(3)

where IMFj(t) represents the j-th modal component ob-
tained by CEEMDAN decomposition; Ej−1(g) represents
the j − 1-th IMF component obtained after EMD decom-
position of the sequence; εj−1 represents the weight coeffi-
cient of the noise added by CEEMDAN to the residual signal
at the stage j − 1; rj(t) represents the residual signal at the
stage j.

Step 4. Iteration stops. If the EMD stop condition is met and
the residual signal rn(t) of the n-th decomposition is
monotonic, then iteration stops and the CEEMDAN algo-
rithm decomposition ends.

Take the No. 23 wind turbine of Dabanliang Wind Farm
as the object for simulation analysis. (e sampling time
interval is 10min, with a total of 200 sampling points. (e
first 160 sampling points are selected as the forecasting
model training set, and the latter 40 sampling points are used
as the test set for rolling forecasting. (e forecasting time is
20 minutes. (e wind power curve after preprocessing of the
historical power data is shown in Figures 1 and 2.

Figure 1 shows the relationship between data on power
and wind speed.(emean values are 709.69 and 7.44 and the
variance values are 354.24 and 2.12.

Using the CEEMDAN algorithm, the original power
sequence is decomposed into 6 sets of output submodes, as
shown in Figure 3.

By the CEEMDAN algorithm, the original wind power
signal is decomposed into 5 IMF components with different
frequencies and a residual component. From these 6 sets of
data, it can be seen that the first and second sets of signals
have the largest fluctuation frequency, whichmeans they can
better reflect the original signal information, so the fore-
casting error is too big. (e latter four groups of signals have

relatively stable changes, which represent the low-frequency
part, that is, the part where the wind power changes slowly,
so the forecasted value will approach the true value.

3. PSO-SVM Wind Power Forecasting
Model Design

3.1. Support Vector Machine. During the support vector
machine [25, 26] training, the collected samples are often
nonlinear data, and it is impossible to find a hyperplane to
classify nonlinear data. Classification requires that it must be
converted to linear data. By kernel function, SVM can map
the nonlinear sample space to the high-dimensional linear
space. (en, different types of sample segmentation are
possible by finding the best segmentation hyperplane in the
linear space. (ere are linear and nonlinear support vector
machines. For linear classifiable training sample sets, the
classification equation is

w
T

(x) + b � 0. (4)

For the nonlinear classifiable training sample set, the
decision function is

f(x) � w
T
(x) + b. (5)

In the decision function, let all xi meet the absolute value
of f(xi) ≥ 1, so that the distance between the sample and
the optimal classification plane is minimal. (e minimum
distance d between the two is expressed as follows:

d �
f xi( 




‖w‖
�

1
‖w‖

. (6)

To let the samples correspond correctly on the optimal
classification plane, the constraint function is limited as
follows:

yi w
T
xi + b ≥ 1, i � 1, 2, . . . , t. (7)

Support vector sample meets

yi w
T
xi + b  � 1. (8)

Introduce the Lagrangian function to solve the opti-
mization problem [27]:

L(w, a, b) �
1
2
w

T
w − 

i

i�1
ai yi w

T
xi + b  − 1 . (9)

In the formula, ai represents the Lagrangian coefficient
and its maximum value is usually greater than 0; respec-
tively, take the derivative of w and b in the above formula;
when the partial derivative is 0, there is

zL

zw
� 0,

zL

zb
� 0. (10)

Substitute formulas (6) and (9) into formula (7) to
transform the optimization problem into a dual problem. Its
maximization function is
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w(a) �
1
2



t

i,j�1
ai, ajyiyj x

T
i xj  + 

t

i�1
ai. (11)

(e constraint is



t

i�1
aiyi � 0, 0≤ ai ≤C, i � 1, 2, . . . , t. (12)

In the formula, a sample with nonzero ai is a support
vector. (us, there is a discriminant function f(x):

f(x) � sign w
T

x + b . (13)

When solving nonlinear problems, the essential solution
idea is similar to that of linear problems.(e best way to deal
with such a problem is to establish a high-dimensional
mapping. By mapping to the high-dimensional space for
classification, classification of the original samples can be
obtained [28]. (e regression function f(x) is

f(x, w) � wψ(x) + b � (w,ψ(x)) + b, (14)

where w is the weight vector, b is a constant, and mini-
mization of w and b is estimated by the following formula:

minQ

1
2
‖w‖

2
+ c 

m

i�1
ξi + ξ∗i( . (15)

(e constraints are

wxi + b − yi ≤ ε + ξi,

yi − wxi − b≤ ε + ξ∗i ,

ε, ξ∗i ≥ 0; i � 1, 2, . . . , m.

⎧⎪⎪⎨

⎪⎪⎩
(16)

In the formula, C is the penalty factor, ξi, ξ
∗
i are the

relaxation factors, and ε is the loss function.
Due to the high dimensionality of the feature space, the

Langrangian multiplier method is generally adopted to solve
high-dimensional quadratic programming problems in
practical applications:

W ai, bi(  � 
m

i�1
yi ai − bi(  − ε

m

i�1
ai + a

∗
i( 

−
1
2



m

i,j�1
ai − a

∗
i(  aj − a

∗
i xi.

(17)

(e constraints are



n

i�1
ai − a

∗
i(  � 0, ai ≥ 0, a

∗
i ≤C, (18)

where xi,j is the input variable, yi is the output variable, and
ai and bi are the Lagrangian multipliers.

3.2.ParticleSwarmAlgorithm. (eparticle swarm algorithm
[29] is initialized as a group of random particles. In the
D-dimensional space solution, by following the optimal
value of the current optimal particle search, the global
optimal solution can be found after continuous iterations.
(e PSO algorithm is simple and easy to implement, with

power and windspeed

0

250

500

750

1000

1250

1500

1750

Po
w

er

6 104 82
Windspeed
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Figure 2: Original power curve.
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not too many parameters to be adjusted, so it has the ad-
vantages of fast convergence and high accuracy.

(e particle swarm algorithm finds the optimal solution
in the continuous iterative process. In each iteration, the
particle updates its position by tracking two extreme values.
(e first is called individual extreme value, which is the
optimal solution found by the particle itself. (e other is
called global extreme value, which is the optimal solution
currently found by the entire population.

Suppose that the total supply of a certain population
contains n particles. In a D-dimensional search space, the
speed and position of the i-th particle are denoted as: vk+1

id ,
xk+1

id . Each particle maintains its optimal position, and the
updated equations for the velocity and position of the
particle i during the k-th iteration are as follows [30]:

v
k+1
id � wv

k
id + c1r1 pbestkid − x

k
id  + c2r2 gbestkd − x

k
id ,

x
k+1
id � x

k
id + v

k+1
id .

(19)

In the formula, c1 and c2 are the normal numbers known
as acceleration factors, which are used to adjust the maxi-
mum step length of the local optimal particle and the global
optimal particle in flight, respectively; w is the inertia weight.
When the inertia weight is fixed in the range [0.9, 1.2],
optimization can reach the best result so that the global
optimal solution can be easily found; k is the number of
iterations; r1, r2 are the random numbers distributed in the
interval [0, 1]; the search space dimension is
d � 1, 2, 3, . . . , D.

3.3. PSO-SVM Forecasting Model. (e support vector ma-
chine forecasting effect is subject to the influence of its kernel
function parameters and penalty coefficient parameters. In

forecasting, the traditional support vector machine selects
parameters using the cross-validation method, which often
fails to achieve the desired effect. Moreover, affected by other
objective factors such as wind speed, wind power uncer-
tainty is high. In dealing with multiobjective optimization,
the particle swarm optimization algorithm can find the
global optimal solution to the problem with a higher
probability. Moreover, compared with the traditional ran-
dom method, it has high computational efficiency and ro-
bustness, which can effectively adapt to sample sequences
with high uncertainty.

(e main idea of PSO-SVM in wind power forecasting is
to randomly generate C and g, use them as the initial po-
sition of the particle swarm, and then search for the optimal
SVM parameters using the particle swarm algorithm,
thereby forecasting the wind power. (e specific process is
shown in Figure 4.

3.4. CEEMDAN-PSO-SVM Forecasting Algorithm. It can be
seen from the 6 sets of signals decomposed in Figure 1 that,
compared with the original wind power input signal, the
decomposed intrinsic mode function IMF is relatively stable.
In stable signal forecasting, the forecasting results are often
superior compared to the original signals. Owing to great
fluctuations and instability of wind power, if the original
input-output power is directly forecasted, the forecasting
error will often be high, and the power forecasting re-
quirements for accuracy will not be met. If the wind power is
decomposed by CEEMDAN, the decomposed data is, re-
spectively, forecasted by PSO-SVM, and then each group of
forecasted values is combined to establish a CEEMDAN-
PSO-SVM combined forecasting model, it will further im-
prove the forecasting accuracy and achieve better results.
(e forecasting model steps are as follows:
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Figure 3: Each subsequence diagram after CEEMDAN decomposition.
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Figure 5: CEEMDAN-PSO-SVM forecasting flowchart.
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(1) First perform CEEMDAN decomposition on the
original wind power input signal and decompose
the original signal into multiple stationary intrinsic
mode functions IMF and residual components
rn(t)

(2) (en perform PSO-SVM forecasting for each IMF
and rn(t) separately to obtain more accurate fore-
casting results

(3) (en reorganize the PSO-SVM forecasting results of
each component to obtain forecasting results closer
to the original data

(4) Finally, the forecasting results of CEEMDAN-PSO-
SVM and traditional PSO-SVM are evaluated for
error

(e model flowchart is shown in Figure 5.
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Figure 6: Comparison between forecasted value and actual value of each model. (a) SVM model. (b) PSO-SVM model. (c) CEEMDAN-
PSO-SVM model.

Table 1: Error comparison and analysis of each model.

Model ERMSE EMAPE% (%)
SVM 118.97 12.33
PSO-SVM 85.15 8.47
CEEMDAN-PSO-SVM 32.34 4.28
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4. Simulation Analysis

With the preprocessed wind power sequence as input, SVM,
PSO-SVM, and CEEMDAN-PSO-SVM forecasting models
are established, respectively, for error analysis. (e fore-
casted results of each model are compared with the actual
values, as shown in Figure 6.

By comparing the difference between the actual value
and the forecasted value of the above model, it can be known
that the forecasting result of CEEMDAN-PSO-SVM has a
forecasting curve more consistent with the actual value
compared to SVM model, PSO-SVM model, and PSO-SVM
model has a forecasted value closer to the true value than
SVM model. (e mean average percentage error (MAPE)
and root mean square error (RMSE) of the above three
models are comparatively analyzed to obtain the following
error analysis in Table 1. As shown in the table, the best
result of RMSE is 32.34 for CEEMDAN-PSO-SVM, and the
worst is 118.97 for SVM. A smaller RMSE means higher
prediction accuracy, which indicates that CEEMDAN-PSO-
SVM has the highest prediction accuracy. From the per-
spective of MAPE, the best result is 4.28% for CEEMDAN-
PSO-SVM and the worst is 12.33 for SVM. (is also means
that the prediction accuracy of the CEEMDAN-PSO-SVM is
the highest. From this aspect, it can be considered that the
CEEMDAN-PSO-SVM has a certain superiority in the
comparison of prediction accuracy of similar models.

5. Conclusion

It designed a new PSO-SVM short-term wind power fore-
casting algorithm based on CEEMDAN mode. (e new
CEEMDAN-combined algorithm has a stable component
reducing the impact of excessive forecasting errors of os-
cillatory points at peaks and valleys. Compared with some
similar traditional power prediction algorithms, it has higher
prediction accuracy and faster speed. (e RMSE and MAPE
of the new model are only one-third of that of the traditional
SVM algorithm. (e error analysis has proved that it is
effective and feasible. After the CEEMDAN of the original
data, the power prediction value is more stable and closer to
the real value. (e CEEMDAN-PSO-SVM prediction model
is of great significance to deal with fluctuating and unstable
wind power prediction.
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