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�e performance of voltage stability indices in the multiobjective optimal power �ow of modern power systems is presented in
this work. Six indices: the Voltage Collapse Proximity Index (VCPI), Line Voltage Stability Index (LVSI), Line Stability Index
(Lmn), Fast Voltage Stability Index (FVSI), Line Stability Factor (LQP), and Novel Line Stability Index (NLSI) were considered
as case studies on a modi�ed IEEE 30-bus consisting of thermal, wind, solar and hybrid wind-hydro generators. A multi-
objective evaluation using the multiobjective may�y algorithm (MOMA) was performed in two operational scenarios: normal
and contingency conditions, using the MATLAB–MATPOWER toolbox. Fuzzy Decision-Making technique was used to
determine the best compromise solutions for each Pareto front. To evaluate the computational e�ciency of the case studies, a
preference selection index was used.�e results indicate that VCPI and NLSI yielded the best-optimized system performance in
minimizing generation costs, transmission loss reduction, and simulation time for normal and contingency conditions. �e
best-case studies also promoted the most scheduled reactive power generation from renewable energy sources (RES). On
average, the VCPI index contributed the highest penetration level from RES (13.40%), while the Lmn index had the lowest.
Overall, VCPI and Lmn index provided the best and worst average performance in both operating scenarios, respectively. Also,
the MOMA algorithm demonstrated superior performance against the multiobjective harris hawks algorithm (MHHO),
multiobjective Jaya algorithm (MOJAYA), multiobjective particle swarm algorithm (MOPSO), and nondominated sorting
genetic algorithm III (NSGA-III) algorithms. In all, the proposed approach yields the lowest system cost and loss compared to
other methods.

1. Introduction

Over the recent past, increasing the load demand has
brought about di¤erent power systems problems in terms of
power transmission congestion and constraints. �e chal-
lenges are mainly attributed to maintaining the stability of
the power system at its permissible level [1, 2]. One of the
inexpensive ways to ensure system stability and security is to
incorporate voltage stability indices in the conventional
optimal power �ow (OPF) problem [3]. �e traditional OPF
goal includes coal-�red power plants that use fossil fuels.

With the current drive to combat global warming and cli-
mate change, there is increasing global use of renewable
energy sources (RES) in modern power systems [4].
�erefore, an OPF analysis that considers these noncon-
ventional energy units is necessary [5]. �e addition of
voltage stability indices (VSI) in optimal �ow problems has
already proven to be a signi�cant voltage stability en-
hancement for fossil-based power systems, especially during
normal and contingency operating conditions [3, 6–8].
However, optimization and stability remain challenging
with the high penetration levels of variable renewable energy
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power [9, 10]. )erefore, to ensure system stability in
modern power systems, the voltage stability constrained
optimal power flow (VSC-OPF) must be carried out in a
system integrated with renewable energy sources (RES) such
as wind, solar, and hybrid RES.

Due to the fact that the OPF problem is multimodal,
nonlinear, and nonconvex, classical approaches are not
always appropriate and cannot guarantee a global solution.
Researchers in [11] provide a comprehensive review of
these approaches. )e use of sensitivity analysis and gra-
dient-based search [12] reveals that several of these tech-
niques in [11], such as the Newton approach [13], linear
programming [14], quadratic programming [15], sequen-
tial programming [16], among others, exhibit strong
convergence characteristics. However, they struggle with
integer and discrete variables. Furthermore, it is chal-
lenging to develop these algorithms while considering
multiobjective OPF problems [17].

To address the drawbacks of the classical techniques,
numerous heuristic solution methods for tackling the OPF
problem have been devised. In [18], the Heap Optimization
Algorithm (HOA) was used to solve the OPF of wind-solar
hybrid IEEE bus systems. Firstly, the authors used HOA to
optimally place RESs on buses where the lowest cost is
observed for 24 hours. )e authors then evaluated the OPF
considering RES penetration and varying loading condi-
tions. A MOPSO/Fuzzy Membership Function (FMF)
method was used in [19] to solve the multiobjective sto-
chastic optimal power flow of a modified IEEE 30-bus
system. )ree objectives: fuel cost (with and without valve-
effect), power loss, and carbon emissions were considered.
To deal with the intermittent nature of RESs, PDF and
stochastic models are used to calculate the available power.
)e method yielded the least cost and emissions compared
to multiobjective mayfly (MOFA), Nondominated Sorting
Genetic Algorithm II (NSGA-II), and multiobjective evo-
lutionary algorithm based on decomposition (MOEA/D),
among others. However, it had the highest losses of 13.77%.
Syed et al., 2021, [20] used machine learning algorithms to
firstly predict wind and solar penetration levels on the In-
dian 124-bus system. )e OPF was then solved using the
Improved Wind-Driven Algorithm (IWDA) to provide the
hourly and long-term power output, cost, and loss using 12
cases. )e technique minimizes the complexities involved in
RES integration in grids. A Modified Rao-2 Algorithm was
used in [4] to optimize the control variables of the OPF
problem without RES, with RES, and with RES under a
contingency state. Four objectives were assessed: fuel cost,
transmission loss, emission, and voltage profile improve-
ment. )e method was tested on modified IEEE 30- and
IEEE 118-bus systems. )e RES considered were biomass,
wind, solar and hydrogenerators. )e MRao-2 algorithm
demonstrated dominant performance over other algorithms
such as ASO, TFWO, and MPSO. In [21], a novel hybrid
Mayfly algorithm-Aquila Optimizer was used to solve the
OPF of a modified IEEE 30-bus system consisting of wind,
solar, hydro, and thermal generators. )e objectives mini-
mized included fuel cost, power loss, VSI, and emissions.
Similar studies have employed metaheuristic techniques

such as evolutionary multiobjective algorithm [22], hybrid
differential evolution–symbiotic organisms search (HSOS)
[23], Jellyfish Search Optimization [24], multiobjective
adaptive guided differential evolution (MOAGDE) algo-
rithm [25], surrogate assisted multiobjective differential
evolution method [26], Levy Interior Search Algorithm [27]
to solve stochastic OPF problems. Other techniques such as
the two-stage approach utilizing MOPSO algorithm, fuzzy
c-means (FCM) clustering and Grey relation projection [28],
and the bi-criterion evolution indicator-based evolutionary
algorithm (BCE-IBEA) have also been employed to solve
multiobjective problems [29]. Very few of these studies
consider OPF of renewable energy integrated grid consid-
ering the system stability. Yet, the system’s stability becomes
increasingly challenging with the intermittency of RES.

Static voltage stability analysis remains the mainstream
method for assessing proximity to collapse of power systems.
)is is because this type of analysis method can calculate the
distance between each node’s voltage and the voltage col-
lapse point relatively accurately. )us, it can be used to
improve and optimize the power system’s stability [30].

Recent works reveal three main techniques for evalu-
ating the effectiveness of voltage stability indices in optimal
power flow problems of grids integrated with RES. )e most
commonly used method in recent literature evaluates VSIs
as independent objective functions. A case study involving
the minimization of the L-index in [31] yielded the greatest
voltage stability improvement on a modified IEEE 30-bus
incorporating RES. )e improvement was 1.231% higher
than other case studies that did not include VSIs. Addi-
tionally, the objective function of the VSI study also yielded
the least emissions, up to 36.780% less than other case
studies. However, these advantages came at the highest
generation cost. Similar studies in [32], focusing on mini-
mizing L-index as the objective function, were tested on the
RE-integrated IEEE 30-bus. It was observed that the voltage
stability improved by 92.93% compared to the conventional
cost-function minimization case. Also, in [33], similar im-
provements were observed by using the voltage stability
improvement as the objective function (using L-index). )e
VSI case study still provided the greatest stability im-
provement of 2.066% compared to the base case (cost
minimization). From these studies using VSI as the objective
function, it is observed that the main advantages of this
technique are its simplicity and simulation speed, as the
focus is only on one objective function.

)e second technique, commonly referred to as the
weighted-sum approach, employs a multiobjective ap-
proach. In this method, several objective functions are
treated as one by applying weights to each function and
computing the summation of the functions. Authors in [34]
employed this technique to optimally place thyristor-con-
trolled series compensators (TCSC) on IEEE 30- and IEEE
57-buses with RES by considering the minimization of two
indices: a rapid voltage stability index (RVSI) and a novel
line stability index (NLSI) in the OPF problem. In [35], a
case study involving the minimization of the L-index,
considering a combination of traditional generators and
controllable PV energy sources, was also evaluated. )e
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analysis indicated that the addition of the L-index provided
the most significant voltage stability improvement of
1.127%, higher than cases without VSI, on the IEEE 30-bus
system. It is important to note that the VSC-OPF case study
also provided the greatest loss and emissions reduction of
47.491%, 31.644%, compared to the case study incorporating
the emissions minimization function. )us, VSC-OPF has
significant advantages of reducing dependency on fossil-
based generators by lowering the emissions on thermal
generators. Although this technique provides greater im-
provement than the first approach, it remains a challenge to
assign weights to each objective function [36].

)e majority of the literature discussed involves incor-
porating the L-index in the VSC-OPF. Voltage stability
indices have a significant impact on the generation cost and
general system performance of the power system. For ex-
ample, comparative studies considering various voltage
stability indices in [7] revealed that the Voltage Collapse
Proximity Index (VCPI) and Line voltage stability index
(LVSI) provided the lowest transmission loss and emissions,
respectively, across all tests systems, compared to other
indices. Additionally, the L-index provided the greatest
maximum loadability improvement. With these varying
advantages of the different indices, it is not straightforward
to select the best-performing index for the ideal operation of
the power system. More studies carried out in [8] compare
the effectiveness of three VSIs: LVSI index, Lmn, and the
Fast Voltage Stability Index (FVSI) on IEEE 30-, IEEE 57-,
and IEEE 118-bus test systems. Still, the different VSIs had
varying benefits in terms of power generation cost reduction,
loss minimization, and voltage stability improvement. )e
studies showed that the LVSI index provided better system
performance for IEEE 30- and IEEE 57-buses. However, for
the larger system (IEEE 118-bus), the FVSI provided the
most remarkable results. Such comparative studies must
continue to be assessed, especially for modern power sys-
tems, including the use of clean energy technologies. )is
ensures the continued secure, reliable, and cost-effective
operation of power systems. However, the studies carried
out employed methods that do not consider the simulta-
neous objectives of the power systems.)at is, power system
operation involves multiple parameters such as stability,
cost, and loss minimization that must be considered si-
multaneously. )us, a multiobjective optimization involving
the use of the Pareto-optimality principle is paramount.
Additionally, the challenges of the power system face a set of
decision problems affiliated to different parts (e.g., sched-
uling, investment, and operation) where decision-makers
must distinguish all alternatives from cost, revenue, or risk
point of view [37]. )e lack of informed decision-making
can compromise the stability of systems, leading to collapse
in some instances. )erefore, a selection index is required to
advise on the best choice of selection of voltage stability
indices in modern power systems.

From the literature assessment carried out and to the
best of the authors’ knowledge, no studies have compared
the performance of various voltage stability indices in the
multiobjective optimal power of power systems considering
the stochastic nature of renewable energy technologies

integration. Yet, comprehensive studies have proven that
multiobjective VSC-OPF provides more significant voltage
stability improvement than the two approaches used in
literature in normal (28.13%) and contingency conditions
(by 13.60%) [6]. More so, OPF studies considering a recently
developed Mayfly algorithm are scarce; yet this algorithm
has proven a dominant performance due to its global search
capabilities [38].

)erefore, this paper focuses on the evaluation of six
voltage stability indices: VCPI, LVSI, Lmn, FVSI, line sta-
bility factor (LQP), and the novel line stability index (NLSI)
in the multiobjective OPF of a system incorporating in-
termittent renewable energy sources. A modified IEEE 30-
bus consisting of wind, solar photovoltaic (PV), and hybrid
wind- small hydro generators taken from [39] is utilized to
assess the performance of the VSIs based on voltage stability
improvement, generation cost minimization, transmission
loss reduction, and simulation speed for each VSI. A
multiobjective Mayfly algorithm (MOMA) is used to obtain
the Pareto optimal solutions from all case studies. Results
obtained using MOMA are validated against previous lit-
erature and four other algorithms: multiobjective harris
hawks algorithm (MHHO), multiobjective Jaya algorithm
(MOJAYA), multiobjective particle swarm algorithm
(MOPSO), and nondominated sorting genetic algorithm III
(NSGAIII).

)e key contributions of this paper include the
following:

(i) Evaluation of the impact of voltage stability indices
in the optimal power flow of a renewable energy
integrated system in normal and contingency
conditions

(ii) A ranking of the performance of six voltage stability
indices in a multiobjective optimal power flow,
using the preference selection index (PSI).

(iii) Development and assessment of the multiobjective
mayfly algorithm in the optimal power flow con-
sidering renewable energy sources

(iv) Comparison of the performance multiobjective
mayfly algorithm against other algorithms in a MO-
OPF in terms of generation cost and loss reduction,
voltage stability improvement, and simulation
speed.

(v) Impact of voltage stability constrained optimal
power flow on the penetration level of renewable
energy sources

)e rest of the article is organized as follows: Section 2
describes the objective functions to be considered for
optimization. )e details of the formulations also cost
functions for the RES and the general constraints for the
study. Section 3 provides an overview of the stochastic
modeling of the RES, while Section 4 presents the com-
putational procedure of the MOMA algorithm. Sections 5
and 6 detail the discussion of the results obtained in the
study and their validation, respectively. Lastly, Section 7
highlights general deductions from all the studies per-
formed in this paper.
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2. Problem Formulation

)e multiobjective optimization problem considers three
objective functions: generation cost, transmission power
loss, and voltage stability index.

2.1. Generation Cost. )is objective consists of minimizing
the total cost of thermal generators and that of RESs, in-
cluding the penalty and reserve costs.

2.1.1. +ermal Power Generator Cost. )e objective focuses
on minimizing the total fuel generation cost. )e cost
function in terms of the valve-point effect is expressed
through the following equation:

fTh cos t(x) � 􏽘

ng

i�1
ai + biPgi

+ ciP
2
gi

􏼐 􏼑

+ di × sin ei × P
min
gi − Pgi􏼐 􏼑􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
$

h
,

(1)

where fTh cost(x) and ng are the total fuel cost and the
number of thermal generators, respectively. ai, bi and ci are
the i th generator cost coefficients, Pgi

is the i-th generator
active power injection, di and ei are the fuel cost coefficients
modeling the valve-point effect, and Pmin

gi is the minimum
active power generated by the i th generating unit. )e cost
function’s extra sinusoidal term reflects valve-point effects.
Valve-point effects make the economic dispatch problem
nonconvex and nondifferentiable.

2.1.2. +e Cost Model of Renewable Energy Sources. RES
have no need for conventional fuel to generate power.
However, only operation and maintenance costs are incurred
if an independent system operator owns the RES. )erefore,
the ISO must pay according to the contractually agreed
scheduled power [39]. Hence, there is a direct cost associated
with each renewable generator, expressed in equations (2)–(4)
for wind, solar PV, and hybrid wind-small hydro.

CW PW( 􏼁 � gwPW, (2)

where Pw represents the scheduled power and gw, the wind
power direct cost coefficient.

Equation (3) is the solar PV direct cost with scheduled
power PPV and cost coefficient hpv:

CPV PPV( 􏼁 � hpvPPV. (3)

Equation (4) presents the direct cost for scheduled power
for the hybrid wind-small hydro generation plants. )e
maximum output of the small hydro plant is 5MW which is
dependent on the river’s flow rate.

CWH PWH( 􏼁 � gwhPWH � gwhPWH,w + gwhPWH,h, (4)

where PWH is the scheduled active power output from the
hybrid plant, PWH,w is the output power from the wind unit
and PWH,h from the hydro plant. gw and gh are the wind and
hydro-unit direct coefficients, respectively.

Due to the variable nature of wind energy, the actual
power produced may be less or more than the scheduled
power. As such, the ISO must have reserve generating ca-
pacity to meet the demand in cases of overestimation. )e
Reserve cost for the wind unit is computed as in the fol-
lowing equation [40]:

CRW,i PWsh,i − PWac,i􏼐 􏼑

� krw,i PWsh,i − PWac,i􏼐 􏼑

� krw,i 􏽚
PWsh,i

0
PWsh,i − pW,i􏼐 􏼑fw pw,i􏼐 􏼑dpw,i.

(5)

Suppose the power output is underestimated (there is excess
power from the RES). )e ISO instead pays a penalty cost by
decreasing the thermal generator power output. )e wind
generator penalty cost is calculated as in the following equation:

CPW,i PWac,i − PWsh,i􏼐 􏼑

� kpw,i PWac,i − PWsh,i􏼐 􏼑

� kpw,i 􏽚
PWr,i

PWsh,i

pW,i − PWsh,i􏼐 􏼑fw pw,i􏼐 􏼑dpw,i,

(6)

where PWsh,i, PWac,i and PWr,i denote the scheduled, avail-
able, and rated powers from wind plants, respectively.
fw(pw,i) represents the probability density function (PDF)
of wind. In the same manner, the reserve cost, penalty of
solar and hybrid wind hydro generators can be estimated.
Table 1 indicates the coefficients for direct, reserve, and
penalty costs for the different RESs considered.

)erefore, the cumulative generation cost function of the
system can be computed as follows:

f1(x) � fTh cost(x) + fRES direct(x)

+ fRES penalty(x) + fRES reserve(x)
$

h
.

(7)

2.2. Transmission Power Loss. )e second objective mini-
mizes the transmission power loss in MW. It is given by the
following equation:

f2(x) � 􏽘

Nline

k�1
Gk V

2
i + V

2
j − 2ViVjcos θi − θj􏼐 􏼑􏼐 􏼑, (8)

where Gk is the kth line conductance. Vi and Vj are the
voltage magnitudes for sending and receiving bus respec-
tively, along line k. θi and θj are the sending and receiving
bus voltage.

2.3. Voltage Stability Improvement. )e third objective
function focuses on enhancing the system voltage stability by
minimizing the voltage stability index (VSI) value, as shown
in equation (9).)emaximum value of the VSI is considered
since it represents the weakest line in the system.

f3(x) � max VSIi( 􏼁. (9)
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)e VSIs considered in this study are the VCPI, LVSI,
Lmn, FVSI, LQP, and NLSI, whose formulations are de-
scribed in Table 2. VSI increases with power flow across a
transmission line.

2.4. SystemConstraints. )ere are two types of constraints to
be handled: equality and inequality constraints. Equations
(10)–(16) describe the details of these constraints.

(i) Equality Constraints
)ese consist of load flow equations that provide the
system’s active and reactive power balance. )ey are
formulated as in the following equations:

Pgi
− Pdi

� Vi 􏽘

N

j�1
Vj Gijcosθij + Bijsinθij􏼐 􏼑,

i � 1, . . . , N,

(10)

Qgi
− Qdi

� Vi 􏽘

N

j�1
Vj Gijsinθij + Bijcosθij􏼐 􏼑,

i � 1, . . . , N,

(11)

where Pgi
is the real power injection at the i th

generator, Qgi
is the reactive power outputs of the i

th generator. Pdi
is the load bus active power and Qdi

the load reactive power at bus i. Vi and Vj are the i th
and j th bus voltage magnitude. Gij denotes the
conductance and Bij the susceptance between buses i

and j. θij represents the buses i and j phase angle
difference. N is the total number of system buses.

(ii) Inequality Constraints
)e inequality constraints represent the control
variable limits described in equations (12)–(17):
Generator limits:

P
min
gi
≤Pgi
≤P

max
gi

, i � 1, . . . , Ng, (12)

Q
min
gi
≤Qgi
≤Q

max
gi

, i � 1, . . . , Ng, (13)

V
min
gi
≤Vgi
≤V

max
gi

, i � 1, . . . , Ng. (14)

Transmission line limits:
SLi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ S
max
Li

. (15)

Load bus voltage magnitude limits:
V

min
di
≤Vdi
≤V

max
di

, i � 1, . . . , Nd, (16)

where Pmin
gi

and Pmax
gi

are the bus i minimum and
maximum active powers (thermal/RES). Qmin

gi
and

Qmax
gi

are the minimum and maximum reactive
power (thermal/RES) generated at bus i. Vmin

gi
and

Vmax
gi

are the minimum and maximum generator
voltages at bus i. SLi

and Smax
Li

are the apparent power
flow and its maximum at branch i. Vmin

di
and Vmax

di
are

the minimum and maximum load voltages at bus i.
Tmin

i and Tmax
i are the minimum and maximum

transformer tap ratios at bus i.

3. Modeling the Uncertainty of RES

)is paper utilizes the uncertainty modeling of the stochastic
nature of the RESs carried out in various recent literature
[19, 21, 24, 47].

Wind energy production is proportionate to wind speed,
and wind speed probability is best represented by the Weibull
PDF [48]. Solar PV power is determined by solar irradiance,
and the probability distribution of solar irradiance is repre-
sented by lognormal PDF [49]. )e flow rate and effective
pressure head determine the power production of a small hydro
plant. From previous works, it was established that Gumbel
distribution is effective in the estimation of the river flow rate
[48, 50]. A summary of the wind, solar and hydro PDF pa-
rameters used in this study are presented in Table 3 [19].

Figure 1 presents the probability density functions of the
RES for the parameters stated in Table 3.

4. Methodology

Figure 2 shows the methodological flow process adopted in
this work for each of the two operating scenarios evaluated,

Table 2: Details of the VSIs in the study.

VSI Ref. VSI computation Unstable condition Stable condition

Voltage Collapse Proximity Index (VCPI) [41] VCPI(power) � Pr/Pr(max) VCPI> 1 VCPI≤ 1Where Pr(max) � V2
s /Zcos∅/4cos2((θ −∅)/2)

Line Voltage Stability Index (LVSI) [42] LVSI � 4RP/(Vscos(θ − δ))2 LVSI> 1 LVSI≤ 1
Line Stability Index (Lmn) [43] Lmn � 4XQr/[Vssin(θ − δ)]2 Lmn > 1 Lmn ≤ 1
Fast Voltage Stability Index (FVSI) [44] FVSI � 4Z2Qr/V2

s X FVSI> 1 FVSI≤ 1
Line Stability Factor (LQP) [45] LQP � 4(X/V2

i )(X/V2
i P2

i + Qj) LQP> 1 LQP≤ 1
Novel Line Stability Index (NLSI) [46] NLSI � PjR + QjX/0.25V2 NLSI> 1 NLSI≤ 1

Table 1: Cost coefficients for RES.

RES Direct cost coefficient Reserve cost coefficient Penalty cost coefficient
Wind gw � 1.6 krw � 3 kpw � 1.5
Solar gs � 1.6 krs � 3 kps � 1.5
Small hydro gh � 1.5 krh � 3 kph � 1.5
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normal and contingency conditions. After the RES uncer-
tainty modeling, the MOMA algorithm parameters are set to
ensure convergence to local optima. Six tests were performed
to achieve the best performing control parameters for the
algorithm. )en, 20 independent trials were evaluated for
each case study performed. Fuzzy decision-making (FDM)
tool was then employed to obtain the best performing trial run
in each case. Details of MOMA and the FDM are described in
this section. To obtain the overall best performing VSI, a

computationally efficient index, the PSI is utilized, which
aggregates the best alternative from the six case studies
without deciding any relative importance between attributes.

4.1. Multiobjective Mayfly Algorithm (MOMA).
Zervoudakis and Tsafarakis developed Mayfly Algorithm in
2020 by mimicking the group behavior of mayflies, particularly
their mating behavior [38]. Later in 2021, a multiobjective

Table 3: Probability Density Function parameters for the RES stochastic models.

Wind at bus 5 Solar at bus 11 Wind + Small hydro at bus 13
Number of turbines 25 Rated power (MW) 50 Number of turbines 15
Total rated power (MW) 75

Lognormal PDF parameters
μ � 6 Rated wind power 45

Weibull PDF parameters α � 9 σ � 0.6 Weibull PDF parameters α � 10
β � 2 β � 2

Small hydro rated power (MW) 5

Gumbel PDF parameters λ � 15
c � 1.2
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Figure 1: PDFs at (a) Bus 5 Wind, (b) Bus 13 Wind, (c) Bus 11 Solar, and (d) Bus 13 Hydro.
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versionwas developed by Liu et al. in [51]. Unlikemales, female
mayflies do not gather in swarms; they instead fly toward
males to breed. At the start of the algorithm, the mayflies are
randomly divided into two separate groups: male and female
populations. )e mayflies are randomly scattered in a d-di-
mensional space, considered candidate solutions.

Similar to the individuals in swarms of the PSO algo-
rithm, the mayflies update the positions according to their
current position x(t) and velocity v(t + 1), as in the fol-
lowing equation:

x
t+1
ij � x

t
i + v

t+1
ij . (17)

Since there is no single best solution in multiobjective
problems, the selection of gbest performed by picking a ran-
dom solution from the repository of nondominated solutions.

If the male mayfly is dominated by the gbest, (18) up-
dates its velocity. Otherwise, the mayflies update from the
current pbest with a random dance coefficient d.

v
t+1
ij �

v
t+1
ij � g∗ v

t
ij + a1e

− βr2p pbestij − x
t
ij􏼐 􏼑 + a2e

− βr2g gbestj − x
t
ij􏼐 􏼑, if gbest>pbest

g∗ v
t
ij + d∗ r1, otherwise.

⎧⎪⎨

⎪⎩
(18)

Similarly, the movement of the female mayflies is also
updated using Equation 19.

v
t+1
ij �

g∗ v
t
ij + a2e

− βr2
mf x

t
ij − y

t
ij􏼐 􏼑, if male dominates female,

g∗ v
t
ij + d∗ r2, otherwise,

⎧⎪⎨

⎪⎩
(19)

Modified IEEE 30-busRenewable Energy Modelling at 
Buses 5, 11 and 13 

Run power flow in 
MATPOWER

Set MOMA algorithm parametersFormulation of objective functions
Cost, Loss and VSIs Constraint setting and handling

Tabulate P,Q, V, Loss, VSI 
values for each Case study

Obtain best performing trial using Fuzzy-decision 
making 

Run MOMA algorithm for each 
Case 1-6

Obtain Best Compromise Solution 
using Fuzzy Decision Making

Max number of trials reached?
N=20

Yes

No

Rank best Case (VSI) using 
PSI

Start

End

Next trial

Figure 2: Methodology flow process chart.
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where pbest and gbest are the local optimal and global optimal,
respectively; g is the gravity coefficient; a1, a2, are constants to
balance the values; β is the fixed visibility coefficient; rp and rg

are Cartesian distances from the i − th mayfly to the optimal
local solution and the optimal global solution, respectively; r1
and r2 is the random number in uniform distribution and
selected from the domain [−1, 1].

Figure 3 summarizes the flow chart of the multiobjective
MayFly algorithm. )e rest of the steps of the MOMA al-
gorithm are detailed in [38, 51]

4.2. Fuzzy Decision-Making Technique. To find out the best
compromise solution among the nondominated solutions from
the Pareto front is vital in the decision-making process. Fuzzy
set theory has been widely utilized to effectively select a can-
didate Pareto-optimal solution from among the numerous
alternative solutions on the Pareto front [6]. Due to the inherent
irrationality nature of the decision-makers, the i − th objective
function of a solution in the Pareto-optimal set, Fi, is repre-
sented by a membership function μi defined as follows [52]:

μi �

1, Fi ≤F
min
i ,

F
max
i − Fi

F
max
i − F

min
i

, F
min
i ≤Fi ≤F

max
i ,

0, Fi ≥F
max
i ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where Fmax
i and Fmin

i are maximum and minimum values of
the i − th objective function, respectively. )e membership
function values designate the achievement level of the ob-
jective functions of a problem, and these values are between
0 and 1. For each nondominated solution k, the normalized
membership function μk is calculated as follows:

μk
�

􏽐
Nobj

i�1 μk
i

􏽐
M
j�1 􏽐

Nobj

i�1 μj
i

. (21)

)e number of nondominated solutions is M. )e best
compromise solution is the one having the highest value of μk.

5. Results and Discussion

To assess the performance of the voltage stability indices in a
multiobjective OPF problem, a MOMA algorithm was exe-
cuted on a modified IEEE 30-bus consisting of wind, solar PV,
and small hydro sources. It was already established in [6] that
three a three-objective VSC-OPF provided better system
performance than the two ones. )erefore, each VSI is for-
mulated as part of the triobjective function alongside gener-
ation cost and loss minimization objectives in this work. )e
tests were considered in two operating conditions, normal and
contingency. )e Best Compromise Solution was obtained
using the Fuzzy decision-making theory [53], whereas to obtain
a ranking of the case studies, a Preference Selection Index (PSI)
was employed [6, 54]. )e overall computational effectiveness
of the VSIs is tested in terms of cost and transmission loss

reduction, voltage stability improvement, simulation time, and
support for RES penetration level.

5.1. Modified IEEE 30-Bus. )e modified IEEE 30-bus pre-
sented in Figure 4 and Table 4 was obtained from [39, 55]. )e
system comprises thirty buses, six generators, forty-one
branches, and four transformers. Buses 1, 2, 5, 8, 11, and 13,
indicate the locations of the generators. )e active and reactive
power loads are 283.4MW and 126.2 MVAR, respectively.

5.2. Case Studies. For all analyses, the MATLAB MAT-
POWER toolbox was employed on an Intel (R) Core (TM) i7-
2640M CPU @2.8GHz and (RAM) 8GB computer. Six case
studies were assessed to investigate the network’s performance
under different conditions, as shown in Table 5. )e goal is to
assess the network’s performance when different voltage sta-
bility indices are incorporated into the multiobjective function.
)e best performing VSI in each operating scenario is selected
based on the Preference Selection index (PSI), whose formu-
lations of PSI are detailed in [54]. )e Best Compromise
Solutions (BCS) generated from multiobjective studies using
the Fuzzy Decision-Making technique are utilized to further
evaluate the system performance.

5.3. Multiobjective Optimization. )is section presents the
results of the triobjective optimization using the multi-
objective Mayfly algorithm in two operating conditions.

5.3.1. MOMA Convergence Characteristics. Heuristic tech-
niques are sensitive to the proper selection of the control
parameters.)ese parameters are selected through experiment.
With the chosen parameters, an investigation was done to
optimize the population sizes for the system. A total of 20
independent trials were carried out for each of the test runs.
)e population size in the present work is fixed at 20 particles
in order to keep the computational requirements low. From
Table 6, it is clear that a population of 20 particles in 50 it-
erations provides satisfactory convergence characteristics. )e
selection of best parameters was established using fuzzy de-
cision making, considering the contradicting objectives of cost,
loss, and voltage stability. Table 6 shows that test run four (in
bold) control parameters achieve the best compromise cost,
loss, and voltage stability index for Case 1.

To verify the convergence characteristics of the MOMA
with the selected parameters, OPF simulation was carried
out with the optimum number of particles for each system
for 50 iterations; the repository population variation vs.
iterations is shown in Figure 5. It can be seen that MOMA
converges well in less than 50 iterations.

To ensure consistency, theMOMA algorithm is run in 20
independent trials for each of the case studies of the mul-
tiobjective OPF. )e best compromise solutions obtained in
each test run trial undergo another best-case selection using
the fuzzy decision technique. Figure 6 shows the selection of
the best compromise solution for case 1 in normal operating
conditions. Details of the selected solution are provided in
Table 7.
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5.3.2. Normal Operating Conditions (SC-1). With the system
under normal operating conditions, the results of the
multiobjective optimization and their corresponding BCS
(marked in red star) are presented in Figure 7.

Results in Table 7 indicate that the lowest costs were
obtained in Case 3 by the Lmn index, followed by the NLSI
index in Case 6. However, the case studies with the lowest

costs also encounter the highest loss, as evidenced by the
highest loss of 4.26MW with Lmn index.

)e lowest costs (809.68 $/h), losses (2.55MW), and
simulation time (43.132 s) are realized in Case 3 (Lmn), Case
1 (VCPI), and Case 4 (FVSI), respectively. However, it is
noteworthy that the Lmn index with the lowest costs also
encounters the highest losses of 4.26MW, 66.85% more

Start

Initialization of male and female 
population positions, velocities

Evaluate objective functions

Non-dominated sorting of solutions

Repository
(Pareto solutions)

Update velocity and position of males 
and females

New solution has 50% to replace 
personal best

Is solution 
dominated?

No

Yes

Mutate mayflies

Randomly separate 
male and female

Evaluate objective functions

Crossover mayflies

Does offspring dominate
new same sex-parent?

New parent=offspring

Non-dominated sorting of solutions

Yes

End

Is repository full?

Select leader 
by Roulette 

wheel

No

Yes

Maintain same sex-parent

No

Figure 3: Flow chart of multiobjective mayfly algorithm (MOMA).
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than that of Case 1. Conversely, the VCPI index with the
lowest losses also produces the highest costs.)is is due to the
fact that for losses to reduce, the system must generate more
reactive or have the least consumption. Table 3 shows that the
VCPI index (Case1) has the lowest net consumption of re-
active power (Qgen), hence the lowest losses (see Figure 8).

)e overall PSI ranking shows that VCPI is the most
computationally efficient index, ranking highest with a
PSI of 0.9562 in normal operating conditions for opti-
mized system performance in terms of minimizing gen-
eration cost, loss, simulation time, and voltage stability
improvement.
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1 3 4

2 5

7

6 8

Thermal Generator

Wind Generator

Small Hydro Generator

Solar PV Generator

Figure 4: Modified IEEE 30-bus consisting of wind, solar, hydro, and thermal generators.

Table 4: Details of the modified IEEE 30-bus.

Bus Type Pmin Pmax
Generator cost coefficients

a b c d e
1 )ermal 50 140 0.00375 2 0 18 0.037
2 )ermal 20 80 0.01750 1.75 0 16 0.038
5 Wind generator 0 75 — — — — —
8 )ermal 10 35 0.00834 3.25 0 12 0.045
11 Solar PV 0 60 — — — — —
13 Wind generator + small hydro unit 0 50 — — — — —

10 Journal of Electrical and Computer Engineering



Table 5: Case studies and scenarios considered for the study.

Scenarios (SC) Details Objective
Functions

Case
1

Case
2

Case
3

Case
4

Case
5

Case
6

VCPI LVSI Lmn FVSI LQP NLSI

Normal operating
conditions (SC-1) Baseload conditions

Generation Cost
($/h)

☑ ☑ ☑ ☑ ☑ ☑Power Loss
(MW)
VSI

Line outage contingency
conditions (SC-2)

Line 1-2 disconnected (it has the highest
VSI, therefore weakest line)

Generation Cost
($/h)

☑ ☑ ☑ ☑ ☑ ☑Power Loss
(MW)
VSI

Table 6: Parameter setting for MOMA.

Test MaxIt Pop No. Pop No. (males & females) Repository Size Cost ($/h) Loss (MW) VSI
1 20 20 20 50 858.9744 3.1975 0.3406
2 20 20 20 80 857.7473 3.5238 0.3336
3 20 20 20 20 850.8305 3.7796 0.3958
4 50 20 20 20 862.4796 2.9661 0.3285
5 100 20 20 20 856.511 3.3431 0.3517
6 20 20 20 20 852.5979 3.3668 0.3635
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Figure 5: Convergence characteristics at different iterations.
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Table 7: Best compromise solutions from the different case studies in SC-1.

Bus Control variables
Base Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Min Max VCPI LVSI Lmn FVSI LQP NLSI
1 PTH (MW) 50 140 90.39 91.29 100.52 64.93 114.44 91.73
2 PTH (MW) 20 80 51.04 57.24 50.56 38.16 56.30 58.36
5 PW (MW) 0 75 70.32 62.28 47.57 58.48 58.95 68.57
8 PTH (MW) 10 35 22.31 15.10 18.77 25.86 22.93 18.87
11 PPV (MW) 0 60 42.50 44.80 41.50 54.89 54.26 40.68
13 PW+H (MW) 0 50 42.73 38.91 34.33 35.99 36.43 40.23

Pgen (MW) 80 440 319.29 309.62 293.24 278.31 343.30 318.44
1 QTH (MVAR) −20 150 21.33 116.22 59.37 117.82 −0.38 21.34
2 QTH (MVAR) −20 60 −12.45 23.58 22.61 41.70 41.55 27.37
5 QW (MVAR) −30 35 6.46 −12.00 −5.97 20.60 −8.06 −7.29
8 QTH (MVAR) −15 40 20.81 0.75 14.78 30.21 12.32 −1.68
11 QPV (MVAR) −20 25 −1.29 0.14 −1.51 10.19 18.54 8.56
13 QW+H (MVAR) −25 30 −2.88 1.37 −3.70 −9.44 −9.00 8.19

Qgen (MVAR) −130 340 31.97 130.05 85.58 211.08 54.96 56.49
1 VTH (p.u) 0.95 1.1 1.1 1.0855 0.9672 1.058 1.1 0.95
2 VW (p.u) 0.95 1.1 0.95 1.1 1.0804 1.0748 1.1 1.1
5 VTH (p.u) 0.95 1.1 1.1 1.0921 1.0566 1.0755 1.1 1.1
8 VPV (p.u) 0.95 1.1 1.1 1.1 1.0578 1.0755 1.1 1.1
11 VW+H (p.u) 0.95 1.1 0.95 0.9873 1.0012 0.9903 0.95 0.95
13 VTH (p.u) 0.95 1.1 1.1 1.086 1.0971 1.0988 1.1 1.1

Cost ($/h) — — 852.46 839.66 809.68 838.27 846.88 838.72
Loss (MW) — — 2.55 3.03 4.26 2.86 2.61 2.93

VSI — — 0.2943 0.0843 0.1198 0.1359 0.3069 0.2023
Simulation Time (s) — — 45.704 48.725 47.237 43.132 44.951 47.899

PSI — — 0.9562 0.8470 0.7903 0.8316 0.8952 0.8547
PSI ranking — — 1 4 6 5 2 3
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Figure 7: SC-1 Pareto-optimal solutions for the six case studies.
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5.3.3. Contingency Conditions (SC-2). )is study assesses
voltage stability indices’ impact when line 1-2 is out of
service. Contingency conditions are known to change the
power flows in the system, thus resulting in increased
loading of lines in some instances, leading to increased losses
and costs. Figure 9 shows the Pareto optimal solutions
obtained from the different voltage stability indices.

From the graph in Figure 9, it can be observed that VCPI
and LQP indices have the highest generation costs. However,
the Pgen, Qgen, and lowest losses are realized with VCPI,
NLSI, and LVSI, respectively, as seen in Table 8. )e FVSI
index is still the index with the shortest simulation time,

whereas the greatest voltage stability improvement of 89.9%
is seen with the LQP index (compared to the base SC-2 LQP
index of 3.7567).

Since different indices have varying advantages in re-
ducing generation cost, loss and simulation time, and
voltage stability improvement, the PSI index helps aggregate
and rank the efficiency and performance of all case studies.
)erefore, in contingency conditions, the index with the
best-optimized system performance is the NSLI index with a
PSI value of 0.9290. Figure 10 affirms that the best per-
forming index, NLSI, generates the most reactive power
from renewable energy sources.
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5.4. Impact on Voltage Stability

5.4.1. Bus VoltageMagnitudes. Figures 11 and 12 indicate the
bus voltage magnitude performance resulting from the dif-
ferent case studies. FVSI and LQP indices achieve the highest
average voltage profile improvement of 0.36% compared to
the base case in normal operating conditions. On the other

hand, the system voltage profile improves the most in the
VCPI case study (by 1.42%) during line outage conditions.

5.4.2. PV Curves. )e best compromise solution obtained
from the Pareto curves was used further to assess the
maximum loadability of the different case studies.

Table 8: Best compromise solutions from the different case studies in SC-2.

Bus Control variables
Base Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Min Max VCPI LVSI Lmn FVSI LQP NLSI
1 PTH (MW) 50 140 61.08 113.14 119.10 84.49 88.54 100.36
2 PTH (MW) 20 80 60.23 66.33 55.58 51.87 65.51 44.92
5 PW (MW) 0 75 56.44 63.62 42.66 56.21 62.40 68.43
8 PTH (MW) 10 35 22.59 27.35 17.17 27.90 18.48 22.02
11 PPV (MW) 0 60 51.88 43.77 47.54 50.01 41.93 49.79
13 PW+H (MW) 0 50 41.74 39.88 29.43 40.13 38.44 36.96

Pgen (MW) 80 440 293.94 354.08 311.48 310.60 315.30 322.48
1 QTH (MVAR) −20 150 62.34 74.86 73.92 42.82 59.94 27.18
2 QTH (MVAR) −20 60 45.15 22.16 4.84 25.69 36.87 33.66
5 QW (MVAR) −30 35 8.39 −9.79 9.87 14.75 −18.11 −10.18
8 QTH (MVAR) −15 40 4.23 10.29 3.65 15.54 3.29 6.86
11 QPV (MVAR) −20 25 −5.45 0.35 −3.86 12.64 10.63 −3.86
13 QW+H (MVAR) −25 30 9.16 7.84 −6.24 −6.97 1.13 −18.54

Qgen (MVAR) −130 340 123.82 105.71 82.19 104.47 93.76 35.12
1 VTH (p.u) 0.95 1.1 1.1 1.1 1.0997 1.0997 1.0971 1.1
2 VW (p.u) 0.95 1.1 1.1 1.1 1.0734 1.0625 1.0984 1.0865
5 VTH (p.u) 0.95 1.1 1.1 1.1 1.0592 1.0659 1.0756 1.0697
8 VPV (p.u) 0.95 1.1 1.1 1.1 1.0452 1.062 1.1 1.0643
11 VW+H (p.u) 0.95 1.1 0.95 0.95 1.0389 0.955 0.9628 1.0923
13 VTH (p.u) 0.95 1.1 1.1 1.1 1.0827 1.0975 1.0969 1.0979

Cost ($/h) — — 851.13 867.80 832.23 848.86 852.22 850.05
Loss (MW) — — 3.54 2.92 7.68 3.93 3.89 3.92

VSI — — 0.3641 0.0832 0.1355 0.1300 0.3767 0.1528
Simulation Time (s) — — 43.607 43.41 41.739 40.867 45.264 42.958

PSI — — 0.8600 0.8633 0.8185 0.8653 0.8552 0.9290
PSI ranking — — 4 3 6 2 5 1
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Figure 10: SC-2 Reactive power generation from the different generators.
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In normal operating conditions, it is observed from
Figure 13 that Case 6 (NLSI) gives the most significant load
margin improvement of 10.17%. )e rest of the indices
improve the maximum loadability by 9.96%, 9.58%, 9.76%,
9.02%, 8.91% in Case 1, Case 2, Case 3, Case 4, and Case 5,
respectively. )e lowest loadability margin in SC-1 is real-
ized with the FVSI index.

In contingency conditions, the maximum loadability of
the system is improved by over 700% in all cases, as

presented in Figure 14. )e greatest improvement was
achieved with the LVSI index and the lowest with the Lmn
index.

5.5. Contribution of Renewable Energy Sources.
Optimization of generation scheduling alters the system
control variables, leading to varying generation power
contributions from the renewables. High penetration of
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Table 10: Validation of SC-1 Case 1 MOMA results against other algorithms.

Algorithm
Algorithm Parameters Best compromise Solutions

Simulation Time (s)
Population Iterations Pareto Solutions at Max. Iteration Cost ($/h) Loss (MW) VSI

MOMA 20 50 20 852.464 2.554 0.294 45.704
MHHO 50 50 50 849.907 2.350 0.327 122.035
MOJAYA 50 50 25 844.826 2.719 0.3235 67.395
MOPSO 50 50 50 863.554 2.189 0.311 103.688
NSGAIII 50 50 50 842.741 3.370 0.357 68.073
MOPSO_FMF [19] 50 500 — 710.3 13.77 — —
MOMA [21] — — — 848.6486 5.1847 — —
GROM [56] 50 100 — 851.23 7.01754 0.13789 —
TBLO [56] 50 100 — 854.0433 7.11366 0.13820 —
MOMVO [39] 50 500 — 797.2085 4.5205 — —

Table 11: Validation of SC-2 Case 6 MOMA results against other algorithms.

Algorithm
Algorithm Parameters Best compromise Solutions

Simulation Time (s)
Population Iterations Pareto Solutions at Max. Iteration Cost ($/h) Loss (MW) NLSI

MOMA 20 50 20 850.053 3.925 0.153 42.958
MHHO 50 50 50 909.328 1.930 0.165 124.217
MOJAYA 50 50 27 859.636 3.357 0.159 79.673
MOPSO 50 50 50 859.695 2.336 0.291 96.097
NSGAIII 50 50 50 922.662 1.830 0.155 70.947
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Figure 16: Dominance of MOMA algorithm in average system performance during SC-1 and SC-2.
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renewables reduces negative environmental impact
compared to conventional fossil fuel-based energy
generation.

Figure 15 presents the average contribution of power
from the different RES for all cases studies in both operating
conditions.

)e detailed results in Table 9 indicate that the NLSI,
FVSI, and VCPI index led to the largest scheduled power of
wind, solar PV, and hybrid wind/small hydro of 91.33%,
87.4%, and 84.5%, respectively. However, on a system av-
erage, the highest RES power-contributing VSI was the
VCPI index, with the highest RES penetration level con-
tribution of 16.61%.

6. Validation of Results

6.1. Validation of Algorithm. )e results from the PSI ranking
indicate the best voltage stability index to use in normal, and

contingency conditions are VCPI andNLSI, respectively. Using
these two indices, the results in normal conditions and con-
tingency conditions were then validated against four other
algorithms: multiobjective harris hawks algorithm (MHHO),
multiobjective Jaya algorithm (MOJAYA), multiobjective
particle swarm algorithm (MOPSO), and nondominated
sorting genetic algorithm III (NSGA-III).

Results from the two operating scenarios (See Table 10
for SC-1 and Table 11 for SC-2) indicate that the multi-
objective mayfly algorithm is the fastest, optimizing the
system variables at an average speed of 106.72% faster than
all other four algorithms. Additionally, the MOMA al-
gorithm provided the greatest voltage stability improve-
ment of 9.53%, 6.98%, 47.99%, 11.37% better than the
MHHO, MOJAYA, MOPSO, and NSGAIII algorithms,
respectively, in both normal and contingency operating
conditions. On average, MOMA showed a dominant
system performance during the two conditions (see

Table 12: Validation of the proposed approach.

Approach Description Objective
Function Algorithm VSI comparison Best

VSI
Cost
($/h)

Loss
(MW)

Maximum
VSI RES?

Proposed
method

Multi-objective
based on Pareto

optimality

Cost, Loss,
VSI MOMA VCPI, LVSI, Lmn,

FVSI, LQP, NLSI VCPI 851.13 3.54 0.3641 Yes

Approach 1
[7] Single objective Cost Improved

Particle Swarm

L-index, FVSI,
Lmn, LVSI, VCPI,

FVSI
FVSI 845.189 6.12 — No

Approach 1
[7] Single objective Loss Improved

Particle Swarm

L-index, FVSI,
Lmn, LVSI, VCPI,

FVSI
VCPI 978.00 3.269 — No

Approach 1
[8] Single objective LVSI DA-PSO FVSI, Lmn, LVSI LVSI 971.55 4.72 0.8072 No

Approach 1
[57] Single objective L-index

Symbiotic
organisms search

algorithm
— L-

index 926.923 4.5569 0.13671 Yes

Approach 2
[27]

Multi-objective
based on weighted
sum approach

— Modified Interior
Search — — 914.04 5.543 — Yes
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Figure 17: Comparison of the proposed approach against other methods.
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Figure 16). )is is attributed to the algorithm’s nuptial
dance and random flight processes that enhance the bal-
ance between its exploration and exploitation properties
and assist its escape from local optima [38].

6.2. Validation of Proposed Methodology. )e proposed
multiobjective approach provides the lowest system losses
and generation costs by comparing the system’s perfor-
mance with previous research, as shown in Table 12 and
Figure 17. )erefore, it demonstrates better system
performance.

7. Conclusion

A comparison of the performance of six voltage stability
indices in a multiobjective optimal power flow of a re-
newable energy integrated grid has been presented in this
paper.)emultiobjective mayfly algorithmminimized three
objective functions: generation cost, active power loss, and
voltage stability index. From the studies performed, the
following deductions were made:

(i) )e best VSI for improving system performance in
normal operating conditions was the VCPI index,
whereas it was the NLSI index in contingency
conditions. However, an aggregated system per-
formance in the two conditions indicated the VCPI
is a superior index with an average PSI index of
0.9081, followed by the NSLI index of 0.8919.

(ii) )e PSI best-performing indices are those with the
least reactive power consumption in each operating
scenario

(iii) )e Lmn index ranked last in both operating
conditions, resulting in the worst system perfor-
mance in the highest generation cost, loss, and
longest simulation time.

(iv) )e VCPI index provided the largest average RES
scheduled power of 82.54% to foster a high pene-
tration of renewable energy sources on the system
of 16.6%.

(v) )ere is a positive correlation between the increase
in RES Scheduled Power and the average voltage
stability enhancement of the system, as seen in the
superior performance of the VCPI (highest average
PSI rank) vs. its RES penetration levels.

(vi) )e MOMA algorithm is superior to MOPSO,
MOJAYA, NSGAIII, and MHHO algorithms in the
studies carried out.

(vii) )e proposed approach yields the lowest system
costs and losses.

Incorporating voltage stability in the optimal power flow
problem enhances the voltage stability of power systems
with the integration of renewable energy sources. Specifi-
cally, the VCPI and NLSI indices show dominant perfor-
mance in normal and contingency conditions.

)e findings presented in this paper have substantial
applicability in the planning of voltage stability

enhancement for grids that incorporate renewable energy
sources. Specifically, given the numerous voltage stability
index computations, the approach in this work can serve as a
practical guide for decision-makers when selecting indices
that promote RES expansion and system stability im-
provement in modern energy management systems.
Moreover, where cost and loss minimization are critical
objectives, the voltage stability-constrained multiobjective
optimal power flow assures that the aggregated system
performance is improved across conflicting objectives.

With the increasing smart technologies, the proposed
approach in this work is computationally efficient, achieving
fast enhanced system performance in offline applications.
However, techniques that incorporate stability prediction
and training for real-time or online security monitoring
would be significant. For future studies, a comparison of
stability indices using such machine learning techniques for
the real-time operation of power systems can be studied.
Also, considering the numerous distributed energy re-
sources in practical systems, it is unknown how the various
voltage stability indices would perform in networks with
increasing plug-in electric vehicles or battery energy storage
systems. )erefore such studies can also be performed.
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