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Petrochemical equipment detection technology plays important role in petrochemical industry security monitoring systems,
equipment working status analysis systems, and other applications. In complex scenes, the accuracy and speed of petrochemical
equipment detection would be limited because of the missing and false detection of equipment with extreme sizes, due to image
quality, equipment scale, light, and other factors. In this paper, a one-stage attention mechanism-enhanced Yolov5 network is
proposed to detect typical types of petrochemical equipment in industry scene images. Te model considers the advantages of the
channel and spatial attention mechanism and incorporates it into the three mainframes. Furthermore, the multiscale deep feature
is fused with a bottom-up feature pyramid structure to learn the features of equipment with extreme sizes. Moreover, an adaptive
anchor generation algorithm is proposed to handle objects with extreme sizes in a complex background. In addition, the data
augmentation strategy is also introduced to handle the relatively small and extremely large sample and to enhance the robustness
of the fused model. Te proposed model was validated on the self-built petrochemical equipment image data set, and the
experimental results show that it achieves a competitive performance in comparison with the related state-of-the-art detectors.

1. Introduction

Object detection is a fundamental topic in the feld of
computer vision and has played important roles in many
industrial applications [1, 2]. Importantly, petrochemical
equipment detection that aims to identify and localize the
equipment in petrochemical industrial images is a key
prerequisite and essential component in many intelligent
systems, i.e., petrochemical industry intelligent safety
monitoring, automatic equipment localization, robots-
assisted inspection, and equipment working status analysis.
With the advancement of photography techniques and in-
struments to shoot industrial images, it has become an active
but challenging task towards specifc scenarios in the de-
velopment of these intelligent systems.

Inspired by the appealing performance of deep learning
in computer vision tasks, convolutional neural networks
(CNN) based detectors for natural images have shown re-
markable results in the topic of deep learning-based object
detection, which can be divided into two categories: one-
stage detectors [3–10] and two-stage detectors [11–14]. In
contrast to the two-stage detectors based on the region
proposal method, the representative one-stage detector,
Yolo [3, 5, 7], uses both classifers to predict all the categories
along with the corresponding confdence and regressors to
locate the objects through the predefned anchors, which can
speed up the detection greatly yet at the expense of slightly
reduced precision. Anchor-free one-stage detectors, such as
CenterNet [10], were then proposed to avoid the compli-
cated ofset estimation regarding the anchor boxes, which
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however were rarely used in multiobjective industrial tasks.
Since real-time safety monitoring is highly desirable on the
petrochemical working sites, the state-of-the-art Yolov5
appears to be a suitable option thanks to its fast speed.

However, in comparison to the natural images that often
capture smaller visual felds and larger object sizes, whereas
the petrochemical industry images generally capture in-
formation of lower resolution and varying scales of the
objects. Petrochemical industry images have a wide covered
area and contain lots of tiny and large distributions of
equipment with complicated background. Although many
object detectors have achieved acceptable performance on
natural images, they are not able to obtain desirable de-
tection results on petrochemical industry images.

To solve these issues, an approach is to integrate some
general detectors to form a robust and useful detector en-
semble towards a specifc target. Te integrated module
usually considers the character of the object to improve the
whole model’s capability, which has been used in many
scenarios since it combines the decision of multiple sub-
modules to upgrade the overall performance. Tese ap-
proaches have been efectively employed for improving
accuracy in some object detection tasks [15]. Unfortunately,
regarding the complexity and confguration of deep learn-
ing-based object detection models, it is not a simple process
of incorporating a reasonable submodule to improve the
detection performance. On the other hand, one-stage de-
tection with multiscale features instead of multiple detector
ensembles has gotten more and more attention in recent
years. Te feature fusion has been taken into consideration
since it has been applied in other applications and obtained
desirable performance [16]. Te famous RetinaNet [14]
introduces the feature pyramid network to build three
subnetworks for classifcation and regression, and also, the
state-of-the-art EfcientDet [17] proposes a weighted bidi-
rectional feature pyramid network to make fast multiscale
feature fusion. Although the detection algorithms men-
tioned above had a signifcant improvement in detection
performance, their multiscale features fusion only fused the
feature maps directly. In this way, the fused feature layers are
restricted by each other, and no other feature related to the
interest of region is incorporated, which is not appropriate
for petrochemical equipment of huge varying sizes. Incor-
porating other features to the constraint of feature fusion
directly is benefcial to improve the detection performance
of multiscale equipment in this scenario. Additionally, when
the number of training samples is limited, the data aug-
mentation has been applied for short-term voltage stability
assessment of power systems [18], and a similar strategy
could be designed in deep learning-based object detection.
Terefore, it is necessary to improve the one-stage detector
for the specifc petrochemical industrial scenario by in-
corporating the advantage of feature fusion and data aug-
mentation techniques.

Based on these motivations, we propose an object de-
tection algorithm named Yolov5-FA based on the merits of
the one-stage detector Yolov5 (you only look once version 5)
for petrochemical equipment detection in industrial images.
Te model designed a network mainframe that incorporated

channel and spatial attention mechanisms into the three
modules by considering the characteristics of the petro-
chemical equipment. Furthermore, the multiscale deep
feature is fused with a bottom-up feature pyramid structure
to learn the features of equipment with extreme sizes.
Moreover, an adaptive anchor generation algorithm is
proposed to handle objects with extreme sizes in a complex
background. In addition, the data augmentation strategy is
also introduced to handle the relatively small and extremely
large sample and to enhance the robustness of the fused
model. Te improved model has been validated on the real
petrochemical equipment dataset and proved to be reliable
and efcient for object detection in this scenario.

To sum up, our work makes the following contributions:
(1) we propose an improved network (Yolov5-FA) to in-
tegrate the bottom-up feature fusion and attention mech-
anism in a channel and spatial manner to build the Yolov5-
like network for detecting typical equipment in real pet-
rochemical industry images. To the best of our knowledge, it
is the frst work on petrochemical equipment detection in
real petrochemical industry images; (2) we design an ef-
fective adaptive anchor generation module to extract the
prior petrochemical equipment information; (3) we design a
data augmentation strategy to handle the small image size
problem in our petrochemical equipment data set.

Te rest of the paper is organized as follows: Section 2
introduces the related work about two-stage and one-stage
object detection algorithms. Section 3 describes our pro-
posedmethod in detail. Section 4 introduces the datasets and
experimental results and made discussions. Section 5 is a
summary of the paper.

2. Related Works

Object detection is a vital technique for realizing the
identifcation and localization of objects in visual images, so
it has received much attention in the last two decades. With
the rapid development of the deep neural network, the
performance of object detection methods has been gradually
improved. According to the generation of candidate regions,
the state-of-the-art deep learning-based object detection
methods can be broadly classifed into two categories,
namely, two-stage and one-stage methods.

Temost representative two-stage detectionmethods are
region-based convolutional neural network (RCNN) series
and its variants. RCNN [11–13] is one of the earliest and
most efective methods that adopt the deep convolutional
neural network (CNN) for object detection, which replaces
the traditional hand-crafted feature-extracting process with
CNN-based feature learning and improves the accuracy of
object detection. In this category, there are usually two
separate steps as follows. In the frst stage, a series of can-
didate region proposals that may contain objects is gener-
ated.Ten, in the second stage, feature maps are extracted by
region-of-interest (ROI) pooling from each proposal for
classifcation and localization tasks. In the original RCNN,
the selective search technique [19] is adopted to generate
almost 2000 region proposals, and this step reduces the
detection speed. Fast RCNN [12] generates region proposals
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on the feature map rather than the original input images,
which improve the detection efciency to a large extent.
Faster RCNN [11] introduces an region proposal network
(RPN) to generate region candidates from the convolutional
neural network and achieves end-to-end calculation of
object recognition. R-FCN [20] employs the full convolution
network ResNet to replace the original VGG to improve the
efect of feature extraction and classifcation. Furthermore,
Cascade R-CNN [21] proposes multiple repeated networks,
and they are connected sequentially, which could increase
the amount of samples with high intersection over union
(IoU) scores and allow the subsequent module to obtain
performance. Lately, BorderDet [22] proposes an efcient
border alignment to extract border features from the ex-
treme point of the border to enhance the point feature. A
recent You-only-look-one-level feature (YoloF) [23] intro-
duces diluted encoder and uniform matching to optimize
detection. Generally speaking, the two-stage methods are
easy to generate admirable proposals and control the net-
work depth with parameter adjustment, and they also can
achieve admirable accuracy with the cost of speed.

In contrast, the one-stage methods aim to detect objects
by directly applying regression and classifcation analysis
strategy, which omits the frst stage of generating candidate
regions and directly obtains object class and location in-
formation. Te representative one-stage detectors include
Yolo (which is an acronym for you only look once) [3–7],
single-shot detector (SSD) [8, 9], CenterNet [10], RetinaNet
[14], and RefneDet++ [24].Temethods in this category can
perform nearly real-time detection, do not need a proposal
generation procedure, and directly conduct object detection
in images.

Te Yolo family achieves state-of-the-art performance by
integrating bounding boxes and subsequent feature
resampling in a single stage. Te frst three versions [3–5] of
Yolo received their popularity because of speed and ef-
ciency. Some deep learning-based detection algorithms are
unable to detect an object in a single run, but Yolo series, on
the other hand, makes the detection in a single forward
propagation through a neural network, making it suitable for
real-time applications. Intrinsically, Yolov4 [6] and Yolov5
[7] have the sample principle as Yolov3, but with more
consideration on diferent applications and parameter sizes.
Tis method has been applied for detection small objects
(such as cars) captured by unmanned aerial vehicle [25].
Besides, in this kind of one-stage methods, SSD [8] is an-
other state-of-the-art real-time object detector. To increase
the detection accuracy, SSD predicts category scores and box
ofsets for a fxed set of default boxes, by using small con-
volutional flters over multiple scale feature maps. Cor-
nerNet [26] is a one-stage method that proposes a model to
eliminate anchor boxes, and an object is detected as a pair of
the top-left corner and bottom-right corner points of a
bounding box. CenterNet [10] is also a kind of one-stage
method, in which an object is detected according to one
center key point and two key points of a bounding box,
which contains the center location and other attributes of an
object (e.g., size). Tis model has been used for aerial object
detection by combining with the Yolov5 model [15].

RefneDet++ [24] introduces a module to refne anchor
boxes to combine feature fusion and box regression from
coarse to fne stages by following the SSD network structure.
In general, the two-stage object detection models are more
accurate than the one-stage ones, but the one-stage methods
are faster and simpler to train the neural network. In our
work, the task of petrochemical equipment detection is
working under the server by acquiring the images using
cameras and videos, so the detecting speed should be more
considered, and we focus on the Yolo detection series in our
work.

3. Our Method: Yolov5-FA

3.1. Main Structure. Te structure of our proposed method
is presented in Figure 1, where it follows the fowchart of the
backbone mainframe and the multiscale deep feature fusion
and attention mechanism modules. Te backbone main-
frame aims to extract deep features, and the multiscale deep
feature fusion is to fuse these features and the sampled ones.
After this multiscale feature fusion, four detection modules
aim to predict the class and location of petrochemical
equipment.

Specifcally, we frst use the Yolov5 as the basic
framework, which combines three modules, i.e., backbone,
neck, and prediction. In the backbone, there are a focus
layer, convolution layer, multiple CCbam3 layer, and spatial
pyramid pooling layer to extract multiscale feature infor-
mation. In the neck part, we use a channel and spatial at-
tention mechanism module to optimize the feature map in
diferent scales. In the prediction network, we use four
detection modules to detect equipment with diference sizes.
In addition, we apply the data enhancement strategy to
improve the learning ability in occlusion and overlapping
situations. In the following subsections, we will present the
details of these modules.

3.2. Multiscale Deep Feature Fusion. Considering the
background is complex in the petrochemical industry
images and the standard mainframe of Yolov5 hardly ex-
tracts the features very powerfully, we introduce a con-
volution kernel group to replace the 3× 3 convolution
kernel. Tis group consists of three parallel 3 × 3, 1× 3, and
3× 3 convolutional kernels. When applied to the input
image, these three kernels mean a weighted 3× 3 kernel.
Ten, the batch normalization (BN) and sigmoid weighted
linear unit (SiLU) modules are integrated to form a con-
volution module in our network. SiLU is a recently
appeared activation function for neural networks with the
sigmoid function multiplied by its input. If the input value
is greater than 0, the SiLU is approximately the same as the
ReLU, and if the input value is less than 0, the value of SiLU
approaches 0. Compared with the Sigmoid and tanh, the
SiLU activation function does not increase monotonously
and has a global minimum value of about −0.28. Terefore,
an attractive feature of SiLU is self-stability: when the
derivative is zero, the global minimum can play the role of
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“soft bottom,” which can inhibit the update of large weights
by avoiding gradient explosion.

Furthermore, the convolution kernel group is taken as a
component of the core module CCbam3 in our network. As
shown in Figure 2, the CCbam3 module is a weighting
mechanism to emphasize the object information by intro-
ducing a channel and spatial attention mechanism. Spe-
cifcally, the attention mechanism module to focus the
potential object integrates the bottleneck in standard Yolov4
[6], and then, the fusion operation is conducted to collect the
information from the two channels. In this way, the intrinsic
feature of diferent petrochemical objects could be learned in
deep convolution networks.

3.3. Channel and Spatial Attention Module. In the standard
Yolov5 framework, the features are extracted only by
convolution operations, which lack an efective attention
mechanism to drive the network to focus on those more
meaningful features. To overcome this problem, we in-
troduce a channel and spatial attention module to opti-
mize the network structure, which includes a channel
attention mechanism and spatial attention mechanism
[27]. Tis module can compress and weight the features in
channel and spatial dimensions, to improve the focus on
important features and suppress the distraction from the
background.

Te structures of the convolutional block attention
module [27] and squeeze-and-excitation module [28] in our
work are shown in Figure 3. Specifcally, given an input
feature map Fin � RC×H×W, where C denotes the number of
channels in the feature map, andH andW denote the height
and width of the map, respectively. Te average pooling and
maximum value pooling are employed to obtain two pro-
cessed feature maps. Tese two branches are sent to a

multiple perceptron and generate the features with di-
mension c/r×1 × 1, where r denotes the compression rate in
the hidden layer. Tese two feature vectors are then added
and sent to the nonlinear activation function, and the at-
tention coefcient MC is obtained as follows:

MC(F) � σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

� σ W1 W0 F
C
avg􏼐 􏼑􏼐 􏼑 + W1 W0 F

C
max􏼐 􏼑􏼐 􏼑􏼐 􏼑,

(1)

where F denotes the input feature map, MaxPool() and
AvgPool() denote maximum and average pooling operation,
respectively, MLP() denotes perceptron connection layer,
and σ(·) denotes Sigmoid activation function.

Te spatial attention mechanism is improved based on
squeeze-and-excitation network [28, 29] but emphasizes the
diference between channel and image spatial domains. Te
attention coefcient is calculated from both dimensions, and
it multiplies the feature map by learn the important feature
fexibly. Considering this model is light and adjustable, it can
be integrated in the main framework of Yolov5; specifcally,
the expression is as follows:

MS(F) � σ f7([AvgPol(F);MaxPool(F)])( 􏼁

� σ f7 F
S
avg; F

S
max􏽨 􏽩􏼐 􏼑􏼐 􏼑,

(2)

where f7 denotes the convolution operation using a flter
with 7× 7 size, and MS denotes the spatial attention
coefcient.

3.4. Adaptive Anchor Generation. Generally, the accuracy of
the detectors could be improved by increasing the resolution
of the input image using a deep neural network with strong
feature extraction ability and predefned anchor boxes.
However, this technique has a negative efect on the de-
tection speed. Since the anchor box technique reduces the
detection speed, many systems have been developed to
improve the anchor box quality. For instance, several anchor
boxes for each category are proposed to improve the de-
tection accuracy of a real-time single-stage object detector in
the Yolov2 framework [30].

Intrinsically, the anchor boxes are predefned prior sizes
of objects in the training data set. Te initial anchor size
adopted by Yolov5 is clustered from the object box size in
the COCO dataset. Table 1 shows the diferences in object
size between the petrochemical equipment dataset and
COCO dataset, and small objects account for the majority
in the chemical equipment dataset. Tus, the original an-
chor size is not suitable for the petrochemical equipment
dataset.

To improve the matching probability of the object box
and anchor, we employ the K means++ clustering algorithm
[31] to redesign the anchor size. Tis improvement can
reduce the infuence of randomly selected initial values on
the results. Specifcally, we design two steps to obtain the
anchor size as follows.

Te frst step is to determine the initial values ofK cluster
centers. Te distance d is defned as follows:

Input
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Figure 1: Improved neural network structure in our work.
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d(box, centroid) � 1 − MIOU(box, centroid), (3)
where “box” is the target box, and “centroid” is the cluster
center. Te distance from all points to the nearest cluster
center is D(x), and p(x) represents the probability of each
point to become the next cluster center

p(x) �
D(x)

􏽐
n
k�0 D(x)

. (4)

According to the probability, the roulette wheel selection
(the greater the distance, the greater the probability of being
selected as a cluster center) is repeated until K cluster centers
are selected.

Te second step is to cluster the initial cluster centers
selected in the frst step: cluster centers are divided into K
sets, and each sample is divided into the set to which the
nearest cluster center belongs to. Te average value of all
samples in each set is computed as the new cluster centers,
and each sample is subdivided into the set with the shortest

distance from the new cluster center; then, the average value
of the sample in each set is recalculated. Repeat the previous
operation until the change of the average value is less than a
certain threshold, and the K cluster centers are the new
anchor size. Table 2 reports the redesigned anchor sizes. It is
seen that the sizes in ourmethod can handle the varying sizes
of diferent types of petrochemical equipment by extending a
middle branch, and the prior sizes ft the actual equipment
more adaptively.

3.5. Data Augmentation Strategy. In practical industry im-
ages, multiple types of petrochemical equipment are usually
heavily overlapped, and some are occluded by complex
industry pipelines and other appendages. To overcome this
situation, in this paper, we introduce the Mosaic data
augmentation method to improve the robustness. Tis
method can adjust four images into one image and then sent
to the network for training. In addition, we randomly change

Table 1: Quantitative comparison of object sizes between our chemical equipment data set and COCO.

Size (%) COCO (%) Chemical equipment data set (%)
Small (0, 0.3) 46.2 59.3
Medium (0.3, 0.7) 35.7 44.2
Large (0.7, 1) 28.1 6.5

Conv Conv kernel
group BN SiLU=

CCbam3xN =
Conv BottleNeck Cbam Conv Fusion

Conv

Conv

Figure 2: Proposed CCbam3 module in our work.

Shared Multilayer
Perceptron

MaxPool

AvgPool

Input feature

Mc

(a)

Conv
layer

[MaxPool, AvgPool]Input feature Ms

(b)

Figure 3: Channel and spatial attention module. (a) Channel attention module. (b) Spatial attention module.
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the brightness, contrast, saturation, and angle of the images
to reduce the overftting.

To generate the robustness of the model, we also take a
mix virtual sample generation method, specifcally, we
randomly select two images from the training data set and
weight their pixels and labels to obtain the new images and
new labels, and these virtual samples are independently
sent to the network and refresh the parameters. In this
way, the size of the samples can be remarkably enlarged.
Figure 4 presents some examples of our data
augmentation.

4. Experimental Results and Discussion

In this section, experimental results are presented to dem-
onstrate the performance of the proposed model on a
petrochemical equipment image dataset. Ablation studies
are performed to evaluate the efectiveness of the proposed
method. State-of-the-art detectors, Yolov5 [7], SSD [8],
Faster RCNN [11], RetinaNet [14] and Efcient Det [17], are
chosen as benchmarks.

4.1. Datasets and Metric

4.1.1. Petrochemical Equipment Image Dataset. Te petro-
chemical equipment automatic detection is essential in
computer-assisted equipment examination, repairing, and
overhauling of petrochemical factories or oil felds. How-
ever, the petrochemical equipment images are difcult to be
collected because the safety management rules are usually
strict in these places. Tus, to the best of our knowledge,
there is no public data set about this scenario. To handle this,
we built a petrochemical equipment image dataset which
consists of 2644 images. Tese images were acquisited by
digital cameras including camera-equipped explosion-pre-
vented mobile phones and explosion-prevented digital video
cameras. Each image scale ranges from 540× 960 to
2800×1500 pixels and contains various shapes and scales.

Tere are 5 types of typical petrochemical equipment in
these images, and they were annotated by two petrochemical
engineers independently. Teir labelling results were ex-
changed and checked to form a fnal annotated data set.
Specifcally, these 5 types of petrochemical equipment in-
clude luoganbeng (screw pump), lixingbeng (centrifugal
pump), huanreqi (heat interchanger), sphere, and cyclinder.
And they are typical key equipment in petrochemical fac-
tories or oil felds.

Since the equipment image detection task is still chal-
lenging because of class imbalance and object-image size

mismatch, in our work, this dataset is utilized for the val-
idation of the proposed method. Tis dataset in our ex-
periments is randomly divided into three parts as follows:
1696 images for training, 300 for validation, and 648 images
for the test.

4.1.2. Evaluation Metrics. Te evaluation standard adopted
in this paper is the mean average precision (mAP), which is
utilized to evaluate the performance of our method relative
to other benchmarks. We also computed three diferent
average precision metrics: AP50, AP75, and mAP. For AP50
and AP75, both consider a bounding box prediction as true
and overall object categories when the interest over union
(IoU) scores between the predicted and the ground-truth
bounding box must be larger than 0.5 and 0.75, respectively.
TemAP, which takes a value between 0 and 1, is the average
of all 10 IoU thresholds from a range of [0.5, 0.95] with a step
size of 0.05.

4.1.3. Experimental Platform. All experiments in this paper
were conducted on the Ubuntu 18.04LTS system, which has
2.0GHz Intel CPU and 48GB RAM. Te GPU is NVIDIA
RTX 2080Ti. Te program environment is Anaconda 5.0.1
(Python 3.7) and PyTorch 1.7. In this paper, the improved
network structure of Yolov5s is used for training, with the
initial learning rate set at 0.001, the batch size set at 32, and
the number of learning epochs set at 150.

4.2. Experimental Results

4.2.1. Performance of Yolov5-FA. We use bottleneck as the
backbone for our detection structure, and this model has
been pretrained on the ImageNet. Our proposed framework
is shown in Figure 2. In the training and testing stage, the
input images are resized to 640× 640. In the training phase,
we trained the model for 150 epochs with one batch size of 6
and a learning rate of 0.001. We have implemented the
proposed method on PyTorch 1.7.0 and trained it based on
Yolov5. Our proposed model continues to be trained on the
Ubuntu 18.04LTS server with an NVIDIA GeForce GTX
2080Ti GPU. In this experiment, we modifed the number of
Yolov5 outputs, in which only 150 boxes were selected as
candidate boxes for each object.

Figure 5(a) reports the three loss curves on the training set
and validation set. It is seen that the box loss curve and object
loss and classifcation loss curves are steadily decreased on
both training set and validation data set which means that the
proposed model and the training parameter sets are efective

Table 2: Comparison of anchor sizes among diferent clustering algorithms in our chemical equipment data set.

Size (%) P5/32 P4/16 P3/8 P2/4

K means in Yolov5
(112, 68) (221, 176) (403, 234) —
(126, 151) (405, 96) (304, 322) —
(191, 126) (225, 268) (564, 318) —

K means++ in the proposed method
(89, 69) (191, 127) (233, 165) (304, 321)
(177, 68) (160, 218) (227, 269) (481, 230)
(134, 140) (408, 93) (344, 222) (583, 315)
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to converge the minimum. In fact, the training epochs can be
prolonged to 500 if the curves need to be examined in the
whole training procedure. However, the precision and recall
and mAP have steadily approached to the maximum, so the
results are reported only based on 150 epochs.

Figure 5(b) plots the precision-recall curves of diferent
petrochemical equipment localization and identifcation. It
is seen that the average precision is 97.8% for all equipment,
and the localization of the cylinder achieves 99.5%, which is
the highest value among the fve types of equipment. Te
accuracy of the screw pump (luoganbeng), although in the
worst place of the fve types of equipment, still approaches to
96.6%. Tey all can be precisely detected and located by the
proposed method. To evaluate the precision and recall in a
harmonic mean way, we also plot the F1-score of diferent
equipment under diferent confdence in Figure 5(c). It is

seen that the highest F1-score can approach to 0.97 and
present a desirable result on each equipment.

Considering that our model is improved based on the
standard Yolov5 model, we compared our model and two
standard Yolov5s and Yolov5x in the same experimental
environment. Te Yolov5s model is smaller and easier to
deploy quickly because it employs the smallest depth and
width in the net structure, and on the other side, the Yolov5x
has a size of nearly 168MB but is the most accurate version
of its family. Table 3 reports the results of these three models
in terms of mAP50, F1, Precision, Recall metrics. It is seen
that the mAP of the Yolov5x model has increased 2.6% and
0.04 in comparison to the basic Yolo5x in terms of mAP50
and F1 scores; however, the model size has increased from
13.70 to 156.2MB. Our proposed method achieved the
competitive results in comparison to the Yolo5x model, but

Figure 4: Examples of augmented images in the training set.
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Figure 5: (a) Tree loss curves of the training set and validation set and the key metric curves (precision, recall, and mAP). (b) Precision-
recall curves of diferent petrochemical equipment. (c) F1 curves of diferent petrochemical equipment.

Table 3: Performance of the proposed method in diferent detection precisions and model parameters.

Model Epochs mAP50 (%) F1 Precision (%) Recall (%) Parameters (MB)
Yolov5s 200 94.6 0.93 93.6 91.9 13.7
Yolov5x 200 97.4 0.97 97.3 97.1 156.2
Proposed 150 97.8 0.97 97.3 97.2 13.7
Note: Te bold values denote the best ones.
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it only has 13.7MB, just 8.8% of the complex Yolo5x model.
Our model outperforms Yolo5x in all terms, and it is also
better than Yolo5x in terms of mAP50 and Recall which
means the added attention mechanism model and adaptive
anchor and data augmentation strategies are benefcial to
extract the petrochemical equipment feature and perform
the inference more accurately.

Figure 6 illustrates the detection results with the pro-
posed model in various petrochemical working scenes, and
the detection results on the sixteen images show that the
proposedmodel can successfully detect diferent targets even
when it is tiny or partially appears in the pictures; for in-
stance, the partial lixingbeng equipment in the last column
has been accurately detected. In addition, we can fnd that
the proposed model can locate the equipment in diferent
views, just like the huanreqi equipment in the frst three
columns.

4.2.2. Performance of Comparative Experiments. To further
demonstrate the efectiveness and robustness of our model,
we compared it with the state-of-the-art detection methods
on the testing dataset. Te mainstream compared methods
are the popular one-stage or two-stage object detection
models, such as Faster RCNN, SSD (single-shot detector),
RetinaNet and Efcient Det, Yolov5s, and improved
Yolov5x. Te parameters and experimental setting followed
the original model and the pretrained model on COCO data
set were also employed.

Table 4 reports the petrochemical equipment detection
performance of the proposed model and the related models
in terms of the metrices such as mAP50, mAP75, and AP of
each equipment. It can be seen that our proposed model
achieves 97.8% in mAP50 and 96.3% in mAP75, which are
the highest overall mAP50 and mAP75, and the best per-
formance for all 5 categories of objects in comparison to the
start-of-the-art models. Specifcally, in the mAP50 metric,
the proposed model outperforms Faster RCNN, SSD, Ret-
inaNet, and EfcientDet by 2.9%, 2.6%, 2.5%, and 2.5%
respectively; in the mAP75 metric, the proposed model
outperforms them by 5.1%, 2.5%, 2.8%, and 1.5%, respec-
tively. It is known that the four related models have their
characteristics in network structure for handling the object
detection; for example, Faster RCNN is a famous two-stage
deep convolutional network used for object detection, and it
is regarded as an end-to-end and unifed network that can
accurately predict the locations of diferent objects, while
SSD is known to be a one-stage object detection by intro-
ducing small convolutional flters to forecast the object
classes and ofsets to original boxes. It is usually regarded
that the two-stage detector can obtain more accurate results;
however, SSD got better performance than Faster RCNN in
our petrochemical equipment detection with complex
background. Furthermore, RetinaNet is a single-stage object
detectionmodel that uses a focal loss function to alleviate the
problem of the extreme foreground-background class im-
balance during training. EfcientDet is another famous one-
stage object detection model that proposed a bidirectional
feature pyramid network with fast normalization and feature

fusion enhancement. Tey all achieve better performance
than Fast RCNN and SSD. Considering these latest methods
incorporate multiscale feature extraction into their back-
bones, in this viewpoint, it is adorable to adopt multiscale
feature fusion when designing a detection network towards a
specifc task.

Furthermore, compared to the famous Yolov5s and
Yolov5x under Yolo network, our proposed model achieves
higher mAP50 and mAP75 for fve categories of objects and
contributes 3.2% and 0.4% to the overall mAP50. Our
method also outperformed Yolov5x in terms of mAP50 and
mAP75 for 0.4% and 0.7%. Particularly, signifcant im-
provement can be found in the detection of four out of fve
types of petrochemical equipment. Overall speaking, the
values of the mAP50 and mAP75 metrics have shown that
the proposed model can get more precise petrochemical
equipment location information and have great detection
performance of equipment with varying sizes compared with
other methods.

4.2.3. Ablation and Scalable Experiment. To investigate the
efect of the diferent improved technologies more intuitively
on the performance of the proposedmodel, we conducted an
ablation experiment. Specifcally, by keeping the structure of
Yolov5s unchanged and only improving the extended
module, we can observe the impact of the performance.
Ten, we added the spatial and channel attention mecha-
nism module, and adaptive anchor generation and data
augmentation, respectively, to observe the experimental
results and analyze their infuence. Our ablation experiment
also keeps training for 150 epochs. When the training result
was stabilized, the training was fnished, and the model was
tested on the testing data set.

Te metric indicators are shown in Table 5. It is found that
by introducing the improved spatial and channel attention
mechanism module, adaptive anchors, and the added data
augmentation, the accuracy indicators of equipment detection
have been improved accordingly.When the integration of these
three improvements was tested as the fnal network model, the
tested indicators show the best detection accuracy in com-
parison to the three methods introduced separately. Te
mAP50, precision, and recall of the proposed model increased
by 3.4%, 4.0%, and 5.8%, respectively, in comparison with the
base model which means the three modules are meaningful for
obtaining the high detection accuracy. It is also seen that the
CBAM contributes more than the other two modules for
improving the performance. Te corresponding mAP50,
precision, and recall increased by 2.7%, 4.9%, and 6.3%, re-
spectively. Tis indicates that the channel and spatial attention
mechanism is very useful to capture the key characteristics of
petrochemical equipment. Te modifcation on adaptive an-
chor generation is also helpful for improving the performance.

Te proposed model does not have more computational
complexity than the standard Yolov5s model. In fact, only
CBAM increases the model’s complexity because it involves
convolution in the backbone, the other components such as
adaptive anchors generation and data augmentation can be
regarded as the preprocessing that depends on the model
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training and test, and it did not take much computational
time for K means++ and virtual sample generation. So, the
FLOPs of our model are only larger than 0.1 than that in
Yolov5s.

To further investigate the scalability of the proposedmodel,
we extended it to three variants by increasing the depth and
width of the network. Specifcally, we added twoweights (depth
coefcient and width coefcient) to make the backbone block
and convolutional channel scalable. In our basic model, they
were settled as 1/3 and 1/2 for a small model. Ten, they are
increased to (2/3, 3/4), (1, 1), and (4/3, 5/4) for building the
medium, large, and extreme variants. Table 6 reports the ex-
perimental results of these variants on the test set of petro-
chemical equipment data set in terms of the mAP50, precision,
recall, FLOPs, and speed where FLOPs denote the foating-
point operations per second and can be roughly regarded as a
metric for the computational complexity of the model.

It is seen from Table 6 that the detection accuracies
consistently increase along with the deeper network and

larger convolutional channels. Te proposed method with
an extremely large deep network and wide channels can
achieve 98.9% in mAP50; however, the FLOPs are much
larger than that in the proposed method. Considering
FLOPs directly represent the parameters capacity, it is
suggested to take the proposed model with 1/3 depth co-
efcient and 1/2 channel coefcient as the major model for
similar tasks. On the other hand, the experimental results
validate the scalability of the proposed model in diferent
conditions as indicated in the experiment, and the pro-
posed model can be easily extended to the application that
puts accuracy in the frst place.

4.3. Discussion

4.3.1. Overall Discussion. In this paper, an improved
Yolov5-FA model with improved robustness and stability in
a complex petrochemical working environment is proposed

Figure 6: Examples of detected results by the proposed model in the testing set.

Table 4: Quantitative comparison measured by the common metric mAP in percentage with IoU� 0.5 and 0.75 of detection precision on
diferent petrochemical equipment.

Method mAP50
(all)

mAP75
(all)

Luoganbeng
(screw pump) Cylinder Lixinbeng

(centrifugal pump) Sphere Huanreqi
(heat interchanger)

Faster
RCNN 95.9 91.2 94.3 98.4 97.1 95.4 93.8

SSD 96.2 93.8 95.2 98.1 96.6 95.2 94.9
RetinaNet 96.3 93.5 95.5 99.2 96.1 96.8 94.2
EfcientDet 96.2 94.8 93.8 98.4 96.6 97.2 96.3
Yolov5s 94.6 91.6 95.5 99.0 97.2 97.0 91.5
Yolov5x 97.4 95.6 96.4 99.5 98.1 97.5 97.0
Proposed 97.8 96.3 96.6 99.5 98.5 97.6 97.2
Note: Te bold values denote the best ones.
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by using the spatial and channel attention mechanism to
focus on important feature information. Besides, we applied
the adaptive anchor and data augmentation module to make
the model learn more predefned information and improve
its accuracy and robustness. Furthermore, a detection layer
was embedded to improve the model’s detection accuracy
for varying equipment. Additionally, using the CIoU as the
loss function, it achieves the fastest convergence speed and
the best convergence efect function.

Te experimental results on the petrochemical equip-
ment image dataset have demonstrated the superiority of
Yolov5-FA, and the ablation study of spatial and channel
attention mechanism and adaptive anchor modules proves
that the combination of attention mechanism and adaptive
prior anchor can make a signifcant improvement on typical
petrochemical equipment detection performance. Specif-
cally, the performance of the proposed Yolov5-FA for
petrochemical equipment detection is discussed from the
following aspects:

(1) Te optimization of backbone network.In our work,
the bottleneck is added to four, instead of three in
basic Yolov5, which increases the efective perceptive
feld. Additionally, multiple CCbam3 layers and
spatial pyramid pooling layer are incorporated into
the backbone to extract multiscale meaningful fea-
ture information. Tis channel and spatial attention
mechanism module is also added to the neck part for
optimizing the feature map in diferent scales. Te
experimental results verifed this optimization in
comparison to the state-of-the-art methods. Te
proposed method achieved the best performance in
the overall mAP and specifc AP on each class. Te
ablation experimental results also reveal the efec-
tiveness of this optimization where the mAP50,
precision, and recall increase 1.6%, 2.5%, and 4.7%
when only CBAM is added to the standard Yolov5s
model. Tis also indicates there are still many ne-
cessities in backbone optimization instead of bor-
rowing standard backbones for equipment detection
in specifc industry scenarios.

(2) Te optimization of anchor generation. Anchors play
important roles in our model because it corresponds
to the object class in the classifcation module while
the object locates in the regressionmodule. If the IoU-
predicted anchors and genuine bounding box are too
small, then the performance on both classifcation and
localization will remarkably decrease. Unfortunately,
the anchor settled in most general object detection
algorithms is not designed for specifc tasks. In
contrast, the anchors were automatically estimated in
ourmodel with fner stages, more numbers, and larger
captive sizes, and considering the image sizes of our
data set range from 540× 960 to 2800×1500 pixels
and contain various shapes and scales, this adaptive
anchor generation using K means++ can make them
cover most equipment in the image set and alleviate
the burden of training the network. Tis can be
validated by the experimental results of Yolov5s,
Yolov5x, and our proposed model. Our model can
achieve competitive results compared to the most
powerful Yolov5x in terms of mAP50, F1, precision,
and recall, but it just needs 13.7MB parameters while
Yolov5x needs 156.2MB.

(3) Te optimization of data augmentation strategy. In
petrochemical equipment image data set with limited
practical industry images, heavily overlapped and
occluded equipment also increase the challenge of
applying the deep convolutional networks both in
designing and training stage. Furthermore, the image
sizes are varying positive images. Traditionally, the
data augmentation strategy is usually considered as
increasing the variety of the image from an addi-
tional source, such as downloading natural images
from the web; instead, we introduce the Mosaic data
augmentation method to improve the robustness.
Tis method can adjust four images into one image.
Te brightness, contrast, saturation, and angle of the
images are also randomly changed and virtualized to
reduce the overftting. Te ablation experimental
results verifed the efectiveness of this simple

Table 6: Scalable study of detection precision on the test set of our petrochemical equipment data set.

Model Depth coefcient Channel coefcient mAP50 (%) Precision (%) Recall (%) FLOPs (B) Runtime (ms)
Proposed small 1/3 ½ 97.8 97.3 97.2 16. 6.1
Proposed medium 2/3 ¾ 98.3 98.3 97.7 49.2 9.2
Proposed large 1 1 98.7 98.5 97.7 108.6 13.8
Proposed extreme 4/3 5/4 98.9 98.5 98.2 212.4 15.4
Note: Te bold values denote the best ones.

Table 5: Ablation study of detection precision on the test set of our petrochemical equipment data set.

Model CBAM Adaptive anchors Data augmentation mAP50 (%) Precision (%) Recall (%) FLOPs (B)
Yolov5s — — — 94.6 93.6 91.9 16.3
M1 √ — — 96.2 96.1 96.6 16.4
M2 — √ — 95.8 94.7 95.0 16.3
M3 — — √ 95.3 95.2 94.4 16.3
Proposed √ √ √ 97.8 97.3 97.2 16.4
Note: Te bold values denote the best ones.
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strategy. Te corresponding mAP50, precision, and
recall increased by 0.7%, 1.6%, and 2.5%, respec-
tively. Although this strategy did not improve much
more performance than the optimization of back-
bone and adaptive anchor generation, it makes use of
the powerful nonlinear ftting ability of deep con-
volutional neural networks without extra acquisition
time and cost.

4.3.2. Limitations. Tere are some limitations of the pro-
posed model should be addressed as follows:

(1) Te class imbalance problem was less taken into
consideration in the proposed model. Although it
optimized the backbone with spatial and channel
attention mechanisms and increased the perceptive
felds by increasing scales in the bottleneck, the
diference between the objects is not explicitly em-
phasized. If the number of one object in the images is
extremely larger or less, the objects with less in-
stances will be diverted by those with larger in-
stances. In our training stage, we built the frequency
of every class and then selected images according to
their frequencies in each epoch. It could alleviate the
class imbalance problem to some extent; however, it
was empirical and needed frequency adjustment
when there are many subjects in one image. In our
future work, we will investigate image data aug-
mentation, image resampling, and weighting in loss
functions to solve this limitation.

(2) Te hard examplemining is not incorporated into our
model. Although our model achieved over 96% in the
task of petrochemical equipment detection, it still
exists numerous objects hard to be detected in many
images. For instance, the performance of the proposed
model on Luoganbeng (screw pump) and Huanreqi
(heat interchanger) is remarkably worse than the
other three types of equipment. One reason for this
result arises from the huge viewpoint diversity of these
equipment in the image data set, and the other reason
is that there are much less images that contain these
two types of equipment. In our future work, we will
explore a new feedbackmodule that can automatically
collect the hard examples and feed them to adjust the
threshold in the anchor proposal submodule for
improving classifcation and regression accuracy.

(3) Te limited size of the image data set is also important
for testing the proposed model. As stated above, the
specifc petrochemical equipment data set is rare, and
the size of the training data is relatively small in
comparison to the public COCO and ImageNet dataset.
Tis is mainly due to the difculty of acquisition in
high-risk and prohibited scenes. Te annotation has
also been a challenging and time-consuming subtask in
our study. In addition, from the experimental and
detection results, we can see that the increase in
background complexity and the view of the equipment
have little impact on the detection results which indicate

that the added attention model and data augmentation
strongly support the efectiveness of the design and
training of the proposed model. In the future, we will
strive on increasing the size of the data set and adding
more complex background by taking more images of
the working scenes and using the virtual sample gen-
eration strategy. On the other hand, the images are
mainly taken from the view of workers, and the bird’s-
eye view could increase the variety of images. In ad-
dition, we will make attempts at the automatic or self-
automatic annotation of the images to thoroughly
evaluate the performance of the proposed model.

5. Conclusion

In this paper, we have presented a one-stage attention
mechanism-enhanced Yolov5 network for petrochemical
equipment detection in industry images. Considering the
advantages of the channel and spatial attention mechanism
and adaptive anchor generation to handle objects in complex
background, the Yolov5 object detection model is improved
by incorporating these two modules. We also made an
improvement on the adaptive anchor by applying the K
means++ clustering algorithm. In addition, the data aug-
mentation strategy is also introduced to handle the relatively
small sample and enhance the robustness of the fused model.
Te experimental results on the self-built petrochemical
equipment image dataset demonstrate the competitive re-
sults of our proposed method.
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