
Retraction
Retracted: Prediction of Coal Mining Subsidence Based on
Machine Learning Probability Theory

Journal of Electrical and Computer Engineering

Received 22 November 2022; Accepted 22 November 2022; Published 18 December 2022

Copyright © 2022 Journal of Electrical and Computer Engineering. �is is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Journal of Electrical and Computer Engineering has retracted
the article titled “Prediction of Coal Mining Subsidence
Based on Machine Learning Probability �eory” [1] due to
concerns that the peer review process has been
compromised.

Following an investigation conducted by the Hindawi
Research Integrity team [2], significant concerns were
identified with the peer reviewers assigned to this article; the
investigation has concluded that the peer review process was
compromised. We therefore can no longer trust the peer
review process, and the article is being retracted with the
agreement of the editorial board.

References

[1] X. Tian, X. Jin, and X. He, “Prediction of Coal Mining Sub-
sidence Based on Machine Learning Probability �eory,”
Journal of Electrical and Computer Engineering, vol. 2022,
Article ID 9772539, 10 pages, 2022.

[2] L. Ferguson, “Advancing research integrity collaboratively and
with vigour,” 2022, https://www.hindawi.com/post/advancing-
research-integrity-collaboratively-and-vigour/.

Hindawi
Journal of Electrical and Computer Engineering
Volume 2022, Article ID 9802512, 1 page
https://doi.org/10.1155/2022/9802512

https://www.hindawi.com/post/advancing-research-integrity-collaboratively-and-vigour/
https://www.hindawi.com/post/advancing-research-integrity-collaboratively-and-vigour/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9802512


RE
TR
AC
TE
DResearch Article

Prediction of Coal Mining Subsidence Based on Machine
Learning Probability Theory

Xiaohong Tian,1 Xinyuan Jin ,2 and Xinwei He3

1Coal and Chemical Industry College, Shaanxi Energy Institute, Xianyang 712000, Shaanxi, China
2Wenzhou University of Technology, Wenzhou 325035, Zhejiang, China
3Research and Production Department, Xi’an AiSheng Technology Group Company, Xi’an 710065, Shaanxi, China

Correspondence should be addressed to Xinyuan Jin; jinxy@wzu.edu.cn

Received 7 March 2022; Revised 11 April 2022; Accepted 22 April 2022; Published 21 May 2022

Academic Editor: Xuefeng Shao

Copyright © 2022 Xiaohong Tian et al. is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Geological disasters such as subsidence caused by mining have been continuously a�ecting people’s production and life.
 erefore, how to predict the occurrence of geological disasters such as mining subsidence is an urgent technical problem.
 e study of mining subsidence prediction can e�ectively guide the safe production of mining area, and it is of great
practical signi�cance. Probability theory is a discipline used to express uncertainty. It provides methods and axioms to
quantify and deduce uncertainty, which allows us to reason when uncertainty exists.  is paper mainly studies the
prediction process of mining subsidence based on machine learning probability theory. In this paper, the mining sub-
sidence problem is studied.  e main research contents are as follows: through the research and analysis of the mining
subsidence prediction method, the probability integral method is determined as the theoretical basis for the study.  e
mining parameters are obtained from the three-dimensional geological body model of the mining area, and the prediction
parameters are calculated by the least square �tting.  is paper makes a detailed plan for the overall design of mining
subsidence prediction module, adopts the form of independent research and development and joint development with the
existing software, designs �ve submodules according to the design objectives, principles, and functional needs of the
module, and studies the application of mining subsidence prediction module. In this study, it is found that the predicted
data of the maximum settlement value appear at the 23rd point, and the maximum value is 1567 mm, which is completely
consistent with the change trend of the measured value.  e settlement value is calculated from the edge position of the
working face to the position where the chariot gradually increases, which conforms to the change law of surface movement
and settlement.

1. Introduction

Machine learning is an interdisciplinary specialty, covering
probability theory knowledge, statistical knowledge, ap-
proximate theory knowledge, and complex algorithm
knowledge. It uses computer as a tool, is committed to
simulating human learning methods in real time, and di-
vides the existing content into knowledge structures to ef-
fectively improve learning e�ciency. Coal is China’s main
energy source, accounting for more than 70% of the com-
position of disposable energy. With the rapid development
of China’s economy, the demand for coal has increased
sharply.  e large-scale exploitation of underground

resources has caused surface movement and deformation
and damage to surface buildings and other facilities, causing
land collapse and damage; the quality of the soil is reduced,
and the e�ective land use area is reduced.  e problem will
also cause groundwater system and ecological environment
damage and geological disasters such as landslides and
mudslides [1, 2]. According to the survey, the area of forests
directly damaged by mining in China has reached 1.06
million hectares and the area of destroyed grassland is
263,000 hectares. e country has occupied a total of about 5
million hectares of land, about 1.57 million hectares of
damaged land, and still has 40,000 hectares per year.  e
speed of the increase is only 10% [3–5].
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According to estimates, for every 10,000 tons of coal in
China, the average collapse is 0.2 hectares; in the dense plain
mining area of the village, about 10,000 people need to
migrate for every 10 million tons of coal [6]. It can be seen
that the impact of the disaster caused by mining subsidence
on the environment is continuous, multifaceted, and often
severely destructive, which has a serious impact on the
economic development of mining enterprises and the en-
vironmental protection of mining areas, and also threatens
the safety of people’s lives and property around the mining
area restricting the sustainable development of enterprises
[7, 8]. Mining subsidence is a time and space development
process.+emovement of surface and rock layers not only is
accompanied by the mining process but also has a certain
persistence to the damage of the surface and buildings [9].
Mining subsidence is expected to be the core content of
mining subsidence disciplines. Mining subsidence research
is also of great significance for the safe production of mining
areas and the development of national economy [10]. It is
necessary to carry out in-depth study on the mining sub-
sidence of the mining area [11, 12].

+e characteristics of land subsidence disasters are wide
distribution, long duration, and high intensity, causing se-
rious damage to surface buildings, underground pipelines,
and aquifers. Land subsidence is a loss caused by the gradual
and cumulative decline of land elevation in a large area. +e
deformation is slow, measured in millimeters and centi-
meters. +e disaster is obviously regional, mainly in plains
and basins. Once a disaster occurs, it often forms a disaster
with large disaster area, serious losses, and difficult to
manage. +erefore, it is of great significance to carry out
ground settlement stability evaluation and settlement de-
formation prediction research. Lei combined the experi-
mental data of the settlement area and obtained the final
settlement deformation value of all the monitoring points by
the nonlinear curve fitting of the monitoring data by the
inverse tangent function model.+emodel proposed by him
can predict the trend of settlement deformation at the
monitoring point. +e correlation coefficients are all above
0.937, indicating that the prediction model has strong re-
liability. He processed the final settlement profile by pro-
cessing the final settlement prediction values of 60
monitoring points and using the Kriging interpolation
method. Kriging interpolation, also known as spatial local
interpolation, is based on variogram theory and structural
analysis. +e map can predict the overall distribution
characteristics of land subsidence deformation in the study
area. He then obtained risk partitions by combining the
sedimentation rate and residual sedimentation deformation
of the study area, but the practicability is not strong [13, 14].
+rough geological surveys, geophysical exploration, and
theoretical analysis, Sun studies the formation mechanism,
related influencing factors, and distribution laws of mining
subsidence. He introduced the preliminary assessment and
prediction of land subsidence caused by the collapse of goaf.
His experimental results show that mining is the main cause
of land subsidence, and groundwater infiltration accelerates
this process. He proposed a three-zone model to analyze and
evaluate the stability of the goaf. Based on the model, he

concluded that the formations in the goaf and the sur-
rounding nonmined areas are unstable, and once disturbed,
surface subsidence and ground fissures may occur [15, 16].
Suh takes the collapse hazard map near an abandoned coal
mine in a geographic information system (GIS) environment
as an example. Geospatial databases were constructed using
mine drift maps, topographic maps, land use maps, road
maps, building plans, borehole data, and settlement
checklists showing past settlement events. It includes six
mesh type factor layers (i.e., use multiple mine drifts and
estimated minefield plates, land use, distance from the
nearest rail, distance from the nearest road, and slope to
calculate the impact area instability (IAI) layer). +e data-
base identifies the relationship between past subsidence
events and these factors. +ere are two IAI factors that
combine the complex effects of the ground IAI and calculate
the depth of each subsurface and its extraction angle. Six CV
layers (one for each factor) were linearly combined to
generate a subsidence hazard map, which represents the
relative vulnerability of the subsidence in the study area.
+en, by comparing the estimated sensitivity level over the
entire grid cell range with the actual settlement occurrence,
the area under the cumulative frequency map technique is
used to verify the predicted subsidence risk. +e accuracy of
his proposed GIS analysis model in settlement prediction is
91.09%. In addition, through field investigations, he found
that in areas with high subsidence hazards, the damage
associated with subsidence was severe (the National Coal
Council stated that its damage rating was 4 or 5). He de-
termined the factor (slope angle) that was negatively cor-
related with the subsidence prediction by sensitivity analysis
[17, 18]. +e main feature of the differential SAR radar
interferometer is its high spatial resolution and high accu-
racy over a wide coverage area. Due to its unique advantages,
this technology is widely used to monitor surface defor-
mation. However, in coal mining areas, large-scale collapse
of the surface in a short period of time results in inaccurate
D-InSAR results and limits its ability to monitor mining
subsidence [19, 20]. Diao proposes a data processing method
that overcomes these shortcomings by combining D-InSAR
with a probabilistic integration method for predicting
mining subsidence. Five RadarSat-2 images from Fengfeng
Coal Mine in China were used to demonstrate the proposed
method and evaluate its effectiveness. He uses this method to
monitor surface deformation over thousands of square ki-
lometers and to identify more than 50 areas affected by
settlement [21–23]. +e relevant contents of the above re-
search on coal mining subsidence prediction are analyzed in
detail. It is undeniable that these studies have greatly pro-
moted the development of corresponding fields. We can
learn a lot frommethods and data analysis. However, there is
relatively little research on coal mining subsidence predic-
tion based on machine learning probability theory. It is
necessary to fully apply these algorithms to the research in
this field.

+e innovations of this paper are as follows: (1) +e
feature selection problem and related technologies are in-
troduced in general. +e related technologies and main
problems of the feature selection algorithm of Filter mode
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are analyzed and discussed. +e defects and shortcomings of
the current algorithm are pointed out through specific ex-
amples. +e discussion and analysis of these contents is the
basis for the next step. (2) A feature evaluation and selection
algorithm CoFS based on Banzhaf rights index is proposed.
Firstly, using the Banzhaf power index method of interest
distribution in the alliance game theory, the number of
winning (dependent) alliances possessed by each feature is
statistically analyzed and then weighted. +e weights will
have the characteristics of dependent characteristics. Sepa-
rated from other features, the winning alliance’s judgment
depends on the number of features in the alliance that are
dependent on the feature to be evaluated; then, by com-
bining mRMR evaluation criteria, features with high cor-
relation, internal dependence, and low redundancy are
obtained. +e subset improves the generalization ability and
classification performance of the learning algorithm. (3) A
dynamic weighting-based feature selection algorithm DWFS
is proposed. +e main feature of the algorithm is that the
candidate features are assigned dynamic weights according
to their relationship with the selected features (redundancy
or dependence). +e weights of the candidate features are
dynamically adjusted each time the new features are selected,
wherein the candidate features are adjusted. +e weight is
based on the ratio of the mutual information between the
mutual information and the original information after the
newly selected feature is a known condition. +e DWFS
algorithm can select highly correlated, at lower time com-
plexity, by continuously increasing the weights of candidate
features that have dependencies on selected subsets of
features and reducing the weights of features with which
they have redundant relationships.

2. Proposed Method

2.1. Machine Learning 1eory. +e possible realization of
machine learning combines the problems of inductiveness,
clear expression of probabilities, empirical basis of deductive
reasoning, and learnability. Machine learning is a subject
that makes model assumptions for research problems, uses
computers to learn model parameters from training data,
and finally forecasts and analyzes the data. +e presuppo-
sition of machine learning is that there is a general-purpose
machine with enough logic to simulate all the laws of logic.
On this basis, the machine learning system can be realized
through two complementary ways: deductive reasoning
learning and inductive statistical learning. +e deductive
reasoning model, because its inference rules are quasi-em-
pirical, can input hypotheses and empirical data into the
system and obtain new knowledge or improve system
performance through the abduction method. +e inductive
statistical model reinvents the inductive problem, and the
probabilistic and statistical associations, combined with the
principle of simplicity, enable the machine to determine a
hypothesis from the complex hypothesis space and make the
learnability problem clear. Hence, we can acquire new
knowledge.

+ere are fields of application such as medicine and
automation. Machine learning primarily uses known data to

learn and reason about the important properties of un-
known, potential probability distributions, revealing the
relationships between variables (or features) in data samples.
One of the most important factors affecting machine
learning performance is the quality of the data provided to
the system. With the rapid development and wide appli-
cation of computer technology, high-dimensional large-
scale data is constantly emerging and accumulating. +ere
are a large number of redundant and irrelevant features in
these high-dimensional data, which puts higher require-
ments on existing machine learning algorithms, bringing
great challenges. All machine learning problems are even-
tually transformed into an optimization problem, such as
minimizing the mean-square error or maximizing the
likelihood function. Feature selection is one of the important
research topics in the fields of machine learning, pattern
recognition, and statistics and is an important and com-
monly usedmeans of data preprocessing. Feature selection is
to select an optimal feature subset from the original feature
space according to the distribution characteristics of the
samples and based on some evaluation criteria. +e selected
feature subset has similar or better classification perfor-
mance than the original feature space. +e feature selection
algorithm can effectively eliminate redundant features and
irrelevant features, can improve the generalization perfor-
mance and operational efficiency of machine learning al-
gorithms, and has been widely promoted in practical
applications. Feature selection algorithms are mainly di-
vided into three categories: filter, wrapper, and embedded
mode. Filter mode is favored because of its fast speed and
versatility. However, the existing filter feature selection al-
gorithm has the following problems: either select the most
distinguishing features as the optimal feature subset, or
select some features with higher discrimination ability and
no redundancy between each other as the most excellent
feature subsets, and in reality, partially redundant features
have mutual support and dependency characteristics.
Treating such features as redundant culling will reduce the
performance of the learning algorithm. Usually, the feature
selection process is completed before the machine learning
algorithm is trained and belongs to the data preprocessing
category.

+e machine learning steps are shown in Figure 1. +e
pros and cons of the selected subset directly determine the

Data
collection

Feature
selection

Learning
algorithmNoise sample

processing

Missing data
processing

Data
preprocessing

Data set
T1

New data
set T2

Figure 1: Machine learning steps.
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final performance of the established learning model. A good
feature subset can significantly improve the efficiency of the
learning algorithm and the performance of the model and, to
some extent, improve the generalization ability of the
classification model to avoid overfitting.

+e feature selection process consists of four steps:
candidate subset generation, evaluation function, termina-
tion condition, and subset verification, as shown in Figure 2.

2.2. Prediction of Discontinuous Medium 1eory of Mining
Subsidence

(l) +e most effective noncontinuous medium theory
for mining subsidence calculation is the stochastic
medium theory, which has developed into a prob-
ability integral method in China. After nearly half a
century of research on mining subsidence workers in
China, it has become one of the most widely used
mining subsidence calculation methods in China.

(2) +e rock mass is regarded as a loose medium which
is composed of elliptical medium points and has
compression and shear resistance, while the shear
resistance is relatively small. When solving the
problem of double-layer rock mass, the subsidence
section equation of gently inclined coal seam mining
is obtained.

(3) +e rock mass is assumed to be a discontinuous
medium divided by the original joints and cracks
caused bymining damage, which can be described by
a fragment model; the rock mass is anisotropic,
heterogeneous, discontinuous “superposition prin-
ciple.” Based on the analytical method of stochastic
medium theory, the Weibull distribution method for
the calculation of surface movement deformation is
obtained, which can describe the asymmetric mobile
basin.

(4) +e study of fuzzy probability theory applied to
mining subsidence. +e problem of ground subsi-
dence caused by mining, i.e., mining subsidence, is a
comprehensive manifestation of various geological
mining factors, and each factor affects the mining
subsidence of the surface in different degrees and
ways. +erefore, the problem of surface subsidence
caused by underground mining can be regarded as a
fuzzy event, which is solved by fuzzy probability
theory in fuzzy mathematics.

(5) Noncontinuous deformation analysis based on nu-
merical manifold method. Limited coverage tech-
niques are often used in manifold analysis and are
rarely used in numerical calculations. +is method is
the first to use modern mathematics-manifold in
numerical analysis. It uses a manifold covering
technique to establish a new unified computing
method including finite element, discontinuous
deformation analysis method and analytical method.
+e far-reaching development prospects and appli-
cation value are known as the new generation of
methods in the twenty-first century, which has
attracted the attention and welcome of the theo-
retical and engineering circles.+ismethod can solve
the problem of continuous deformation of mining
subsidence. However, the relevant literature on ap-
plying this method to the field of mining subsidence
has not been seen yet. +is paper uses the technical
route shown in Figure 3 to carry out research work.

2.3. Introduction to the Probability Integration Method.
+e probability integration method is named for the
probability integrals contained in the motion and defor-
mation prediction formulas used. Since the basis of this
method is stochastic medium theory, it is also called sto-
chastic medium theory. +e theory of stochastic medium
uses discontinuous medium as the medium mechanics of
granular medium to study the problem of rock stratum and
surface movement. It is believed that the law of rock stratum
and surface movement caused bymining is similar to the law
described by granular medium model of random medium.
+e granular medium of the random medium is made up of
medium particles such as sand grains or relatively small rock
blocks. +e particles are completely out of contact and can
move relative to each other. +e movement of the granular
medium is characterized by the random movement of the
particles and the movement of a large number of granular
media is considered a random process. +erefore, from a
statistical point of view, if the whole mining process is di-
vided into infinite and infinitesimal unit mining, the in-
fluence of the whole mining face on the rock and surface can
be regarded as the sum of the influence of infinite and in-
finitesimal unit mining on the rock and surface.

2.3.1. Calculation Formula for Semi-Infinite Mining Move-
ment Deformation. +e so-called semi-infinite mining is

Candidate subset
generation

Subset
verification

Evaluation
function

Termination
condition

Primitive
feature space

Feature
subset

Subsets

Not satisfied
Satisfy

Figure 2: Feature selection process.
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when the mining width increases to a considerable extent
and then continues to increase the mining width has little
effect on the movement and deformation of the surface
above the stop line. It can be considered that the coal seam
on one side of the stop line is not disturbed, while the other
side the coal seams are all mined out.

When the coal seam is horizontal or gently inclined coal
seam (coal inclination angle α≤ 15°), the calculation for-
mula of the moving deformation value of the main section is

W(x) �
W0

2
erf

��
π

√

r
x􏼠 􏼡 + 1􏼢 􏼣

i(x) �
dW(x)

dx
�
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e

− π
x2

r2

k(x) �
d
2
W(x)

d
2
x

� 2π
W0

r
2 −

x

r
􏼒 􏼓e

− π
x2

r2

U(x) � b · r · i(x) � bW0e
− π

x2

r2

ε(x) � b · r · k(x) � 2π d
W0

r
−

x

r
􏼒 􏼓e

− π
x2

r2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (1)

where x is the abscissa of the point on the main section; the
origin of the coordinate is directly above the boundary of the
working plane (i.e., the coal wall); the x-axis points to the gob

along the surface; erf(x) � 2/
��
π

√
􏽒

x

0 e− λxdλ is the probability
integral function; r is the influence radius (m), which can be
calculated by the formula r � H0/tanβ, where H0 is the
average mining depth of the coal seam (m) and tanβ is the
main influence angle tangent; W0 is the maximum sinking
value (mm); and b is the horizontal movement coefficient.

+e calculation formula of the movement deformation
along the main section of the inclination is the same as the
formula of the strike, but it is necessary to replace x in the
formula with y and replace rwith r1 and r2.+e origin of the
coordinate system is set at the surface projection of the lower
mountain boundary after considering the offset of the in-
flection point, and the y-axis is along the surface (set to the
horizontal ground), pointing to the direction of the
mountain. r1 and r2 are the influence radius (m) of the
downhill and the uphill, respectively, which can be calcu-
lated by r1 � H1/tan β and r2 � H2/tan β. H1 andH2 are the
downhill and uphill depth (m), respectively, and θ is the
main influence propagation angle.

When the coal seam is a medium inclined coal seam
(15°< α <55°), the calculation formula of the trending dis-
placement deformation is the same as that of the horizontal
coal seam. +e calculation formula of the sinking, inclina-
tion, and curvature of the main section is also the same as the
horizontal coal seam tendency formula. +e horizontal
movement and horizontal deformation are calculated by
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Figure 3: Technical route.
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2.3.2. Calculation Formula for Limited Mining Movement
Deformation. When the size of the goaf is small, the mining
work cannot fully exploit the surface. +is mining situation
is called limited mining. +e calculation of the movement
deformation at this time is regarded as the difference be-
tween the two semi-infinite mining. +e calculation formula
for the movement deformation of the main section of the
horizontal or gently inclined coal seam is
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where l is the calculated boundary length (m) and L is the
tendency to calculate the boundary length (m), which can be
calculated by the following formula:

l � l0 − S01 − S02,

L �
L0 − S1 − S2( 􏼁 · sin(180 − θ − α)

sin θ
.

⎧⎪⎪⎪⎨
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(5)

In the formula, S01, S02, S1, and S2 are the offset points
(m) of the inflection point, the stop line and the downhill
and the uphill, respectively. +e calculation formula of the

main section moving deformation value of the horizontal or
gently inclined coal seam is the same as that of the strike. It is
only necessary to replace x in the formula with y, and r is
replaced by r1 and r2, respectively. +e calculation formula
of the moving deformation value of the main section of the
inclined coal seam is the same as the calculation formula of
the horizontal coal seam. +e formula for sinking, tilting,
and curvature of the main sectionmoving deformation value
is the same as that of the horizontal coal seam, and the
horizontal and horizontal deformations are calculated by

uy � W0 b e
− π y/r1( ) − e

− π y− l/r2( )􏼒 􏼓􏼒 􏼓 + cot θ
1
��
π

√ 􏽚
∞

−
�
π

√ y
1
r

e
− λ2

dλ −
1
��
π

√ 􏽚
∞

−
�
π

√ y − l

r2

e
− λ

dλ⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠, (6)

εy � Wo −2πb
y

r1
e

− π y/r1( )
2

−
y − l

r2
e

− π y− l/r2( )
2

􏼠 􏼡 + cot θ
1
r1

e
− π y/r1( )

2

−
1
r2

e
− π y− l/r2( )

2

􏼠 􏼡􏼠 􏼡. (7)

Under the limited mining conditions, it should be noted
that when the trend is full mining and the tendency is not
fully mining, it is necessary to calculate the propulsion

coefficient Cy and then multiply the Cy by the moving
deformation value, i.e., (4), multiply with Cy; when the trend
is not fully mining, the tendency is to fully exploit and
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multiplied by the trending displacement deformation value;
when the trend and the tendency are all insufficiently
mining. At the same time, Cy and Cx are calculated and then
multiplied by the trending and trending deformation values,
respectively, and the calculated result is finally the final value
of the moving deformation value of the finite mining main
section.

+e mining coefficient Cx can be calculated by the
sinking value calculation formula in (4), where x in the
formula is replaced by l/2 and then the calculated W0

x is
divided by W0. +e Cy calculation method of Cx is the same,
y is replaced by (L/2 − S1)sin(θ + α)/sin θ and substituted
into (4), and the value of the propensity coefficient Cy is
obtained.

3. Experiments

3.1. Experimental Design. +ree typical feature selection
algorithms were selected as simulation experiments in the
simulation experiments, namely, mRMR, ReliefF, and IG.
+e mRMR algorithm is the basic algorithm supported by
the proposed CoFS algorithm. mRMR algorithm is mainly to
solve the problem that the best m features obtained by
maximizing the correlation measurement between features
and target variables do not necessarily obtain the best
prediction accuracy, because these m features have redun-
dant features (meaning that the information contained in
this feature can be deduced from other features). +erefore,
compared with the original mRMR feature selection algo-
rithm, the effectiveness of the proposed algorithm is better
and the mRMR algorithm is widely praised by the industry
for information feature-based feature selection algorithm,
with a high representation. +e ReliefF algorithm is an
excellent feature selection algorithm based on Euclidean
distance. Euclidean distance refers to the true distance be-
tween two points in m-dimensional space or the natural
length of the vector (that is, the distance from the point to
the origin). According to Robnik-Sikonja and Kononenko,
the parameters Neighbors and Instances are set to 5 and 30,
respectively. Information Gain (IG) is also a well-known
feature selection algorithm based on information entropy.
+e value of the constraint factor ω in the CoFS algorithm is
set to 3. To fully validate the validity of the proposed feature
selection algorithm, the simulation experiment used 15 test
data sets from different UCI machine learning repositories.
+ese datasets are often used to compare the performance of
learning algorithms or feature selection algorithms in the
field of machine learning and data mining. From the di-
versity of these datasets, they can verify the performance of
the feature selection algorithm under different conditions to
some extent. In this experiment, the experimental platform
uses the well-known machine learning integration software

Weka and the relevant parameters of each learning algo-
rithm are set to Weka’s default values.

3.2. Experimental Data Collection. In order to obtain more
reliable classification performance, the simulation experi-
ment used 10 times of 10-fold cross-validation. +e 10-fold
cross-validation is to divide the dataset into 10 parts and take
9 of them as training data and 1 part as test data in turn. Each
simulation experiment will yield the corresponding classi-
fication accuracy, and the average of the 10 results will be
used as an estimate of the accuracy of the algorithm. In order
to better analyze the performance of the feature selection
algorithm, we performed a statistical significance test on the
experimental results to describe whether the selected feature
subsets of multiple feature selection algorithms have sig-
nificant performance gaps under the same classifier. +e
statistical significance test method used is the t-test, which
indicates that the performance of a feature selection algo-
rithm is significantly higher (or lower) than that of other
algorithms; if and only if the corresponding statistical P
value is less than 0.05, that is, the confidence is greater than
95%.

4. Discussion

4.1. Analysis of Sinking Data in Coal Mining. From the
display data of Table 1 and the curve comparison of Figure 4,
the following conclusions can be found: (1) +e maximum
subsidence value of the measured data in this paper is at the
23rd point, with a value of 1567mm, and the maximum
subsidence value of the predicted data is also at the 23rd

Table 1: East measured and expected sinking value (mm).

Point name 19 20 21 22 23 24 25 26 27 28
Predictive value 1322 1419 1503 1567 1566 1507 1527 1478 1077 998
Measured value 882 973 1239 1549 1567 1536 1501 1327 1159 1056
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26

27

28

500 1000 1500 20000

Measured value
Predictive value

Figure 4: Contrast curve between predicted and measured values.
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point, with a value of 1566mm. +e difference between the
two is very small, and there is only onemaximum subsidence
point, which indicates that the 1176 east working face is not
completely submerged. (2) +e predicted value and the
measured value are completely consistent, and the sinking
value is from the edge position of the working surface to the
middle position, the position gradually increases, and it
conforms to the law of the change of the sinking value of the
surface movement. (3) +e difference between the predicted
data and the measured data is relatively large between the 18
and 23 points. +e maximum difference is 367mm at 18th
point, the phase error is 49%, and the point with the smallest
prediction error is at point 23, only 1mm.

4.2. Analysis of Coal Mining Slope Data. From the data of
Table 2 and the curve comparison, Figure 5 can lead to the
following conclusions: (1) +e measured slope values are 22,
23, with positive and negative maxima at points 19 and 28,
respectively For 8.15mmm−1 and -7.94mmm−1, the posi-
tive and negative maximum values of the predicted value
data are 6.47mmm−1 at the 18th point and -7.18mm·m−1 at
the 27th point. (2) Because the measured data is lost, the
curve is not smooth and the prediction curve is smooth, but
the predicted value and the measured value are also con-
sistent. From the edge position to the working surface, the
tilt value is gradually increased to reach the positive max-
imum. After the value is gradually reduced, the tilt value is
also reduced to 0 in the gob area, then becomes a negative
value, then reaches a negative maximum value, and then
gradually decreases to 0. (3) Tilt value prediction result and
measured value are obtained. +ere is a gap in the point, but
on the other hand, it can be seen in the layout of the east

observation point that the 23rd point is in the middle of the
goaf, the position is in the direction of the downhill, and the
prediction curve in the curve comparison chart is inclined.
+e point where the value reaches 0 is just between the 22
and 23 points, indicating that the sinking basin is in the
middle of the 23rd and is also downhill offset value is
consistent with the variation of the inclination of the in-
clined face.

4.3. Analysis of Curvature Data of Coal Mining. Table 3 data
and curve comparison in Figure 6 can get the following
conclusions: (1) +e curvature prediction value and the
measured data are quite different. (2) +e measured cur-
vature change is very unstable, the curve has many break
points, the prediction curve is smooth, and the wave is
presented. (3) +eoretically, the curvature should reach a
negative maximum at the point where the sinking value is
the largest, while the measured curve in the figure is ob-
viously not reached; the prediction curve is consistent with
the theory, and from the overall trend of the prediction
curve, it also conforms to the trend of the theoretical curve of
the probability integration method.

4.4. Overall Analysis of Coal Mining. As shown in Figure 7,
the integral value comparison curve calculated by the ap-
proximate calculation algorithm can be seen from the figure.
For the operation efficiency test, a working surface with a
trend of 500 m and a tendency of 180 m is divided according
to the distance of 20 m× 20 m.+e entire working face has a
total of 2700 points. If there are multiple working faces, the
grid is divided according to the distance of 20 m× 20 m, and

Table 2: East measured and predicted tilt value (mm・m−1).

Point name 19 20 21 22 23 24 25 26 27 28
Predictive value 5.63 4.72 3.21 1.05 -1.89 -3.59 -5.9 -7.23 -7.21 -7.02
Measured value 8.14 6.82 7.07 0.23 0.13 -0.17 -2.16 -5.39 -6.53 -7.22
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Figure 5: Tilt value comparison graph.

Table 3: East measured and predicted curvature value (mmm−2).

Point name 19 20 21 22 23 24 25 26 27 28
Predictive value -0.11 -0.02 -0.08 -0.08 -0.08 -0.07 0.01 0.08 0.01 0.02
Measured value 0.07 -0.04 0.01 0.01 -0.01 -0.06 -0.06 -0.11 -0.05 0.03
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the timing is 20 s. If it is 30 m× 30 m, there are 4554 points,
and the timing is 8 s. It can be seen from the data that there
are some errors in the predicted values and the measured
values. It is considered that there are two possible reasons:
one is the deficiency of the probability integration method
itself. It can be seen from the data table and the curve
comparison chart.+ere are obvious differences between the
measured displacement deformation values of some points
and the theoretical values. +e changes of the values are
irregular and abnormal. +is may be because the geological
structure of the working area is complex, causing severe local
movement and deformation, and the probabilistic integra-
tion method is not sufficient for the prediction of subsidence
under complex geological conditions. +e predicted value
and the measured value are quite different. +e other is that
the predicted parameters are inaccurate. +e predicted
movement deformation curve is consistent with the mea-
sured curve in the overall trend, but there is a difference in
the value. It may be that the primary selection parameter is
not accurate enough. In addition, the influence of the ob-
servation error of the actual data is not excluded.

5. Conclusion

Based on a large amount of literature review, this paper
studies the mining subsidence and draws the following
conclusions: +e probability integral method is introduced.

+e prediction of coal mining subsidence by probability
integration method has the characteristics of easy computer
programming, simple calculation, and easy access to pa-
rameters. It can well meet the practical engineering appli-
cation. Some mining parameters are obtained from the 3D
geological body model and working face model of the coal
mine. +e method is simple and practical, and the calcu-
lation is accurate and fast. +rough database technology, the
mining and settlement of various data are managed, the
security of data is increased, and data sharing can also be
realized. Using the approximate calculation method of the
probability integral formula, the integral value can be ob-
tained quickly and accurately, and the efficiency of moving
deformation calculation can be improved. +e generated
moving deformation contours are superimposed with the
topographic map of the mining area, which facilitates the
user’s analysis of the moving deformation data.+ree typical
feature selection algorithms are selected for simulation
experiments.

+e research results in this paper focus on the following
two points. (1) +e combination of mining subsidence
prediction and three-dimensional model. +e GeoMS3D
platform provides a three-dimensional model of the mining
area. Some parameters of the mining subsidence prediction
are automatically acquired from the 3D model, and the
model data is fully mined. +e prediction results are dis-
played in the GeoMS3D platform. (2) Complete mining
subsidence prediction module. A set of data acquisition,
prediction calculation, impact assessment, result
analysis, and output data processing flow is designed. +e
module is simple and convenient to use and can meet the
basic requirements of coal mine for mining subsidence
prediction.

+rough the research in this paper, the authors have
done some useful practices and discoveries. However, due to
the complexity of the mining subsidence itself and the
limited research level of the authors themselves, there are
still many problems that have not been solved and further
research is needed: mining subsidence prediction for the
rectangular working face has a good predictive effect. For the
working face of any shape, although the module is also
considered, the calculation result is not completely satis-
factory and it needs to be improved.+e dynamic prediction
is insufficient, and the surface movement deformation is the
degree of advancement of the working surface changes in
real time. +erefore, its time prediction function is very
complicated. Although some research work has been done
on dynamic prediction in the process of developing the
mining subsidence prediction module, the effect is not very
satisfactory and needs further improvement.

Data Availability

No data were used to support this study.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

20 21 22 23 24 25 26 27 2819

-0.15

-0.1

-0.05

0

0.05

0.1

Cu
rv

at
ur

e V
al

ue

Predictive value
Measured value

Figure 6: Curvature value comparison curve.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-1 -0.5 0 0.5 1 1.5-1.5

Calculation
Approximate calculation

Figure 7: Contrast curve with approximate calculated integral
value.

Journal of Electrical and Computer Engineering 9



RE
TR
AC
TE
D

References

[1] Z. Chang, J. Wang, M. Chen, Z. Ao, and Q. Yao, “A novel
ground surface subsidence prediction model for sub-critical
mining in the geological condition of a thick alluvium layer,”
Frontiers of Earth Science, vol. 9, no. 2, pp. 330–341, 2015.

[2] X. Zhu, G. Guo, J. Zha, T. Chen, Q. Fang, and X. Yang,
“Surface dynamic subsidence prediction model of solid
backfill mining,” Environmental Earth Sciences, vol. 75, no. 12,
p. 1007, 2016.

[3] P. Polanin, “Application of two parameter groups of the
Knothe-Budryk theory in subsidence prediction,” Journal of
Sustainable Mining, vol. 14, no. 2, pp. 67–75, 2015.

[4] B. Zhang, L. Zhang, H. Yang, Z. Zhang, and J. Tao, “Subsi-
dence prediction and susceptibility zonation for collapse
above goaf with thick alluvial cover: a case study of the
Yongcheng coalfield, Henan Province, China,” Bulletin of
Engineering Geology and the Environment, vol. 75, no. 3,
pp. 1117–1132, 2016.

[5] Q. Yi, P. Sun, S. Niu, and Y. Kim, “Potential for sediment
phosphorus release in coal mine subsidence lakes in China:
perspectives from fractionation of phosphorous, iron and
aluminum,” Biogeochemistry, vol. 126, no. 3, pp. 315–327,
2015.

[6] D. Xuan, J. Xu, B. Wang, and H. Teng, “Borehole investigation
of the effectiveness of grout injection technology on coal mine
subsidence control,” Rock Mechanics and Rock Engineering,
vol. 48, no. 6, pp. 2435–2445, 2015.

[7] Q. Guo, G. Guo, L. Xin, W. Zhang, and S. Qin, “Research on
surface subsidence prediction of dense solid backfilling
mining based on the coupling of continuous and discrete
medium,” Journal of Central South University, vol. 48, no. 9,
pp. 2491–2497, 2017.

[8] T. Hao, J. Xu, D. Xuan, and B. Wang, “Surface subsidence
characteristics of grout injection into overburden: case study
of Yuandian No. 2 coalmine, China,” Environmental Earth
Sciences, vol. 75, no. 6, pp. 1–11, 2016.

[9] I. A. Wright, B. Mccarthy, N. Belmer, and P. Price, “Subsi-
dence from an underground coal mine and mine wastewater
discharge causing water pollution and degradation of aquatic
ecosystems,” Water, Air, & Soil Pollution, vol. 226, no. 10,
p. 348, 2015.

[10] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, “A review
of relational machine learning for knowledge graphs,” Pro-
ceedings of the IEEE, vol. 104, no. 1, pp. 11–33, 2015.

[11] X.-m. Guo, T.-q. Zhao, W.-k. Chang, C.-y. Xiao, and Y.-x. He,
“Evaluating the effect of coal mining subsidence on the ag-
ricultural soil quality using principal component analysis,”
Chilean Journal of Agricultural Research, vol. 78, no. 2,
pp. 173–182, 2018.

[12] A. Holzinger, “Interactive machine learning for health in-
formatics: when do we need the human-in-the-loop?” Brain
Informatics, vol. 3, no. 2, pp. 119–131, 2016.

[13] N. Lei, H. Wang, and X. Yan, “Application of the arctangent
function model in the prediction of ground mining subsi-
dence deformation: a case study from Fushun City, Liaoning
Province, China,” Bulletin of Engineering Geology and the
Environment, vol. 76, no. 4, pp. 1–16, 2016.

[14] R. Malhotra, “A systematic review of machine learning
techniques for software fault prediction,” Applied Soft
Computing, vol. 27, no. C, pp. 504–518, 2015.

[15] Y. Sun, X. Zhang, W. Mao, and L. Xu, “Mechanism and
stability evaluation of goaf ground subsidence in the third

mining area in Gong Changling District, China,” Arabian
Journal of Geosciences, vol. 8, no. 2, pp. 639–646, 2015.

[16] Z. Julian, T. Marcin, B. Adam, M. Maciej, B. Subhadip, and
P. Dariusz, “Multi-level machine learning prediction of
protein-protein interactions in Saccharomyces cerevisiae,”
PeerJ, vol. 3, no. 1, e1041 pages, 2015.

[17] J. Suh, Y. Choi, and H. D. Park, “GIS-based evaluation of
mining-induced subsidence susceptibility considering 3D
multiple mine drifts and estimated mined panels,” Environ-
mental Earth Sciences, vol. 75, no. 10, pp. 1–19, 2016.

[18] G. Li, N. Cao, P. Zhu et al., “Towards smart transportation
system,” Journal of Organizational and End User Computing,
vol. 33, no. 3, pp. 35–49, 2021, https://doi.org/10.4018/
JOEUC.20210501.oa3.

[19] Q. Jia, R. Xie, T. Huang, J. Liu, and Y. Liu, “Caching resource
sharing for network slicing in 5G core network,” Journal of
Organizational and End User Computing, vol. 31, no. 4,
pp. 1–18, 2019, https://doi.org/10.4018/JOEUC.2019100101.

[20] X. Yang, H. Li, L. Ni, and T. Li, “Application of artificial
intelligence in precision marketing,” Journal of Organiza-
tional and End User Computing, vol. 33, no. 4, pp. 209–219,
2021, https://doi.org/10.4018/JOEUC.20210701.oa10.

[21] A. Singh, B. Ganapathysubramanian, A. K. Singh, and
S. Sarkar, “Machine learning for high-throughput stress
phenotyping in plants,” Trends in Plant Science, vol. 21, no. 2,
pp. 110–124, 2016.

[22] X. Diao, K. Wu, D. Zhou, and L. Li, “Integrating the prob-
ability integral method for subsidence prediction and dif-
ferential synthetic aperture radar interferometry for
monitoring mining subsidence in Fengfeng, China,” Journal
of Applied Remote Sensing, vol. 10, no. 1, 016028 pages, 2016.

[23] A. Giusti, J. Guzzi, C. C. Dan, H. Fang-Lin, P. R. Juan, and
F. Flavio, “A machine learning approach to visual perception
of forest trails for mobile robots,” IEEE Robotics and Auto-
mation Letters, vol. 1, no. 2, 1 page, 2017.

10 Journal of Electrical and Computer Engineering

https://doi.org/10.4018/JOEUC.20210501.oa3
https://doi.org/10.4018/JOEUC.20210501.oa3
https://doi.org/10.4018/JOEUC.2019100101
https://doi.org/10.4018/JOEUC.20210701.oa10

