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Noise in a communication system degrades the signal level at the receiver, and as a result, the signal is not properly recovered or
eliminated at the receiver side. To avoid this, it is necessary to modify the signal before transmission, which is achieved using
channel coding. Channel coding provides an opportunity to recover the noisy signal at the receiver side. The low-density parity-
check (LDPC) code is an example of a forward error correcting code. It offers near Shannon capacity approaching performance;
however, there is a constraint regarding high-girth code design. When the low-girth LDPC code is decoded using conventional
methods, an error floor can occur during iterative decoding. To address this issue, a neural network (NN)-based decoder is utilized
to overcome the decoding problem associated with low-girth codes. In this work, a neural network-based decoder is developed to
decode audio samples of both low- and high-girth LDPC codes. The neural network-based decoder demonstrates superior
performance for low-girth codes in terms of bit error rate (BER), peak signal-to-noise-ratio (PSNR), and mean squared error
(MSE) with just a single iteration. Audio samples sourced from the NOIZEUS corpus are employed to evaluate the designed neural
network. Notably, when compared to a similar decoder, the decoder developed in this study exhibits an improved bit error rate for

the same signal-to-noise ratio.

1. Introduction

The communication system consists of a transmitter and
a receiver, with the channel coder playing a crucial role in
this system. The channel coder is used as an encoder at the
transmitter side and as a decoder at the receiver side. It
provides reliability to both wired and wireless channels in
the communication system and is commonly referred to as
error correcting codes. Channel coding can be broadly
classified into two categories: forward error correcting code
and backward error correcting code. One example of
a forward error correcting code is the low-density parity-
check (LDPC) code, which is also known as a capacity
approaching code [1]. LDPC codes greatly enhance the
reliability of communication [2]. Forward error correcting
codes add additional bits to the information bits in order to

facilitate the recovery of the original information at the
receiver side [3]. Channel coders find significant applica-
tions in deep-space communication, satellite communi-
cation, and wireless communication for data transmission
[4]. LDPC codes can be constructed in two ways: random
and structural. Short length quasi cyclic-LDPC codes,
which are widely used in audio broadcasting systems, are
an example of structured LDPC codes [5]. LDPC codes
were introduced by R. Gallager in his Ph.D. thesis and have
proven to be suitable channel coding schemes for high
throughput transmission. They are also considered as
channel coding schemes for the IEEE 802.11ax system [6].
The encoder of an LDPC code can be based on either linear
time encoding or Gauss-Jordan elimination methods,
while the decoder can be either hard decision- or soft
decision-based.
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The computational complexity of a soft decision decoder
is generally higher than that of a hard decision decoder.
Examples of soft decision decoders include belief propa-
gation and min-sum decoders. The belief propagation de-
coder incurs higher computational complexity due to
operations such as hyperbolic tangent calculations, multi-
pliers, adders, and comparators. In contrast, the min-sum
decoder eliminates the need for multipliers and hyperbolic
tangent functions in the decoding process, reducing its
computational complexity [7]. For an (N, K) regular LDPC
code with a column weight of w, and a row weight of w,, the
decoding process requires approximately 2w,N addition
operations and 2w.N comparison operations [5]. Con-
ventional decoding performs optimally when the con-
structed code is cycle-free, highlighting the importance of
reducing the impact of cycles [2].

Understanding the decoding of an LDPC code can be
facilitated by analysing its Tanner graph. The Tanner graph,
introduced by R. M. Tanner, illustrates the connections
between variable nodes and check nodes, revealing how and
where messages are passed between them. The length of the
smallest cycle in the graph is referred to as the girth of the
code [8]. A cycle in a Tanner graph represents a path that
alternates between check nodes and variable nodes, starting
and ending at the same node, without any node (except the
initial and final nodes) appearing more than once [8]. The
presence of short cycles, particularly those with a girth of 4,
in the parity-check matrix of LDPC codes can hinder
convergence. Such codes may not converge well to valid
codewords, as the short girth reduces the independence of
transmitted messages during the decoding process, leading
to a higher error floor [9, 10]. As cycle length decreases, the
frequency of incorrect information being recycled increases,
making error correction more challenging [2]. The presence
of short cycles in low-density parity-check codes can result
in performance degradation [2]. A variable node set is re-
ferred to as a stopping set if all its neighbours are connected
to this set at least twice. Eliminating all stopping sets and
trapping sets to construct LDPC codes can be challenging
[10]. To improve decoding performance and reduce the error
floor, algorithms such as the progressive edge growth (PEG)
algorithm and hill climbing algorithm are used to increase
the degree of variable nodes [2].

Neural networks have gained significant attention and
have been successfully applied in various domains, including
channel coding in communication systems, replacing con-
ventional systems in recent years [11]. Neural network-based
decoders have shown competitive performance in terms of
bit error rate (BER) when compared to conventional
decoding methods. Particularly for high-density parity-
check codes, neural network-based decoders achieve BER
close to that of maximum likelihood decoders and com-
parable to standard belief propagation decoders [12]. In
addition, neural network-based decoders demonstrate faster
convergence compared to traditional decoding algorithms,
requiring fewer iterations to achieve accurate decoding re-
sults [13]. There are various neural network architectures
available for solving engineering problems, including those
related to channel coding [14]. Different network structures
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such as feedforward neural networks (FFNNs), recurrent
neural networks (RNNs), or convolutional neural networks
(CNNs) can be employed based on the specific requirements
and characteristics of the coding scheme. Neural networks
offer an alternative approach to optimize conventional
methods or address problems where traditional mathe-
matical formulas may not be applicable. They leverage the
power of machine learning and pattern recognition to tackle
complex problems in channel coding. The approach of deep
learning-based neural network design provides comparable
performance in both high-density and low-density parity-
check codes when compared to the belief propagation (BP)
decoding algorithm. This approach requires fewer iterations
compared to conventional decoding methods [15]. The most
common network used in channel coding is a multilayer
perceptron (MLP) or feedforward neural network (FFNN)
or deep neural network (DNN). In the neural network-based
decoding approach, the probabilistic matrix calculations
between bit nodes and check nodes, which are required in
conventional decoding methods, are eliminated [16]. The
neural network-based decoder can either be a standalone
FFNN, RNN, and CNN or a combination of a conventional
decoder and neural network.

Various works have been carried out on neural network-
based decoder design such as the architecture described in
the study in [15] introduces a novel approach using the offset
min-sum algorithm in combination with a neural network.
In this architecture, the offset value in the min-sum algo-
rithm is treated as a learnable parameter of the neural
network. The decoder based on this architecture demon-
strates a 1 dB improvement in performance compared to the
traditional belief propagation decoder. The authors in [15]
further compare the results with a neural network (NN)
decoder that utilizes multiplicative weights. The NN-based
offset min-sum decoder achieves a coding gain that is 0.1 dB
lower than the NN-based belief propagation decoder. The
performance comparison of the conventional belief prop-
agation, NN-based offset min-sum, and NN-based belief
propagation decoders is presented in Figure 1. The obtained
bit error rate (BER) results highlight the superior perfor-
mance of the proposed architecture in the study in [15]. In
the decoder proposed by authors in [15], the ReLU activation
function is used during the check node process calculation.
This choice of activation function is likely based on its ability
to introduce nonlinearities and enhance the decoder’s
learning and decision-making capabilities. Overall, the ar-
chitecture presented in study in [15] combines the offset
min-sum algorithm with a neural network, leveraging
learnable parameters and the ReLU activation function to
achieve improved decoding performance compared to tra-
ditional approaches.

The NN decoder proposed by authors in [17] is based on
a neural belief decoder and utilizes learning weights at the
edges of variable and check nodes. The architecture of the
decoder consists of 10 hidden layers. During training, the
network is provided with all-zero codewords using a batch
size of 20 for each signal-to-noise ratio (SNR). The SNR
values are specified but not provided in the given in-
formation. The NN decoder is evaluated on BCH codes with
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FiGure 1: Comparative analysis of BER of conventional and NN decoder for BCH code [15].

different lengths and rates, including (63, 36), (63, 45), and
(127, 106). The RMSPROP learning algorithm with
a learning rate of 0.001 is employed for training. The results
obtained from the experiments show that the performance
of the NN decoder for short codes is similar to that of the ML
(maximum likelihood) decoder. For large codes, the NN
decoder achieves a coding gain of 0.75dB with fewer iter-
ations compared to the traditional belief propagation (BP)
decoder. The specific iteration numbers and SNR values are
not mentioned in the given information. The obtained re-
sults are presented in Figure 2, showcasing the performance
of the NN decoder for the mentioned BCH codes. It
demonstrates the effectiveness of the proposed architecture
in achieving improved decoding performance compared to
the traditional BP decoder. In summary, the NN decoder
introduced in study in [17] based on a neural belief decoder
shows promising results for decoding BCH codes. It achieves
competitive performance compared to the ML decoder for
short codes and provides a significant coding gain and re-
duced iteration count for large codes when compared to the
traditional BP decoder.

The NN decoder proposed in the study in [18] is
designed to decode both random and structured polar codes.
The decoder demonstrates performance similar to the MAP
(maximum a posteriori) decoder. Notably, the proposed
decoder exhibits the ability to generalize well to structured
codes compared to random codes. The design of the NN
decoder begins with three hidden layers, with 128, 64, and 32
neurons in each layer, respectively. A sigmoid activation
function is used for the neurons [18]. The training process
involves utilizing 16 bit code lengths with 20,000 samples for
SNR ranging from 0 to 5 dB.

The obtained results for the bit error rate (BER) of both
structured and random codes are shown in Figure 3 [18]. The
results indicate that the performance of the structure codes is
comparable to that of the MAP decoder. Moreover, the NN
decoder achieves this performance with a smaller number of
epochs compared to the randomly constructed codes. It is

worth noting that during training, when higher SNR values
are provided, the model tends to learn the structure of the
code. Conversely, when training is conducted at lower SNR
values, the model focuses on learning about the noise
characteristics [18]. In summary, the NN decoder proposed
in study in [18] demonstrates effective decoding of both
random and structured polar codes. The decoder achieves
performance similar to the MAP decoder and exhibits better
generalization for structured codes. The model’s ability to
learn the code structure and adapt to different noise levels is
observed, leading to improved decoding accuracy.

In study in [19], three types of decoders are proposed:
neural belief, neural min-sum, and neural recurrent neural
network (RNN). These decoders are evaluated using BCH
codes of different lengths: (63, 36), (63, 45), (127, 64), and
(127, 99). The decoders are trained using the RMSPROP
learning algorithm with learning rates of 0.001 and 0.0003.
In the neural belief propagation decoding, weights are
assigned at the edges of the Tanner graph, while in the neural
min-sum decoding, the weights are added or multiplied in
the check node process, depending on whether it is an offset
min-sum or normalized min-sum network, respectively [19].
The decoding performance of both conventional and NN
decoders is obtained and compared, as shown in Figure 4
[19]. It is observed that the performance of the RNN decoder
is 0.2 dB better than that of the feedforward neural network
(FFNN) decoder. Furthermore, the performance of the re-
duced cycle parity-check matrix is 0.6 to 1.0 dB better than
the NN decoder performance [19]. In summary, the de-
coders proposed in the study in [19], including the neural
belief, neural min-sum, and neural RNN, are evaluated on
BCH codes. The RNN decoder shows improved perfor-
mance compared to the FFNN decoder, achieving a gain of
0.2dB. In addition, the performance of the reduced cycle
parity-check matrix is significantly better, with a gain of 0.6
to 1.0 dB compared to the NN decoder performance.

In the study in [20], a deep neural network decoder for
a polar code with a length of 16bits and a half rate is
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FIGURE 2: Comparative analysis of BER of conventional and NN decoder for BCH code [18].
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FiGure 3: BER performance of structure and random constructed code [18].

proposed by the author. The decoder is tested with different
parameters of the neural network, such as the number of
hidden layers, the number of neurons, and the type of ac-
tivation function. The network architecture is implemented
using the Keras as the frontend and the Theano as the
backend. It consists of three hidden layers with 128-64-32
neurons, an input layer with 16 neurons, and an output layer
with 8 neurons. During the training process, the network is
trained using all possible code words of length 16 bits; hence,
the network is trained by 2'® codeword. First, the network is
tested with different activation functions using 128-64-32
neurons in the hidden layers. Then, it is tested with two
layers using different numbers of neurons in each layer. The
results in Figure 5 demonstrate that the rectified linear unit
(ReLU) activation function outperforms other activation
functions. In addition, increasing the number of hidden

layers and the number of neurons in the network improves
the performance of the decoder. In summary, the authors in
[20] introduce a deep neural network decoder for polar
codes of 16 bits and a half rate. The decoder is tested with
different neural network parameters, and the results show
that using ReLU activation function and increasing the
number of hidden layers and neurons improve the decoder’s
performance.

2. Methodology of Construction, Encoding,
and Decoding

2.1. Construction of a Parity-Check Matrix. The first step in
LDPC-based coding is to construct a parity-check matrix.
The parity-check matrix, as shown in (1), represents the
structural type of an LDPC code. It is used for decoding the
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code and also serves as the basis for creating a generator
matrix for encoding the code.
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In the LDPC code’s parity-check matrix H1, each sub-
matrix is a circularly shifted identical matrix with a size of
9% 9. Therefore, the overall size of the parity-check matrix is
27 x 54, where 54 represents the code length. Equation (1)
represents a specific parity-check matrix, which is designed
to have a low girth. The matrix H1 is also used in previous
work [21] for decoding of an image. It is a type of low-girth
matrix as it contains many short cycles.

2.2. Encoding of an Audio. The second step in LDPC-based
coding involves encoding the given message. The encoder is
employed at the transmitter side of the communication
system. The parity-check matrix H1, as shown in (1), is
utilized to construct the generator matrix G. The con-
struction of G involves extracting the parity bits using the
Gauss-Jordan elimination method and appending an
identity matrix to form G. The generator matrix can be
represented as G = [I|P"] or G = [P'|I], where P represents
the transposed matrix of parity bits and I represents the
identity matrix.

The audio signal, in the form of wave files, is converted
into 9644 frames, with each frame consisting of 16 bits. This
results in a total of 154,304 bits for the audio message. These
message bits are divided into frames of 27bits each. The



generator matrix G is then used to encode these frames,
resulting in 5715 frames of 54 bit codes. After encoding, the
encoded audio message is transmitted through the additive
white Gaussian noise (AWGN) channel. Before trans-
mission, the BPSK modulation technique is applied to the
encoded bits to convert them into symbols that can be
transmitted over the channel. BPSK modulation maps each
bit to a specific phase of the carrier signal, typically repre-
sented as +1 and -1, corresponding to 0 and 1bits,
respectively.

Therefore, the encoded audio message, in the form of
BPSK-modulated symbols, is transmitted through the
AWGN channel for further processing and reception at the
receiver side.

2.3. Conventional Method of Decoding. The third step in
LDPC-based coding is the decoding process, which takes
place at the receiver side of the communication system. In
the current work, the decoding process utilizes the min-sum
iterative decoding algorithm as a conventional decoder.
During the iterative decoding process, calculated messages
are exchanged iteratively between variable nodes and check
nodes. The decoding algorithm aims to iteratively estimate
the original transmitted message by minimizing the dif-
ference between the received signal and the decoded signal.
This iterative approach allows for error correction and
improves the accuracy of the decoded message. The mes-
sages passed between variable nodes and check nodes
contain information about the reliability and likelihood of
the transmitted bits. These messages are updated and refined
through multiple iterations, gradually improving the accu-
racy of the decoded message. Overall, the decoding process
in LDPC-based coding involves the iterative exchange of
messages between variable nodes and check nodes to iter-
atively estimate the original transmitted message, ultimately
improving the reliability and accuracy of the decoding
process.

Here, y; shows the received message through the AWGN
channel, while R;;and L;; show check node and variable node
process, respectively. yg is the final code word calculated
after maximum iteration.

The decoding process flow for LDPC-based coding is
illustrated in Figure 6. Equations (2)-(6) provide the
mathematical formulation for this process [21, 22]. To fa-
cilitate understanding of the iterative message passing
decoding of LDPC codes, a Tanner graph approach is
employed, as shown in Figure 7. By making simplifying
independence assumptions, the messages in the message
passing (MP) algorithm can be interpreted as the beliefs or
estimated probabilities of the model regarding the values of
each variable node in the graph [23]. The Tanner graph
provides a graphical representation of the connections be-
tween variable nodes and check nodes in the LDPC code. It
shows how the messages are passed iteratively between these
nodes, facilitating comprehension of the iterative decoding
process. The MP algorithm aims to refine and update these
messages through multiple iterations, improving the accu-
racy of the decoded message.
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Variable node calculation is as follows:
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Final variable node calculation after completion of it-
eration is as follows:
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Hard decision is taken at the end of final calculation, and
code bits have been recovered as follows:
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The computational complexity of the traditional decoder
for an (N, K) regular LDPC code can be described using (7).
In this equation, N represents the code length, K represents
the number of information bits, w, represents the row
weight (number of nonzero elements per row) of the LDPC
code, and w, represents the column weight (number of
nonzero elements per column) of the LDPC code. The
complexity is measured in terms of the number of addition
and comparison operations required for the decoding
process. This information helps assess the computational
requirements and efficiency of the traditional decoder for
LDPC codes [5, 9].

2w, N addition & 2w, N comparision. (7)

2.4. Neural Network-Based Approach. There are various
architectures of neural networks, which are classified based
on the layer connections. One such architecture is the
feedforward network (FFNN), also known as a multilayer
perceptron [20]. In the FFENN architecture, the connections
between layers are made only in a forward direction. Each
layer in an FENN consists of multiple interconnected
neurons. In a neuron, the weighted inputs are summed
together, an optional bias term is added, and the result is
passed through a nonlinear activation function. The acti-
vation function can be either a sigmoid function or a rec-
tified linear unit (ReLU) [18]. In the current work, the FFNN
architecture has been utilized, and the ReLU activation
function has been chosen. The ReLU activation function is
a popular choice in many deep learning applications due to
its ability to efficiently handle the vanishing gradient
problem and its simplicity in computation. By using the
FFNN architecture and the ReLU activation function, the
current work leverages the capabilities of neural networks to
decode LDPC codes effectively and achieve desired per-
formance in the communication system.

The summary of the architecture used in the current
work is shown in Table 1, while the flow of the NN design is
illustrated in Figure 8.

In the current work of NN design, the neural network
architecture comprises a total of 7 layers, which include the
input layer, output layer, dropout layers, and dense layers.
The selection of the hidden layers in the network is based on
calculations outlined in the study in [24]. The depth of the
network is determined using the formula log10(n), where n
represents the sample size [21, 24]. Considering a sample size
slightly above 10,000, the depth of the network falls between
4 and 5 layers. Therefore, in the current work, 5 inner hidden
layers are chosen, which includes the dropout layer. The
dropout layer is inserted between each hidden layer to
mitigate the risk of overfitting in the network [21]. Over-
fitting occurs when the model becomes too specialized to the
training data and performs poorly on unseen data. The
dropout layer randomly selects a portion of neurons in each
training iteration, temporarily excluding them from the
network, thus preventing the network from relying too
heavily on specific neurons or features. By including dropout
layers and selecting an appropriate number of hidden layers

based on the sample size, the current work aims to optimize
the network’s performance and generalization capabilities
while reducing the risk of overfitting.

In the current work, the TensorFlow library with Keras as
the frontend is utilized for the implementation of the neural
network. The sequential model is employed in this approach,
which allows for a linear stack of layers in the network. The
received code is first passed to the input layer, where the
weights are multiplied with the 54 neurons of the layer and
biases are added to them. Then, the output is forwarded to
the next layer through the rectified linear unit (ReLU) ac-
tivation function, which introduces nonlinearity into the
network and allows for better representation of complex
patterns.

The operation performed by each neuron in a NN can be
represented in the following equation:

p— (ij.z§+bf>, (8)

i1

where y; is the excitation of node i,n’ is the total incoming
connections, z' is the input, w! is the weight, b' is the bias,
and @, is the activation function at the i node to limit the
amplitude of the output node. The input z is received at the
neuron after multiplying with weight w. The value of weight
is always between 0 and 1 as the value fed at the input layer is
the normalized value.

To prevent overfitting, a dropout layer is employed,
where a certain percentage (e.g., 10%) of connections be-
tween neurons is randomly removed during each training
iteration. This helps in improving the generalization capa-
bility of the network by preventing it from relying too
heavily on specific connections. Finally, the output from the
previous layers is passed to the output layer, which contains
54 neurons representing the encoded code. The hidden
layers consist of 162 neurons in total. During the training
phase, the weights and biases assigned to the connections
between neurons are adjusted to minimize the difference
between the predicted output and the desired output. By
training the network with a sufficient amount of data, a more
generalized model is created that can be used for predicting
the encoded code for unseen inputs. In summary, the
current work employs the TensorFlow library with Keras as
the frontend, utilizing the sequential model. The input code
is processed through multiple layers, including the input
layer, hidden layers with ReLU activation, dropout layer, and
output layer. The network is trained to optimize the weights
and biases, resulting in a more generalized model that can
predict the encoded code efficiently.

In the current work, the tuning of the network is per-
formed by adjusting three key parameters: the learning rate,
the number of epochs, and the datasets used for training. The
learning rate determines the step size at which the weights
and biases of the network are updated during the training
process. By changing the learning rate, the speed and sta-
bility of the learning process can be controlled. The number
of epochs represents the number of times the entire dataset is
passed through the network during training. Increasing the
number of epochs allows the network to learn more from the
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TaBLE 1: Summary of network architecture [21].

Network architecture used

SN Name of the layers Output dimensions Activation function
1 Input layer (layer 1) 162 ReLu

2 Dropout layer (10%)

3 Dense layer (layer 3) 162 ReLu

4 Dropout layer (10%)

5 Dense layer (layer 5) 162 ReLu

6

Dropout layer (10%)

Selection of a NN architecture based on
Literature survey of decoder design

!

Selection of number of neurons based on the
length of the code here it is 54 so, the input
dimension of an input layer and output
dimension of an output layer is 54

!

Selection of activation function based on an
input value. In present work the normalized
values between 0 and 1 of the received message
through the channel hence the best suitable
activation function is ReLu

v

Selection of number of hidden layers and
optimization function. As per literature survey
number of hidden layers are
Log,, (No. of Training Sample) here it comes 5
and Adam optimizer perform better than other.

A

Providing training to the network

Change the various parameter
such as Number of neurons,
Optimizer and Learning rate

Is
Network Trained
with required
accuracy

Use trained network for prediction of an image
and audio

FIGURE 8: NN design flow.
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data, potentially improving its performance. However, it is
important to find a balance to avoid overfitting. Regarding
the datasets used for training, in the current work, different
types of training data are employed. Initially, the network is
trained using an all-zero codeword, followed by a dataset
consisting of half zeros and half ones, and finally, random
combinations of zeros and ones are used. This approach
allows the network to learn from different patterns and
variations in the input data. According to the literature
survey, one can use either an all-zero codeword or the
complete code book for training the network. In the current
work, a specific approach has been chosen for training.
Based on the experimental results, the designed neural

network in the current work achieves an accuracy of 70%,
indicating the percentage of correct predictions made by the
network. The loss, as observed from Figure 9, is 30%, rep-
resenting the discrepancy between the predicted outputs and
the desired outputs. It is important to minimize the loss to
improve the accuracy and performance of the network.
Overall, the tuning process in the current work involves
adjusting the learning rate, the number of epochs, and
utilizing different datasets for training, ultimately leading to
a neural network with a 70% accuracy and a 30% loss.

The computational complexity of FFNN is given by
equations (9), (10), and (11) [25].

Real multiplication (RM) = n,n;, 9)
Number of bit operation (BOP) = n,n;[b,b; + A (n;,b,, ;)] (10)
Number of addition and bit shift (NABS) operation = n,n; (X, + 1)A.. (1;,b,,b;), (11)

where n; is the number of input feature, n,, is the number of
neurons, b; is the input bit width, b,, is the weight bit width,
and X, is the number of adders required to perform
multiplication operation

Here, real multiplication indicates software complexity
of the NN while the BOP and NABS operation indicate
hardware complexity during implementation of NN on
hardware.

3. Results

The simulation results of both the conventional decoder and
the neural network (NN) decoder are presented in this
analysis. These results are obtained through a comparative
analysis of three audio samples of low-girth code. The audio
samples used in this analysis are sourced from the NOIZEUS
web sources [26], with the corpus description published in
the study in [27]. According to the study in [27], the noisy
signal samples used for training were taken from the AU-
RORA database. These noisy signals were combined with
speech signals at different signal-to-noise ratio (SNR) levels.
In this analysis, three audio samples with a 5dB SNR were
selected for evaluation. These noisy signal samples of audio
signals are visually represented by converting it from wave
format to periodograms [26]. By comparing the perfor-
mance of the conventional decoder and the neural network
decoder on these low-girth code audio samples, the effec-
tiveness of the NN decoder can be assessed. The simulation
results provide insights into the performance, accuracy, and
reliability of both decoding approaches, allowing for
a comparative analysis of their capabilities. Overall, the
simulation results obtained through the evaluation of these
audio samples provide valuable information on the per-
formance of the conventional and NN decoders for low-
girth codes, contributing to the understanding of their
comparative performance and potential applications.

3.1. Performance Comparison with Conventional Method.
The comparative analysis in terms of BER, PSNR, and MSE is
shown here between conventional and NN decoders. Figures
10-12 are the periodogram representation of audio sample
taken from NOIZEUS web sources [26] (Tables 2-4).

The BER plots shown in Figures 13-15 represent three
samples. These plots demonstrate the presence of an error
floor in the conventional decoder for low-girth codes,
whereas no error floor is observed in the NN decoder. It is
observed that BER increases with higher SNR values. For all
three samples, BER obtained using conventional decoders is
approximately 1x 10~" at an SNR of 7 dB, while for the NN
decoder, it is 8 x10™* at the same SNR value of 7 dB.

The PSNR plots shown in Figures 16-18 represent three
samples. These plots indicate that there is no increase in the
PSNR value for the conventional decoder, even with a rise in
SNR value. However, for the NN decoder, the PSNR value
increases with higher SNR values. For all three samples,
PSNR obtained using conventional decoders is approxi-
mately 39 dB at an SNR of 7 dB, while for the NN decoder, it
is 41 dB at the same SNR value of 7 dB.

The mean square error (MSE) plots shown in
Figures 19-21 represent three samples. It is observed that as
SNR increases, the error reduces and approaches zero for the
NN decoder. However, for the conventional decoder, the
error remains high for low-girth codes. MSE obtained using
the conventional decoder is 94% at an SNR of 7 dB, while for
the NN decoder, it is approximately 6% at the same SNR
value of 7dB for all three samples taken.

4. Discussion

The bit error rate (BER) represents the number of bit errors
per unit time. It is calculated as the ratio of the number of
erroneous bits to the total number of transmitted bits during
a specific time interval. The BER is a unitless measure of
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FIGURE 12: Original audio of sample 3 of train noise [26].

performance often expressed as a percentage [28]. In the
BER plot, there is a point at which the curve does not de-
crease as rapidly as before, indicating a region where per-
formance levels off. This region is referred to as the error
floor region. The portion of the plot just before the sudden
drop in performance is known as the waterfall region [29]. A
decoder’s performance is considered high when there is no
error floor region and a well-defined waterfall region in the
BER plot.

The low-girth code introduces an error floor in con-
ventional decoding, which is evident in Figures 13-15 of the
BER plot for the conventional decoder. In contrast, the
results obtained for the NN decoder do not exhibit an error
floor in the decoding process. This can be observed from the
same Figures 13-15.

The PSNR (peak signal-to-noise ratio) is a widely used
metric to assess the quality of reconstructed data in lossy
compression codecs. In the case of 8 bit data, typical PSNR
values for lossy image and video compression range between
30 and 50 dB. For 16 bit data, typical PSNR values fall be-
tween 60 and 80dB [30, 31]. Acceptable PSNR values for
wireless transmission quality loss are generally around 20 to
25dB [32, 33]. In the current study, the achieved PSNR is
approximately 41 dB at an SNR of 7 dB and 96 dB at an SNR
of 10dB which is observed from the PSNR plot of
Figures 16-18.

NN developed here is the best suitable decoder for low-
girth codes compared to conventional decoders.

BER of 8 x107%, obtained in the study in [3] and shown
in Figure 22, is achieved at an SNR of 10 dB. However, the
current decoder demonstrates a coding gain of 3 dB in terms
of BER performance compared to the study in [3]. In the
current work, the same BER of 8 x 10~* is achieved at an SNR
of 7dB. Furthermore, Figure 23 provides a comparison in
terms of the number of epochs used during the training of
the network. In the study in [18], a BER of 10~*is obtained at
an SNR of 7dB by training the network for 16 epochs. In
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TaBLE 2: Obtained BER, PSNR, and MSE of low-girth audio sample 1 of train noise of conventional and neural network decoders [21].

SNR (dB) BER conventional BER NN decoder PSNR conventional ~PSNR NN  MSE conventional

decoder decoder decoder decoder MSE NN decoder
1 0.872898 0.05667 39.71535 40.25115 0.949897 0.467508
7 0.898795 0.000813 39.71734 41.58944 0.947471 0.064932
8 0.903513 0.000191 39.7174 42.03299 0.947397 0.03147
9 0.903389 421E-05 39.71855 42.60724 0.945998 0.011642
10 0.907868 0 39.71591 96.32947 0.949216 0
11 0.913214 0 39.71892 96.32947 0.945555 0

TaBLE 3: Obtained BER, PSNR, and MSE of low-girth audio sample 2 of train noise of conventional and neural network decoders [21].

SNR (dB) BER conventional BER NN decoder PSNR conventional ~PSNR NN  MSE conventional

decoder decoder decoder decoder MSE NN decoder
1 0.872117 0.062062 39.71493 40.24071 0.950409 0.474213
7 0.899559 0.000852 39.71521 41.55545 0.950066 0.068534
8 0.901092 0.000454 39.7154 41.977 0.949834 0.034554
9 0.906769 3.56E—05 39.71481 42.72688 0.950552 0.009385
10 0.910385 0 39.71606 96.32947 0.949026 0
11 0.913172 0 39.71561 96.32947 0.949583 0

TaBLE 4: Obtained BER, PSNR, and MSE of low-girth audio sample 3 of train noise of conventional and neural network decoders [21].

SNR (dB) BER conventional BER NN decoder PSNR conventional ~PSNR NN  MSE conventional

decoder decoder decoder decoder MSE NN decoder
1 0.872454 0.056285 39.70957 40.25216 0.956956 0.466867
7 0.900528 0.000732 39.71099 41.74078 0.955217 0.050925
8 0.904614 0.000214 39.71115 41.96716 0.955029 0.035124
9 0.904491 2.92E-05 39.71028 44,3992 0.956092 0.000331
10 0.909436 0 39.70917 96.32947 0.957452 0
11 0.911195 0 39.71127 96.32947 0.954872 0
10°

Bit Error Rate

sl i
1 2 3 4 5 6 7 8 9 10 11
Eb/No (dB)

—a— conventional BER
—p— NN BER

FiGUure 13: BER comparison of sample 1 of train noise.

contrast, the current work achieves the same BER at the = between variable nodes and check nodes during the iterative

same SNR using only 5 epochs of training. decoding process. As a result, BER of the conventional
The BER performance of the conventional decoder ex-  decoder for low-girth codes remains at 10~ for all SNRs.
hibits an error floor for low-girth codes. This error floor The simulation results of the NN decoder demonstrate

occurs because the same type of information is exchanged  that the BER performance improves as the SNR increases for
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the low-girth code. In addition, it is observed that PSNR of
the decoded images also increases with the increasing BER of
the decoded code.

In the absence of noise, the two audios are identical, and
thus MSE is zero. In this case, PSNR is maximum [34].

5. Conclusions

The results obtained using the conventional algorithm de-
veloped in the current work show a BER of 10" for a signal-
to-noise ratio of 11 dB for the low-girth code. In contrast,
a significantly lower BER of 10~* is achieved using the NN-
based decoder at a signal-to-noise ratio of 7 dB. These results
are depicted in Figures 13-15. This significant improvement
in BER using the NN-based decoder leads to a power saving
of approximately 30 to 40%. By utilizing such a decoder, the
life span of the power system can be extended and com-
munication errors can be significantly reduced.

The decoder developed here effectively removes the noise
introduced by the channel, as verified by the mean square
error plot shown in Figures 19-21. The advantage of the NN-
based decoder is that it is not constrained by the limitations
of high-girth code construction. This is evident from the
results obtained for low-girth codes, where no error floor is
observed. The performance of the developed decoder is
superior for low-girth codes, while the conventional decoder
fails to converge for such codes, as confirmed by the bit error
rate plot. Furthermore, the performance of the NN-based
decoder improves with increasing SNR.

In the current work, the conventional decoder was
specifically developed for a low-girth code. As a result, the
achieved BER value of 10" reflects the limitations of the low-
girth code. However, it is possible to improve the BER
performance by developing a similar decoder using a high-
girth code. Higher girth codes can offer better error cor-
rection capabilities and potentially yield lower BER values.

In comparison to the best conventional decoder de-
veloped by the authors in [3], the NN-based decoder
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developed here demonstrates a coding gain of 3dB. The
conventional decoder is unable to perform well for low-girth
codes, as evidenced by the generated error floor observed in
the bit error rate plot. On the other hand, the NN-based
decoder achieves a lower BER of 107* at an assumed SNR of
10 dB. The quality of the recovered audio is considered good,
as confirmed by the peak signal-to-noise ratio plot. Fur-
thermore, it was observed that the trained network is capable
of decoding the code using a single iteration, whereas the
conventional decoder requires multiple iterations. This
highlights the efficiency of the NN-based decoder in terms of
computational speed and performance.

The present NN decoder is better than the conventional
decoder in the following ways:

(i) The NN decoder offers a significant advantage over
the conventional method by enabling the decoding
of low-girth LDPC codes. Unlike the conventional
decoder, which generates an error floor for such
codes, the NN decoder is not constrained by the
code’s girth and delivers consistent performance for
both low- and high-girth codes. This capability of
the NN decoder to handle different code structures
effectively eliminates the limitations imposed by the
girth of the code on the decoding process.

(ii) In contrast to the conventional decoder, which
typically requires multiple iterations in the decoding
process, the NN decoder is capable of decoding the
code using a single iteration. This is a significant
advantage of the NN decoder as it reduces the
computational complexity and decoding latency. By
leveraging the power of neural networks, the NN
decoder can effectively capture the decoding pat-
terns and make accurate decisions in a single pass,
thereby enhancing the efficiency of the decoding
process.

(iii) NN decoder performance improves further by
tuning the learning parameter such as optimizer,
neurons, and no. of hidden layers.

Data Availability

It is to be state that the noisy audio sample are taken from the
website https://ecs.utdallas.edu/loizou/speech/noizeus/
which is freely available on the internet. These audio sam-
ples are used for encoding and decoding using conventional
and NN-based approach. The authors have taken audio
samples as raw data from the abovementioned website.
These approaches are developed in this current work.
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