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Synchronous reluctance motor drives (SynRMs) are the best promising machines utilized in modern industries and electric
vehicles, according to the current study. Research on new SynRMs drive systems has increased as a result. Tis review article
disseminates the most recent developments in these technologies’ design, modeling, and controlling. First, a simple comparison
between the main motor technologies and SynRMs is made. To aid researchers in selecting the appropriate motor controller for
their motor drive systems, the most common motor control approaches are examined and classed.

1. Introduction

Special electric motors known as synchronous reluctance
motors (SynRM) use the principle of magnetic reluctance
to produce torque.Tese motors are superior to other types
of motors in a variety of ways, including high efciency and
robustness. However, using a specifc controller is required
to operate a SynRM. Te purpose of synchronous re-
luctance motor controllers is to deliver accurate control
over the rotor position and speed of a SynRM [1–3]. Tey
frequently make use of sensorless control techniques such
as feld-oriented control (FOC) to achieve high accuracy
and dynamic performance. Some controllers employ ad-
vanced control algorithms such as space vector modulation
(SVM) and direct torque control (DTC) to increase per-
formance [4–10].

For this study, we compiled the most signifcant research
publications in the area of SynRM. An orderly qualitative
assessment of the evidence about SynRM drive systems is
provided as follows: the most promising motor technology
as well as potential alternatives is examined in the second
part. In addition, it investigates the applications and pos-
sibilities and contrasts the motors’ performance in terms of
price and eco-friendly considerations. Te possibilities for

SynRMmodeling are examined in Section 3, along with each
model’s applications, advantages, and disadvantages. Te
control methodologies for various machines are discussed in
Section 4. Future direction and conclusions are listed in
Sections 5 and 6.

2. Need for Synchronous Reluctance Motor

For several reasons, SynRMs are suitable in industrial and
commercial applications, [1, 11–14] including

(I) SynRMs are extremely efcient because of their
simple rotor structure and lack of rotor windings,
which reduces power losses in the motor.

(II) Low Cost: Because SynRMs have a simple rotor
structure and do not require rotor windings, the
motor is less expensive.

(III) SynRMs have a high-power density due to their
fundamental rotor structure, allowing them to
produce signifcant torque at high speeds.

(IV) Less Noise: Because of its simple rotor structure
and absence of rotor windings, SynRMs produce
less noise, making them excellent for low-noise
applications.
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(V) Robustness: SynRMs are suitable for industrial
applications since they are robust to changes in
motor properties as well as external disturbances.

(VI) SynRMs are perfect for applications that need
signifcant torque at low speeds since they have
a high torque.

(VII) Pumps, fans, compressors, conveyors, and other
industrial and commercial applications, among
others, can all use SynRMs.

(VIII) SynRMs provide a great degree of control fexi-
bility, making it possible to boost performance and
energy efciency by employing current control
algorithms such as FOC and (DTC) [9, 15].

Table 1 summarizes the types, advantages, disadvantages,
and main applications of dominant motors, and in most of
the industrial applications, inductionmotors are used, which
can be efectively replaced using SynRM [1, 2, 15–25].

3. AC Motor Classifications

AC motor drives are often employed in a widespread range
of industrial and consumer applications [26]. Te motor
type used is determined by the individual application re-
quirements such as power output, efciency, and de-
pendability. Based on their design and working principles,
AC motors are categorized into numerous categories. Here
are some examples of popular AC motor classifcations:

(I) Synchronous AC motors: Te rotor of this motor
rotates at the same speed as the stator’s revolving
magnetic feld. High-power applications such as
compressors, pumps, and generators require this
sort of motor [27–30].

(II) Induction AC motors: Tese are the most popular
form of AC motors, often known as asynchronous
motors. Tey work based on electromagnetic in-
duction, and the rotor speed is always somewhat
variable [21, 31].

(III) Single-phase AC motors: Tese motors are
employed in low-power appliances and machin-
ery. Tey have only one winding (for starting
purposes, auxiliary windings are used), and the
magnetic feld direction changes in time with the
alternating current.

(IV) Tree-phase AC motors: Tese motors, which
have three windings in the stator, are employed in
industrial applications. Tey are more powerful
and efcient than single-phase motors [26].

(V) Brushless alternating current motors: Tese mo-
tors use a permanent magnet rotor and an elec-
tronic controller which controls the stator current
of the stator windings [32, 33]. Tey are utilized in
robots, electric cars, and HVAC systems, among
other things.

(VI) Universal ACmotors: Used in various applications
such as power tools and general fans and these
motors can run on either AC or DC power.

(VII) Stepper AC motors: Tese motors are mostly used
in precision applications, such as robotics and 3D
printers. Tey move in small steps, and the speed
and direction of rotation can be controlled with
precision.

3.1. Induction Motor Classifcation. Induction motors are
one of the types of AC motor that operates based on the
principle of electromagnetic induction. Tey can be classi-
fed into diferent types based on their construction, rotor
type, and method of starting. Here are some common in-
duction motor classifcations:

(1) Squirrel cage induction motor (SCIM): Tis is the
one of the commonly used induction motors. It
possesses rotor with conductive bars that are per-
manently short-circuited at the ends, resembling
a squirrel cage. When the stator windings are en-
ergized, it produces a rotating magnetic feld that
induces rotor currents in the bars, causing it to rotate
[1–3, 34].

(2) Wound rotor induction motor (WRIM):Tis type of
motor possesses windings in the rotor which are
connected to slip rings. Te slip rings are used to
connect external resistors which can be added to the
rotor circuit. Tis external resistance will can control
the starting torque and speed of the motor [21, 35].

(3) Double cage inductionmotor:Tis type of motor will
have two sets of rotor bars, one of them in the outer
periphery and another in the inner core. Tis design
provides higher starting torque and better efciency
compared to the single-cage motor [31, 36–38].

(4) Synchronous induction motor: Tis type of motor
combines the features of both synchronous and
induction motors. It has a rotor with salient poles,
which align with the rotating magnetic feld in the
stator, resulting in synchronous operation. However,
the rotor also has conductive bars to induce currents,
allowing it to start as an induction motor [37, 38].

(5) Single-phase induction motor: Tese motors have
a stator with single-phase winding, making them
suitable for small appliances and machines. Tey use
auxiliary windings or capacitors to create a revolving
magnetic feld that induces currents in the rotor.

(6) Variable frequency drive (VFD) induction motor:
Tese motors can operate at diferent speeds and
torque levels by varying the frequency of the power
supplied to the motor. VFDs are used in applications
such as HVAC systems, pumps, and conveyor belts
to improve energy efciency and control motor
speed [37, 38].
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3.2. About Synchronous Reluctance Motor. SynRM, as the
name implies, generates reluctance torque by varying
magnetic reluctance, also known as magnetic resistance. Te
magnetic fux fows into the magnetic resistance with the
lowest value. As a result, the fux produced by the stator
fows into the rotor with the lowest magnetic resistance. As
a result, if the rotor is not aligned with the fux, the re-
luctance torque will cause the rotor to revolve in the di-
rection with the least magnetic resistance [22, 36, 39–44]. In
this sense, the magnetomotive force (MMF) is caused by the
saliency ratio, and the reluctance torque spins the rotor.
SynRM’s rotor design, which lacks bars and magnets, results
in chilly rotor operation. As a result, SynRM ofers com-
mendable loadability, especially at lower speeds. Tis motor
may be loaded up to 2.5 times its nominal torque
[18–20, 23, 35, 45].

Torque density was the main area of interest for SynRMs
in the past. However, more recent research has shown that
these motors are a highly efective option for the industrial
sector [46]. Te lack of bars in the rotor, which lowers iron
loss and promotes proper motor performance, is one of the
main elements enhancing their efciency [45]. Te SynRM
drive’s payback period is exceptionally short due to its ef-
fciency advantage, making it a practical and sensible al-
ternative to conventional induction motors (IM). For
a 37 kW, 1500 rpm SynRM with 8000 yearly running hours,
the projected payback time for an IE4 SynRM drive, as
opposed to an IE2 drive, is expected to be merely 1.6 years
[46]. International Energy-Efciency (IE) standards in-
cluded in IEC 60034-30 Parts 1, 2, and 3 determine the
efciency class of electric motors [47]. Better IE ratings
imply better motor efciency, and these codes represent the
necessary degree of efciency. Te SynRM ofers the even
more efcient IE5 efciency class (Super-Premium class),
whereas the European Union nations have made the IE3
efciency class (Premium class) required since 2015 [47].

3.3. Modeling SynRM. Te process of modeling a SynRM
involves simulating the motor’s activity mathematically. For
the model to accurately imitate a SynRM, it has to include
high precision and linearity. Te FEA-based model is fre-
quently utilized for accurate and trustworthy motor simu-
lations. For online applications like control systems, FEA is
inconvenient and time-consuming due to its large com-
putational weight. Terefore, FEA is more suited for design
and optimization goals in diferent electrical devices.

Researchers frequently use analytical models instead of
FEA for various objectives to overcome this constraint. As
an illustration, the inductance values of the winding function
model, a typical analytical model used for SynRM, are
contrasted with those produced through FEA in References
[48–50]. In addition, the SynRM d, q model is another
analytical strategy that has been extensively researched in
several research papers. In-depth analytical models for
permanent magnet synchronous reluctance motors
(PMSynRM) have also been created by researchers. In
Reference [51, 52], Armando et al. constructed and verifed
a straightforward model that examines the infuence of

cross-saturation on rotor position estimation while ignoring
cross-saturation efects. In Reference [53], a new method is
used to get currents and fux connections in both SynRM
and interior permanent magnet synchronous motors (IPM).
Tis method uses radial basis function neural networks. It is
said that the connection between these numbers can create
magnetic models efectively.

3.4. Summary ofModeling SynRM. Te d, q model of SynRM
is examined in several research works, and it is determined
to be the most appropriate modeling for practical purposes.

4. Control Methodologies

Figure 1 shows the control methodologies for SynRMs, and
it is given as follows.

4.1. Conventional P, PI, and PID Controllers. To obtain ac-
curate control of the motor’s states, conventional P, PI, and
PID controllers can be employed for synchronous reluctance
motors [5]. Tese controllers employ feedback control to
modify control inputs such as voltage and current depending
on the error signals between the motor’s actual and desired
states.Te P controller adjusts the control input based on the
error signal using proportional gain. To reduce steady-state
error and enhance overshoot time, the PI controller adds an
integral term to the proportional gain. Te PID controller
augments the PI controller with a derivative term to increase
stability and prevent overshoot and undershooting [58, 59].

Traditional controllers have several benefts, including
simple design, robustness against disturbances, and ease of
adjustment.

4.2. FOC for SynRM. Te rotor position and speed of
a SynRM are routinely managed using the sensorless control
approach known as FOC [10, 53]. Using a mathematical
model of the motor, it determines the stator current and
voltage required to give the specifed torque and speed
[15, 54–57]. FOC is especially well liked in sectors such as
steel and mining where efciency and steady-state reaction
are valued more highly than transient response. To provide
practical control, this approach operates in the d, q reference
frame and treats the motor as a DC motor.

Direct feld-oriented control (DFOC) and indirect feld-
oriented control (IFOC) are the two basic strategies for
controlling the decoupling currents in the synchronous
reference frame. While in IFOC, the fux angle is generated
from the detected rotor position utilizing a mounted shaft
encoder, and in DFOC, the rotor fux angle is determined by
estimated fux.

In conclusion, the benefts of FOC include

(i) High performance is there during the steady state
(ii) Precise control of the current is possible
(iii) Compatible with a variety of AC motors
(iv) Implementing a modulation system is simple
(v) Constant frequency of switching is possible
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However, the FOC control approach is somewhat so-
phisticated, the controller design would need a full un-
derstanding of the motor dynamics, the system is relatively
expensive, and the current control and modulation ap-
proach imposes a substantial computational burden on
the CPU.

4.3. DTC for SynRM. Boldea et al. made the frst attempt to
implement DTC on SynRM in 1991, which has now piqued
themarket’s attention as shown in Figure 2.Tis allure is due
to its inherent characteristics, which are as follows:

(i) Te absence of a PWM signal-generating module
(ii) Te current control mode is simple
(iii) Direct torque control enables quick reactions and

great dynamics
(iv) High robust control

Direct control of the motor’s instantaneous torque and
stator fux linkage is used in the DTC approach, which
eliminates the requirement for coordinate transformation.
Based on input signals, the switching table, a lookup table,
picks predetermined combinations of switching sequences.
Tese inputs include the indications of the stator fux and
torque errors, as well as the stator fux sector. DTC enables
fast and accurate torque control, which improves perfor-
mance and boosts energy efciency. It is extremely suitable
for industrial applications due to its resistance to changes in
motor characteristics and external disturbances. DTC has
a very simple control structure, making it easy to use and
understand.

However, the DTC control mechanism is somewhat
intricate, the controller design may need a full un-
derstanding of motor dynamics, and the system is quite
expensive. Te lack of a current controller in the DTC block
diagram results in large torque ripples. Researchers have
investigated numerous solutions to this problem. When
paired with DTC, one viable solution includes employing
multiple inverters, as illustrated in Reference [9]. Te
overmodulation approach for SynRM DTC is another

solution proposed in Reference [60]. Tis solution keeps
DTC’s simplicity while eliminating torque ripples and
maintaining a steady switching frequency. Furthermore,
a reference fux-vector calculator (RFVC) has been devised
and used in Reference [61] for IPM to prevent high torque
ripples in DTC. Trough space vector modulation (SVM),
RFVC substitutes the two hysteresis controllers and the
torque PI controllers, achieving constant switching fre-
quency. Tis efectively eliminates the disadvantage of the
variable switching frequency.

4.4. Sensorless Vector Control (SVC) for SynRM. SynRM
employs the reluctance torque generated by the stator and
rotor to achieve great efciency and power density. SVC is
a technology for regulating SynRMs that does not require
sensors on the rotor and results in a trustworthy and cost-
efective control system as shown in Figure 3.

SVC is based on the idea that stator currents and
voltages may be utilized to calculate rotor position and
speed [62]. To estimate, either a model-based approach or
an observer is utilized. Te observer-based technique
predicts rotor position and speed from stator currents and
voltages using a mathematical model of the motor [63].
Te model-based method estimates rotor position and
speed from stator currents and voltages using a mathe-
matical model of the motor and a parameter
identifcation tool.

Te primary advantage of SVC is the elimination of rotor
position sensors, which decreases the cost and enhances the
reliability of the control system [63]. Because of its excellent
performance and robustness, SVC is well suited for high-
speed and high-power applications.

Te frst step in creating SVC is deciding whether to use
an observer or a model-based method [62]. Te most
common algorithms are the extended Kalman flter (EKF),
the unscented Kalman flter (UKF), the Luenberger ob-
server, and the sliding mode observer (SMO) [63]. Te al-
gorithm of choice is determined by the requirements of the
specifc application, as well as the benefts and drawbacks of
each technique.

Scalar Control

Control
Methods

V/F Control

I/F Control

Vector Control

Field Oriented

DTC

Direct FOC

Indirect FOC

Modified Predictive

Space Vector PWM

Hybrid Vector

Sensor-less

Figure 1: Various most commonly used control methodologies for SynRM [10, 15, 47, 53–57].
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After deciding on an observer or model-based method,
the next step is to identify the motor parameters. Te
identifcation is performed using the stator voltages and
currents, as well as the expected rotor position and speed.
Te least squares (LS), recursive least squares (RLS), and
maximum likelihood (ML) identifcation methods are the
most commonly used. Accurate initial estimates of the
parameters, as well as a proper identifcation approach, are
critical to the iterative identifcation process.

Te fnal stage of SVC implementation is the control of
stator currents and voltages. To carry out the control, either
a model-based controller or a PI controller is employed [63].
Te PI controller manages the stator currents and voltages
based on the expected rotor position and speed. Te model-
based controller controls the stator currents and voltages by

employing a mathematical model of the motor as well as the
estimated rotor position and speed [62].

Te SVC of SynRM, which has been fully explored in the
literature, has been employed in several high-performance
and high-power applications, including electric automobiles,
wind turbines, and rapid industrial motors. Te SVC has
shown to be a successful, trustworthy, and cost-efective
control mechanism for SynRMs, and it is expected to be used
in more scenarios in the future.

Te fundamental disadvantage of SVC is that it is de-
pendent on the validity of the motor’s mathematical model
and the technique for detecting its characteristics, which can
be infuenced by temperature and aging changes in the
motor parameters. Another disadvantage of SVC is its
vulnerability to measurement noise and disturbances in

Torque
Hysteresis
Controller 

Flux
Hysteresis
Controller

Switching
Table

Stator f lux
position

calculator

Torque and
f lux

estimation

Inverter

PI speed
controller

SynRM

φs

φs

φs*

Δφs

ΔTe
/3

vabc, iabc
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Te
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eω
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ω
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Figure 2: DTC for SynRM [9, 47, 60].
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+
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+

÷
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Figure 3: Block diagram for sensorless control for SynRM [47, 62].
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stator currents and voltages. Tis sensitivity can lead to
estimation errors and a reduction in control performance.

To summarise, sensorless vector control is an excellent
approach for regulating synchronous reluctance motors. It
eliminates the need for rotor position sensors, lowering costs
and increasing the dependability of the control system. Its
exceptional performance and robustness make it ideal for
high-speed and high-power applications.

4.5. Space Vector Modulation (SVM) for SynRM. Te stator
current of a SynRM is regulated using the pulse width
modulation (PWM) technique known as SVM as shown in
Figure 4 [31]. A mathematical model of the motor is used to
fnd the ideal PWM signal that will provide the necessary
torque and speed [40].

Te basic principle behind SVM is to manage the stator
current to get the motor to produce the proper amount of
torque. Tis requires determining the PWM signal that will
provide the required torque and speed. SVM features a closed-
loop control system composed of an inner current loop for stator
current regulation and a feedback loop for torquemeasurement.

SVM reduces harmonic distortion in the stator current,
improving power factor and decreasing motor losses.
Control structure that is simple to understand and imple-
ment: SVM features a control structure that is simple to
understand and implement [36]. However, the SVM control
technique is somewhat sophisticated, the controller design
may need a detailed understanding of motor dynamics, and
the device is relatively expensive. It is also worth noting that
SVMmay not be adequate on its own to regulate the motor’s
speed and that other control algorithms may be required

[36]. Overall, space vector modulation for SynRM provides
an efcient and efective means of controlling the motor,
delivering improved performance, reduced losses, and
smoother operation for various industrial applications.

4.6. TeModifed Predictive Direct Torque Control (MPDTC)
for SynRM. Te MPDTC control technology manages the
operation of a SynRM as depicted in Figure 5. It is a complex
control approach that combines the benefts of DTC with
predictive control to improve the efectiveness and efciency
of the motor [64].

Te basic idea of MPDTC is to use a predictive model to
foresee the motor’s future torque and speed and then use
that knowledge to immediately modify the stator current.
MPDTC is a closed-loop control system that uses an inner
current loop to regulate stator current and a feedback loop to
measure torque and speed [27, 64].

MPDTC has several advantages over prior SynRM
control techniques, including

Enhancements to performance and energy efciency:
MPDTC’s ability to adjust torque quickly and precisely
contributes to improved performance and energy efciency.
MPDTC is suited for industrial applications due to its re-
sistance to changes in motor settings and external distur-
bances. MPDTC’s capacity to control nonlinearity makes it
an excellent choice for systems with complex dynamics.

MPDTC is well suited for systems with uncertain or
imprecise information because it can manage uncertainty
and imprecise information. However, because MPDTC is so
complex, a thorough understanding of predictive control,
direct torque control, and motor dynamics may be required

PI

PI

d,q

d,q

SV

PWM

INVERTER

SynRM

d,q

V-DC

CLARKE-TPARK-T

ISQREF

ISDREF

VSQREF

VSDREF

I- PARK-T

VSαREF

VSβREF

IA

IB

+

-

+

-

α,β

α,β

α,β

Figure 4: Block diagram for SVM for SynRM [31, 47].
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for controller design. Furthermore, calibrating the MPDTC
controller may be difcult and need a trial-and-error process
[47, 65].

4.7. Model Predictive Control (MPC) for SynRM. MPC,
a complex control system, is used to govern the performance
of a SynRM as shown in Figure 6. It uses mathematics to
predict the motor’s future behavior and changes the control
inputs to achieve the desired performance [63, 66–71].

In the case of a SynRM, the MPC controller anticipates
future rotor position, speed, and torque and uses this in-
formation to change the stator current in real time. Te
controller constantly analyses the rotor position and speed
and changes the stator current to eliminate errors and move
the system closer to the optimal operating point [5].

MPC has a variety of advantages over traditional SynRM
control approaches, including

MPC improves performance and energy economy by
rapidly and precisely regulating the rotor’s position,
speed, and torque.
MPC canmanage nonlinear systems, making it a strong
ft for systems with complex dynamics.
Managing ambiguity: MPC is capable of managing
uncertainty and imprecise information, making it an
excellent ft for systems with these sorts of input.
MPC is well suited for systems with changing condi-
tions since it is adaptive and can alter with the system’s
dynamics.
MPC can manage both control input and system state
limits, making it an excellent choice for systems with
operational constraints.
MPC is a rather challenging control approach; there-
fore, a thorough understanding of optimization, pre-
dictive control, and motor dynamics may be required
for controller design. Furthermore, fne-tuning the
MPC controller may be difcult and requires a trial-
and-error approach.

4.8. Adaptive Recurrent Fuzzy Neural Network (ARFNN) for
SynRM. An ARFNN combines the properties of adaptive
control, recurrent neural networks, and fuzzy logic to govern
the operation of a SynRM [57, 72].

Te basic idea behind an ARFNN is to use a fuzzy logic
system to mimic the nonlinear dynamics of the SynRM,
followed by a recurrent neural network to continually

modify the parameters of the fuzzy logic system. Te
ARFNN also has an inner current loop that regulates the
stator current and a feedback loop that measures the rotor
position, speed, and torque.

ARFNN has a variety of advantages over other SynRM
control techniques, including

ARFNN’s capacity to control nonlinearity makes it an
excellent ft for systems with intricate dynamics. Be-
cause it can manage uncertainty and imprecise in-
formation, ARFNN is well suited for systems with
uncertain or imprecise information.
Adaptability: Because it can respond to changes in
system dynamics, ARFNN is well suited for systems
with changing situations.
ARFNN is well suited for systems with operational
constraints because it can manage control input and
system state limits. Because of its resistance to changes
in motor settings and outside disturbances, ARFNN is
well suited for industrial applications.

However, because ARFNN is a very advanced control
approach, the controller design may need a thorough un-
derstanding of adaptive control, recurrent neural networks,
fuzzy logic, and motor dynamics. ARFNN controller tuning
may likewise be difcult, necessitating a trial-and-error
approach.

4.9. Fuzzy Controller for SynRM. A fuzzy controller is a type
of control system that uses fuzzy logic to manage the op-
eration of a SynRM [57, 73]. Fuzzy logic is a mathematical
method that allows for the logical representation of am-
biguous or erroneous information. In a fuzzy controller for
a SynRM, fuzzy sets are generated from input variables such
as rotor position, speed, and torque.Tese fuzzy sets are then
used to select the appropriate stator current, the output
variable.

Te fuzzy controller fnds the appropriate stator current
for a given set of input variables by applying a set of rules
based on the designer’s knowledge or system data [57].
Because the rules are expressed in plain English, the control
system is straightforward to understand and modify.

Fuzzy controllers provide several advantages over other
SynRM control approaches, including

Fuzzy controllers are resistant to changes in motor
properties as well as external disturbances, making them
appropriate for industrial applications. Simple to un-
derstand and modify: fuzzy controllers convey control
rules in plain language, making the control system simple
to understand and modify. Fuzzy controllers’ ability to
handle ambiguity and imprecise logic-based information
makes them appropriate for systems containing such in-
formation. However, because fuzzy controllers are rather
complicated, creating and implementing them necessitate
a strong understanding of fuzzy logic. Furthermore,
tweaking the fuzzy controller may be difcult and need
a trial-and-error process. Various types of membership
functions based on fuzzy logic control for ac drive are
reported [34].

+ PI MPDTC

Torque and
Flux observer

Inverter SynRM
/3

ω*

Te*

ψs*

Te,☐☐s
ω

Figure 5: Block diagram for MPDTC for SynRM [47, 64].
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4.10. Sliding Mode Controller (SMC) for SynRM. A sliding
mode algorithm in a sliding mode controller, or SMC,
controls the functioning of a SynRM [74]. Te primary idea
underlying SMC is to force the system to work on the chosen
sliding surface by using a set of nonlinear equations to
describe it. Te sliding surface represents the system’s op-
timal working position, and the controller uses a switching
mechanism to ensure that it stays there. In the case of
a SynRM, the sliding surface is determined by the planned
rotor position and speed and the controller uses the stator
current as the control input. Te controller constantly
measures the rotor position and speed and changes the stator
current to keep the system on the sliding surface [74].

SMC outperforms alternative SynRM control ap-
proaches in several areas, including the following:

SMC is appropriate for industrial applications because
of its resistance to changes in motor properties and external
disturbances. SMC ensures the system’s overall stability,
ensuring that it will always converge to the desired oper-
ating point. Unafected by parameter variations: because
SMC is unafected by parameter variations, it is an excellent
ft for systems that employ ambiguous or erroneous data.
However, due to the intricacy of the sliding mode algo-
rithm, creating and implementing SMC controllers ne-
cessitate a full understanding of it. Furthermore, tweaking
the SMC controller can be difcult and may involve a trial-
and-error approach [74]. Te fuzzy logic control plus SMC
for converters for motor application is well addressed [75].

4.11. Artifcial Neural Network (ANN) Controller for SynRM.
An ANN controller is a type of control system that uses
a neural network algorithm to manage the operation of
a synchronous reluctance motor (SynRM) and brushless DC
BLDC motor [33, 73, 76]. ANNs, which are used to ap-
proximate complex nonlinear systems, simulate the struc-
ture and operation of biological brain networks.

In the case of a SynRM, an input-output dataset is
utilized to train an ANN controller. Te rotor position,
speed, and torque are the inputs to this dataset, while the

stator current is the output. Once trained, the network can
predict the stator current for a given set of input variables.
Te ANN controller constantly adjusts the stator current in
response to the neural network output, while the rotor
position and speed are continuously monitored. ANN
controllers provide a variety of advantages over other
SynRM control techniques, including

Handling nonlinearity: ANNs can handle nonlinear
systems, making them appropriate for systems with
complex dynamics.
Handling ambiguity: Because ANNs can handle
ambiguity and erroneous information, they are an
excellent ft for systems with ambiguous or
wrong data.
Adaptability: Because ANNs can respond to changes in
the system’s dynamics, they are well suited for systems
with changing situations. However, because of the
complexity of neural networks, building and imple-
menting ANN controllers necessitate extensive
knowledge of neural networks. Furthermore, a robust
dataset is required to train the network since fne-
tuning the ANN controller may be difcult and may
necessitate a trial-and-error procedure.

4.11.1. Controller Summary

(i) FOC and DTC are popular control techniques for
SynRM, each ofering unique advantages in terms of
efciency and dynamic performance.

(ii) SVC utilizes advanced algorithms to estimate the
rotor position and fux information, enabling pre-
cise control without the need for physical sensors,
reducing system complexity and cost.

(iii) SVM optimizes the voltage applied to the motor’s
stator, achieving reduced switching losses and im-
proved motor efciency, making it suitable for
various motor types, including SynRM.

RNG

|λ|* +

+

|i|

LPF1 HPF

LPF2

RPI

|λ|*comp

-

+ |λ|*

1/(1+sTlpf ) 1/(1+sTdetect)(sThpf)/(1+sThpf )

(sThpf)/(1+sThpf )1/(1+sTlpf )

[Kpc (1+sTic)]/(sTic)

Figure 6: Block diagram of MTPA detector schematic for SynRM [47, 63, 66–70].
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(iv) MPDTC is an enhanced version of DTC, in-
corporating predictive algorithms to achieve im-
proved torque and fux control, lower torque
ripples, and enhanced efciency.

(v) MPC, ARFNN, SMC, and ANN controllers are
advanced control techniques applied to SynRM,
each utilizing unique methodologies to enhance
motor performance and achieve precise control in
various operating conditions.

An overview of the main vector control methods re-
garding the control method structure is presented in Table 2.

5. Future Scope

An evaluation of a high-performance controller for variable
speed drive (VSD)-fed SynRMs considered several crucial
factors. Tese factors include the controller’s robustness
against parameter variation and external disturbances, the
level of torque ripples afecting average torque, and the
drive’s efciency over a wide speed range. Te SynRM’s
anisotropic rotor structure leads to electrical parameter
variability and torque ripple, which can degrade drive
system performance. Ignoring system mismatch contradicts
efciency, productivity, and environmental and energy
concerns.

To address parameter variation issues, developing a ro-
bust control algorithm is essential as it directly impacts
machine controllability. Investigating and modifying the
controller’s robustness against external disturbances, such as
tough load torques, is vital. Te study highlights that high
torque ripples are a signifcant concern in SynRM drive
systems, leading to pulsation, vibration, decreased efciency,
and increased noise in the environment. Optimizing control
techniques and proposals to decrease torque ripples will
improve the performance of SynRMs.

Designing a control method that covers the entire motor
speed range with desired performance poses challenges due
to theoretical and practical constraints. With the extensive
potential applications of SynRMs with VSDs, the develop-
ment of more intelligent control techniques is projected to
preserve their efciency over a wide speed range, encom-
passing transient and steady-state operation. Approaches
from other motor technologies can be adapted for SynRM
withmodifcations, suggesting potential directions for future
research.

6. Conclusion

Tere is no doubt on the importance of motor-drive systems
in commercial and residential applications. Tis review
article demonstrated the market debut of the cutting-edge
SynRM drive package, which is more efcient than the IM
drive package and potentially less expensive. Furthermore,
SynRMs’ drive provides comparable performance to PMSM
drive at a lower cost, with a more environmentally friendly
and straightforward construction. Tis study looked briefy
at SynRM’s potential for improved modeling and design.
Te study demonstrates a signifcant improvement in motor

function as well as an upward trend in research projects with
perhaps.

Data Availability

Te data used to support the fndings of this study are in-
cluded within the article.
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