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With the rapid development of 5G communication and wireless Internet of Tings technology, the application of intelligent
wearable devices based on wireless data transmission technology is becoming more and more popular. However, due to the
bandwidth of wireless data transmission nodes and the power consumption of the device system, the use time and data storage of
wearable devices are severely restricted. Te compressed sensing (CS) technology has become an efective method to tackle this
problem. CS technology includes data compressive sensing at the transmission end and data reconstruction at the receiving end.
In this paper, we consider the reconstruction of nonnegative sparse vectors, an important problem in the area of CS for wireless
data transmission. It is known that the interval-passing (IP) algorithm is a low-complexity message-passing type method for the
problem. However, the reconstruction performance of the IP algorithm is inferior to that of the other state-of-the-art CS re-
construction algorithms such as the orthogonal matching pursuit (OMP) algorithm. In order to address the problem, we propose
a two-stage reconstruction algorithm in this paper. Te proposed algorithm applies the IP algorithm for the frst stage of re-
construction. If the reconstruction fails, the OMP algorithm is then used on the basis of the results in the frst stage. Te proposed
algorithm is evaluated and compared with other state-of-the-art algorithms by the probability of perfect reconstruction under the
given sparsity order value. Simulation results suggest that the proposed two-stage algorithm can greatly improve the re-
construction performance of the IP algorithm and can even outperform the OMP algorithm. In addition, the low-complexity
advantages of the IP algorithm are maintained in the proposed algorithm.

1. Introduction

Te rapid development of 5G communication and wireless
Internet of Tings (IoT) technology makes intelligent
wearable devices more and more popular [1, 2]. However,
due to the applications of multiple-type sensors and the
requirements of wireless data transmission of multichannel
human body signals, the long-term use of intelligent
wearable devices is limited by the bandwidth of data
transmission nodes and system power consumption. As an
efective solution to reduce the bandwidth and system power
consumption of wireless data transmission, the compressed
sensing (CS) technology has received a lot of interest in the
feld of wireless data transmission. In the CS framework, the

transmission data are measured compressively at the
transmission end before transmission. For many practical
situations (e.g., image processing), the data after the mea-
surement can be represented as nonnegative vectors. At the
receiving end, the measurement data are reconstructed
through certain approaches. Trough the application of CS
technology, wearable intelligent devices based on 5G and
wireless IoT technology can meet real-time data acquisition
and transmission of the users under the condition of limited
data storage resources and battery capacity.

Concretely speaking, the CS problem [3–9] is to re-
construct a high-dimensional signal vector from a lower-
dimension set of linear measurements obtained by multi-
plying the signal by a matrix called a measurement matrix. If
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the signal vector is sparse (in certain a basis), the number of
samples that need to acquire and store can be reduced
dramatically under the CS framework. As a consequence, CS
has received a considerable amount of attention in various
applications of the signal processing area.

Te construction of measurement matrices and the
design of reconstruction algorithms are two main concerns
in CS. To date, several approaches, both random and de-
terministic, have been proposed for the construction of
measurement matrices [10–12]. Te random measurement
matrices have theoretical reconstruction guarantees,
whereas the deterministic measurement matrices are de-
sirable for practical implementation. For the signal re-
construction, there are essentially two classes of popular
methods, i.e., basis pursuits (BP) methods and matching
pursuits (MP) methods [13–15]. BP methods reconstruct the
signal through the solving of an optimization problem [13].
MP is a greedy iterative method, and at each iteration, the
method selects the best vector from its redundant dictionary.
Among them, the most commonly used is the orthogonal
MP (OMP) algorithm [14], which has a relatively small
number of iterations by incorporating a least-square (LS)
operation for the signal estimation.

Practically, there are many applications [16–18] where
the signal vectors are not only sparse but also nonnegative.
Terefore, the reconstruction of nonnegative sparse vectors
has become a canonical model in CS [19]. Some improve-
ments [20–22] have been proposed for both BP and MP
algorithms by taking advantage of the nonnegative property
of the signal vectors. In this paper, we also consider the
reconstruction of nonnegative sparse vectors, since the
problem is of great importance.

Recently, it has been shown that there are close con-
nections between the areas of compressed sensing and
channel coding [23, 24]. In particular, the successes of sparse
channel codes such as low-density parity-check (LDPC)
codes suggest that it is deserved to investigate the use of
binary sparsematrices as measurementmatrices in CS. It can
be shown that these matrices have desirable reconstruction
performances under the BP and MP methods [25–28].
Besides, the sparseness of these matrices can reduce the
storage requirements signifcantly, which is amicable from
a practical point of view. In particular, for the reconstruction
of nonnegative sparse vectors, an iterative message-passing
type algorithm, called the interval-passing (IP) algorithm,
has been provided [29, 30]. Te IP algorithm has a very low
per-iteration complexity by taking the advantage of the
sparseness of these matrices. It can be shown that the
performance of the IP algorithm is desirable for the re-
construction of nonnegative sparse vectors using these
LDPC matrices as measurement matrices. Several recent
studies [31–33] have considered the analysis and optimi-
zation of the IP algorithm. In [34], the authors have con-
sidered the initial application of the IP algorithm for
chemical mixture estimation.

However, compared with the BP and OMP methods, the
reconstruction performance of the IP algorithm for non-
negative sparse vectors is degraded [30]. Since binary LDPC
measurement matrices have advantages from the practical

point of view, it is deserved to explore how to improve the
reconstruction performance of the IP algorithm while
maintaining its low-complexity merit, which motivates our
work. In this paper, we propose a two-stage reconstruction
algorithm based on the IP and OMP algorithms. In the frst
stage of the proposed algorithm, the IP algorithm is applied
for the signal reconstruction. If the reconstruction is suc-
cessful, the proposed algorithm terminates. If the re-
construction is unsuccessful, we can prove a property to
determine some entries of the nonnegative signal vector
from the output of the IP algorithm. Ten, we use the OMP
algorithm by taking these entries into account, which can
signifcantly reduce the size of the involved LS problem
compared with directly applying the OMP algorithm.
Simulation results indicate that the performance of the
proposed two-stage algorithm is better than that of the IP
algorithm and the OMP algorithm. Moreover, the low-
complexity advantages of the IP algorithm are maintained
in the proposed algorithm. All these suggest that the pro-
posed reconstruction algorithm is suitable for practical
purposes. Overall, the major contributions of the paper are
summarized as follows:

(i) We propose a novel reconstruction algorithm for
the construction of nonnegative vectors in CS. Te
proposed algorithm has a low-complexity merit and
is suitable for wireless data transmission.

(ii) Te proposed algorithm is a two-stage algorithm.
Te IP algorithm is applied for the signal re-
construction in the frst stage. If the reconstruction
is successful, the proposed algorithm terminates. If
the reconstruction is unsuccessful, we use the OMP
algorithm for the reconstruction in the second stage
from the output of the IP algorithm.

(iii) Simulations are performed to verify that the per-
formance of the proposed two-stage algorithm is
better than that of the IP algorithm and the OMP
algorithm.

Te rest of the paper is organized as follows. Section 2
reviews the background knowledge of CS. In Section 3, the
proposed two-stage reconstruction algorithm is provided.
Section 4 presents the simulation results. Finally, Section 5
concludes the paper.

2. Background Knowledge

In this section, we provide the background knowledge of the
paper. We frst provide the notation defnitions of the paper.
Ten, we review the basic concepts of CS. Finally, we focus
on binary LDPC matrices as measurement matrices and the
IP reconstruction algorithm designed for these matrices.

2.1. Notations. In the rest of the paper, we denote scalars by
normal face letters (e.g., x or X), vectors by lowercase
boldface letters (e.g., x), and matrices by uppercase boldface
letters (e.g., A). Te transpose of matrix A is AT. Te i-th
entry of a vector x is denoted by xi and the entry in the j-th
row and the i-th column of a matrix A is denoted by aji. For
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a vector x, we defne supp(x) �. Te l0-norm, the l1-norm,
and the l2-norm of x are given by ‖x‖0 � #supp(x),

‖x‖1 � i|xi|, and ‖x‖1 � i

����

|xi|
2



, respectively, where # is
the cardinality of a set.

2.2. Basic Concepts of CS. We assume that x is a k-sparse
signal of length n, i.e., x ∈ Rn and ‖x‖0 ≤ k, whereR is the set
of real numbers. Te problem of CS is to reconstruct an
unknown x from a linear measurement

y � Ax, (1)

where A is a matrix over R with size m × n (m≪ n), called
the measurement matrix. In general, A can be constructed
using either random methods or deterministic methods. It
can be shown that a random measurement matrix satisfes
the restricted isometry property with a high probability,
which indicates that the matrix has a theoretical re-
construction performance guarantee. In practice, however,
there are no explicit steps to construct such a matrix. Re-
cently, it has been demonstrated that deterministic mea-
surement matrices also exhibit comparable performances
with randommatrices. Among them, a special class of binary
deterministic measurement matrices, the binary structured
LDPC matrices, has received particular attention. Te main
reason is the belief that an LDPC matrix with a good error
correction performance is a potentially good measurement
matrix (see [26] for details). In this work, we focus on this
class of deterministic measurement matrices, since these
matrices have desirable performances as well as practical
advantages.

For the signal reconstruction, it is straightforward to
estimate x from y using the followingminimization problem:

min ‖x‖0,

s.t.y � Ax.
(2)

Practically, it is intractable to solve the abovementioned
problem in general due to the nonconvex features of the
l0-norm. Te convention is to replace the l0-norm by the
l1-norm and formulate the relaxed minimization problem

min ‖x‖1,

s.t.y � Ax.
(3)

Te problem (3) can be solved by using linear optimi-
zation methods, and the obtained method is usually known
as BP reconstruction.

Another class of popular reconstruction methods is MP
methods, which greedily fnd the estimation of the original
signal through an iterative process. Te basic steps of the
OMP algorithm are summarized as follows (see
Algorithm 1).

In practice, the update x in Algorithm 1 can be
implemented in an LS manner, i.e.,

S � supp(x), (4)

xS � AS ASA
T
S 

−1
y, (5)

where xS (respectively, AS) represents the projection of x
(respectively, A) onto the set S. It has been demonstrated
that the OMP method is efective for many classes of
measurement matrices (see e.g., [15]). If x is nonnegative,
then the OMP method can be efciently implemented with
the help of matrix factorizations [22].

2.3. LDPCMatrices and the IP Algorithm. Now, we consider
a special class of sparse measurement matrices, i.e., binary
LDPC matrices. A binary LDPC matrix A with size m × n is
a sparse matrix defned over the binary feld (0 and 1), whose
null space specifes a binary linear code of length n.

It is convenient to associate A with a bipartite graph
(called the Tanner graph [35]) that has m check nodes
c1, · · · , cm  and n variable nodes v1, · · · , vn  corresponding
to the m rows and n columns of A, respectively. A variable
node vi is connected to a check node cj if and only if the
entry of aji is 1. We denote the set of variable nodes con-
nected to the j-th check node as N(j) � i: aji � 1  and the
set of check nodes connected to the i-th variable node as
M(i) � j: aji � 1  (more detailed discussions on the re-
lated concepts can be found in [35]).

For nonnegative sparse signals, the IP algorithm itera-
tively computes the upper and lower bounds for each entry
in the signal vector. It has been shown that either the lower
or the upper bound can converge to the same value for each
variable node under certain conditions, which indicates that
the algorithm can successfully estimate the original signal
vector. With the help of a Tanner graph, the IP algorithm can
be described in a message-passing form that consists of two
alternative update rules for messages along the edges of the
Tanner graph, one for check nodes and the other for variable
nodes. We suppose that Lj⟶i (respectively, Uj⟶i) is the
lower (respectively, upper) bound on the message from the j-
th check node to the i-th variable node and Li⟶j (re-
spectively, Ui⟶j) is the lower (respectively, upper) bound
on the message from the i-th variable node to the j-th check
node. Te basic steps of the IP algorithm are described as
follows (see Algorithm 2).

We can see that the complicated matrix multiplications
and matrix inversions of the OMP algorithm are avoided in
the IP algorithm. Besides, the IP algorithm has a nice
property through which a nonnegative vector x can be
reconstructed if and only if the binary vector xb with
supp(x) � supp(xb) can be reconstructed by the algorithm
[30, 33]. Tis property can facilitate the analysis of the
algorithm.

3. Proposed Reconstruction Algorithm

Although the IP algorithm has a lower complexity than that
of the OMP algorithm, the reconstruction performance is
degraded in general, especially in the case where the sparsity
of the original vector x is relatively large. Tis is undesirable
in situations where high reconstruction performance is
required. In this section, we apply the idea of multistage
reconstruction to improve the performance.
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3.1. Algorithm Design. Our reconstruction algorithm con-
sists of two stages. First, we use the IP algorithm to re-
construct the signal. If the algorithm converges, the whole
reconstruction process halts and outputs the estimated
vector. Otherwise, the reconstruction switches to the second
stage by using the OMP algorithm. It is worth mentioning
that although the IP algorithm fails, we can derive a property
to determine some entries of the signal vector from its
results.

Theorem 1. Suppose Li and Ui are the estimation results of
the IP algorithm when the maximum iteration number is
reached. If Li � Ui, then xi � Li � Ui.

Proof of Teorem 1. Since Li and Ui are the lower and upper
bounds of xi, respectively, it holds Li ≤ xi ≤Ui. Hence, we
have xi � Li � Ui if Li � Ui. Tus, the theorem is proved.

In the following, the entry xi is said to be determined by
the IP algorithm if Li � Ui, where Li and Ui are the fnal
results of the IP algorithm. Trough computer simulations,
we can fnd the following interesting phenomenon: even if
the IP algorithm fails to reconstruct the original signal,
a relatively large proportion of the entries of the original
vector can be determined. In order to illustrate this fact, we
consider the array-based quasi-cyclic (QC) LDPC matrix
with size 68 × 289, which is a 4 × 17 array of cyclic matrices
of size 17 × 17 [36]. Table 1 shows the average proportion of

the determined entries under various values of sparsity
order k.

It is known from Table 1 that the average proportion of
the determined entries is larger than one-half when the
sparsity order k is less than 0.1 n. As a consequence, we can
design a reduced-complexity OMP algorithm for the
second-stage reconstruction using these determined entries.

We assume D (respectively, D) is the set of column
indices whose corresponding entries are determined (re-
spectively, not determined). We suppose that xD is the
projection of x onto the setD, where x is the output of the IP
algorithm in the frst stage and AD (respectively, AD) is the
projection of A onto the set D (respectively, D).

y � y − ADxD, (6)

In the second-stage reconstruction, we use y and AD as
the inputs of the OMP algorithm and reconstruct a vector of
length n − #D. We denote the output by xD. From the
abovementioned analysis, we know that the length of y is less
than that of y. Hence, the reconstruction complexity is
reduced when compared with the use of y and A as the
inputs of the OMP algorithm. Finally, we construct a vector
x whose projections onto the set D and D are xD and xD,
respectively. Te details of the proposed two-stage re-
construction algorithm are described as follows (see
Algorithm 3). □

Input: A, y, and the error threshold ε. Initialize: x � 0, r � y, and S � ∅.
Repeat:

(1) Find the column index i0 by
i0 � argmaxi〈r, ai〉

where ai is the i-th column of A and 〈, 〉 is the inner product of the two vectors
(2) Set S←S∪ i0 

(3) Update x by
x � argminS�supp(x)‖y − Ax‖2

(4) Update r by
r � y − Ax

until ‖r‖2 < ε
Output x

ALGORITHM 1: OMP algorithm.

Input: A and y. Initialize: Li⟶j � 0 and Ui⟶j � yj.
Repeat:
(1) Check node processing:

Lj⟶i � max 0, yj − i′∈N(j)\iUi′ ⟶ j 

Uj⟶i � yj − i′∈N(j)\iLi′ ⟶ j

(2) Variable node processing:
Li⟶j � maxj′∈M(i)\jLj′ ⟶ i: � Li

Ui⟶j � maxj′∈M(i)\jUj′ ⟶ i: � Ui

until the algorithm converges or the maximum iteration number reaches
Output x � [xi], where xi � Li

ALGORITHM 2: IP Algorithm.
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3.2. Complexity Assessment. We know from the process of
the proposed reconstruction algorithm that its complexity
depends on the complexity of the IP and OMP algorithms as
well as the rate at which the OMP algorithm is invoked. It is
known from the description provided in the last section that
the IP algorithm is an iterative process. Hence, its com-
plexity can be estimated as

CIP � Imax · Cav, (7)

where Imax is the maximum iteration number and Cav is the
per-iteration complexity of the algorithm. For an LDPC
matrix A of size m × n with an average column weight of c

and an average row weight of ρ, we need 2mρ(ρ − 1) ad-
ditions (subtractions) as well as 2mρ(ρ − 1) comparisons in
each iteration [37].

For the OMP algorithm, the complexity can be written as
the sum of the two terms [38], i.e.,

COMP � C1 + C2, (8)

where the frst term C1 is dependent on the size of A and the
second term C2 is independent on the size of A. Te term C1
involves about n (m − 1)k + (2m − 1)(k + 1)k/2 additions
(subtractions), (n − 1)k comparisons, and nmk + m(k + 1)k

multiplications. Te complexity C2 can be estimated as
Θ(k3), which is mainly caused by the calculations in the LS
step (8). It should be noted that although we have k≪ n, the
operations involved in this term contain divisions, which are
undesirable from the implementation point of view [38].

Finally, the complexity of the proposed algorithm is
given by

CTS � COMP + αCOMP, (9)

where the parameter α is the rate at which the OMP al-
gorithm is invoked when the IP algorithm fails. Since the
OMP algorithm is invoked in the proposed algorithm when
the IP algorithm fails, the rate α is equal to 1 − p, where p is
the perfect reconstruction probability of the IP algorithm. It
can be shown from the simulation results in the subsequent

section that the reconstruction probability p is close to 1
when the sparsity order is small, which indicates that the rate
α is close to zero. In addition, the vector length in our
second-stage OMP algorithm is reduced compared with the
direct application of the OMP algorithm for signal recovery.
All these suggest that the proposed two-stage algorithm has
low-complexity properties.

4. Simulation Results and Discussions

4.1. Simulation Results. In this section, we provide the
simulation results for the proposed two-stage reconstruction
algorithm. Tree binary-structured LDPC matrices are
adopted as measurement matrices. It should be noted that
structured LDPC matrices have advantages from the prac-
tical point of view. Te frst matrix A1 is the 68 × 289array-
based QC LDPC matrix provided in the previous section.
Te secondmatrixA2 is a 64 × 256 LDPCmatrix constructed
from the incidence structure of the points and lines of the
two-dimensional Euclidean geometry over the feld of GF
(16), which can be written as a 4 × 17 array of permutation
matrices of size 17 × 17 [35]. Te third matrix A3 is
a 252 × 504 QC LDPC matrix constructed from the additive
group of fnite felds using the method mentioned in [39]. It
should be noted that the Tanner graphs of all these three
LDPC matrices are free of cycles of length 4.

Te maximum iteration number of the IP algorithm is
set as 100.Te sparse signals in our simulation are generated
as follows: frst, the support of cardinality k is randomly
generated. Ten, each of the k nonzero elements is drawn
according to a normal distribution. For comparison pur-
poses, the reconstruction performances of the standard BP
algorithm for all three measurement matrices are also
evaluated using the MATLAB-embedded function linprog.
All the algorithms are evaluated by the probability of perfect
reconstruction under the given sparsity order value [30].

Figure 1 shows the performances of various re-
construction algorithms for the matrix A1. It is known from
the fgure that the proposed two-stage reconstruction

Table 1: Te average proportion of the determined entries for a quasi-cyclic LDPC matrix with size 68 × 289.

k 12 16 20 24 28
Proportion 0.8381 0.7830 0.7513 0.6560 0.5624

Input: A, y, and the error threshold ε
(1) Perform the IP algorithm using y and A
(2) If the IP algorithm converges then
(3) Obtain the estimated signal vector x
(4) else
(5) Construct D, D, AD, AD, and xD based on the outputs of the IP algorithm
(6) Compute y
(7) Perform the OMP algorithm using y and AD

(8) Obtain the estimated signal vector x � x from xD and xD

(9) end
(10) Output x

ALGORITHM 3: Two-stage reconstruction algorithm.

Journal of Electrical and Computer Engineering 5



algorithm outperforms both the original IP algorithm and
the OMP algorithm. For example, when the sparsity order is
20, the reconstruction probability of the original IP algo-
rithm is less than 0.1, whereas the reconstruction probability
of the proposed two-stage reconstruction algorithm is higher
than 0.6. Furthermore, the proposed two-stage re-
construction algorithm can also slightly outperform the
standard BP algorithm for this matrix.

Figure 2 shows the performances of various re-
construction algorithms for the matrix A2. We know from
the fgure that the performance of the IP algorithm degrades
severely when the sparse order reaches about 8. We also
know from the fgure that the performance of the proposed
reconstruction algorithm is also better than that of the IP
and OMP algorithms.

Figure 3 shows the performances of various re-
construction algorithms for the matrix A3. It is known from
the fgure that the IP algorithm has a poor reconstruction
performance when the sparsity order reaches 70. Instead, the
OMP algorithm has a desirable performance in this range.
Compared with A1 and A2, the measurement matrix A3 has
a better performance when the sparsity order is large. Tis is
due to the fact that A3 has a large ratio of m/n.

We can see from the fgure that the standard BP algo-
rithm has little performance degradation in the simulated
range of sparsity orders. In addition, we know from the
fgure that the performance of the proposed reconstruction
algorithm is greatly improved compared with that of the IP
and OMP algorithms.

4.2.Discussions. We can see from the simulation results that
our proposed reconstruction algorithm can outperform both
the IP algorithm and the OMP algorithm for all three
measurement matrices. We think this is reasonable, since

there exist random sparse vectors that cannot be recon-
structed by both the IP algorithm and the OMP algorithm
but can be reconstructed by our proposed algorithm (note
that our proposed algorithm applies the OMP algorithm on
the basis of the determined entries of the IP algorithm re-
sult). Tis, together with the low-complexity property of the
proposed two-stage algorithm, suggests that the algorithm is
suitable for practical purposes.

It is also deserved to mention that we can further im-
prove the performance of the proposed algorithm if the
quality of the wireless channel for data transmission can be
detected in practice. We can increase the measurement
number in low channel quality situations and decrease the
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Figure 1: Reconstruction performances of the measurement
matrix A1.
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Figure 2: Reconstruction performances of the measurement
matrix A2.
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Figure 3: Reconstruction performances of the measurement
matrix A3.
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measurement number in high channel quality situations.
Tis is an interesting future research direction for our work.

5. Conclusion

In this paper, we investigated the performance improvement
of the IP algorithm for the reconstruction of nonnegative
sparse vectors. Based on the IP and OMP algorithms, we
propose a two-stage reconstruction algorithm. In the frst
stage, the IP algorithm is applied to the proposed algorithm.
If the algorithm converges, the whole reconstruction process
halts. Otherwise, the OMP algorithm is then used on the
basis of the results of the IP algorithm. Simulation results on
several structured binary LDPC measurement matrices
suggest that the proposed two-stage algorithm can greatly
improve the reconstruction performance of the IP algorithm
and can even outperform the OMP algorithm. Besides, the
proposed algorithm has a low-complexity property, which
indicates that the algorithm is suitable for implementation
and application in intelligent wearable device systems based
on wireless transmission technology.
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