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Based on the brain signals, decoding and analyzing the gait features to make a reliable prediction of action intention are the core
issues in the brain computer interface (BCI)-based hybrid rehabilitation and intelligent walking aid robot system. In order to
realize the classifcation and recognition of the most basic gait processes such as standing, sitting, and quiet, this paper proposes
a feature representation method based on the signal complexity and entropy of each brain region. Trough the statistical analysis
of these parameters between diferent conditions, these characteristics which sensitive to diferent actions are determined as
a feature vector, and the classifcation and recognition of these actions are completed by combing support vector machine, linear
discriminant analysis, and logistic regression. Experimental results show the proposedmethod can better realize the recognition of
the aforementioned action intention. Te recognition accuracy of standing, sitting, and quiet of 13 subjects is higher than 80.9%,
and the highest one can reach 86.8%. Directed dynamic brain network analysis of the 8 brain regions shows that the occurrence of
lower limb movement will weaken the dependence between brain regions, resulting in the weakening of network topological
connection.Te result has signifcant value for understanding human’s brain cognitive characteristics in the process of lower limb
movement and carrying out the study of BCI based strategy and system for lower limb rehabilitation.

1. Introduction

Robotic based rehabilitation training has more advantages
than the traditional artifcial rehabilitation, which can in-
crease the motivation of patients and the opportunity of
autonomous training, so as to improve the quality and efect
of the rehabilitation process. For the gait rehabilitation,
exoskeleton and intelligent walking aid robot are widely used
and have achieved good results [1, 2]. With the development
of brain computer interface (BCI) technology, researchers
began to pay attention to the walking intelligent robot and
the rehabilitation training technology combined with BCI,
which can improve the rehabilitation strategy by detecting
brain’s motion intention more quickly and forcefully, so as
to improve the rehabilitation efect. BCI-based system is
a development trend of the future neurological rehabilitation
system [3, 4]. It is important to investigate the relationship

between brain cognitive activity and motor process in the
development of BCI-based active rehabilitation technology.

At present, EEG is widely used in the detection of motor
intention because of its simplicity, portability, and high time
resolution [1, 5]. Studies also shown that EEG signal contains
abundant gait and motion information [6, 7], while the
decoding research on lower limb motion intention such as
walking and gait has just started. One of the most basic
movements in the gait process is to stand up (standing) and
sit down (sitting). Zhong et al. investigated the event-related
potentials during the attemped standing up task; they found
signifcant midcentral-focused mu event-related desynch-
ronization (ERD) with beta event-related synchronization
(ERS) during imaginary standing up task [8]. Bulea et a1. [6]
studied the corresponding EEG features of 10 subjects
during the transition between sitting to standing by
decoding the low-frequency band signals, and combined
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with Gaussian mixture model (GMM) to realize the rec-
ognition of the above two conditions. In the later work,
Bulea et al. [4] still focused on the cortical slow potential
before action execution and analyzed the feasibility of delta
band in motor intention decoding.Tese signals in standing,
sitting, and quiet condition were analyzed by designing two
models under self-trigger and external cue trigger, and the
GMMclassifer was also used to completer the recognition of
the three states, and obtained good results. In addition, other
decoding studies on motor intention mainly focus on two
types of signals, one is the event-related synchronization/
desynchronization potentials and the other is the movement
related brain potentials (MRPs) [1, 4]. Above discussed
studies have deepened the understanding of brain cognitive
mechanism corresponding to motor intention, and also
realized the efective detection and recognition of the
movement. However, these studies mainly focus on the slow
potentials from few electrode channels in sensorimotor
brain regions, which lack the feature information form
spatial domain considering the interaction between diferent
brain regions from the whole brain.

It is well known that gait is a complex cognitive and
motor control process, and lower limb movements also
involve the coordination and cooperation of all brain regions
[4]. However, before a standing and sitting action is com-
pleted, the brain must show certain characteristic in-
formation, and the motion intention can be fnally
determined by decoding such information. In addition to the
aforementioned representation of cortical slow potentials, it
is expected to reveal new features of motor intention
decoding through the analysis of dynamic change process of
brain interdependence [9, 10]. Lau et al. [11] investigated the
characteristics of functional brain network during standing
and walking. Tey found that compared with standing state,
the functional connection of sensorimotor areas would be
weakened during walking. Tey think it is the reason that it
needs more cognitive attention during walking. Li et al. [9]
investigated the features of functional connectivity during
rehabilitation with the help of exoskeleton, and indicating
that the graph theory based brain network analysis has
a certain role in the research of gait rehabilitation. Handiru
et al. [10] have studied the balance of brain trauma patients
during walking by building the functional brain networks.
However, it is obviously necessary to carry out further
analysis from various perspectives for action, intention, and
detection.

To this end, this paper designed a motion experiment
from sitting to standing and then from standing to sitting,
during which 32 channel EEG signals were collected syn-
chronously and the brain were divided into eight sub re-
gions. By constructing a multi-layer network for the eight
regions, we frst discussed the dynamic process of the brain
before and after the onset of the action and then the
complexity and entropy parameters of the EEG signals
during the whole action were fully analyzed. Tese features
which are sensitive to diferent actions are screened by
statistical analysis, and the feature vector is formed using
these parameters. Finally, the recognition of standing, sit-
ting, and quiet condition is realized by combing the feature

vector with several machine learning classifers. Figure 1 is
the block diagram of this study.

2. The Experimental Process

2.1. Experiment Materials and Methods Experimental
Protocol. Tirteen right-handed health subjects aged be-
tween 19 and 24 years participated in the study. All subjects
had normal or corrected vision and did not have any history
of neurological disease. Tis project was approved by the
university’s ethics committee. Before the experiment, sub-
jects were required to sign an informed consent and all were
paid 100 Yuan after the experiment. During the experiment,
subject sit in front of the monitor, which display the time to
the subject. Subject was required to sit still for 1minute and
then stand up, which change from sitting to standing and
keep standing for 1minute. After that, the subject sat down
again. Tese actions were completed repeatedly and alter-
natively, as shown in Figure 2. EEG signals were recorded
during the whole process, and one session took about
10minutes, during which 1minute is rest. Each subject
fnished 6 sessions. Subjects are required to keep quiet as
much as possible during the whole experiment, especially
when they are sitting down and standing up, so as to ensure
as few other movements as possible.

2.2. Data Recording and Preprocessing. EEG was recoded
with a 32-electrode cap arranged with the international
10–20 system using the NeuSenW system (Neuracle, China)
and SAGA 32+ system (TMSi, Netherlands), with an av-
eraged reference during the EEG recording. Four electrodes
were placed laterally to right and left eyes to record the
horizontal and vertical electrooculograms (EOG), and the
electrodes below and above the left eyes were used to
monitor the eye movements and blinks. Te impedance of
the electrode was set below 10 kΩ, EEG signal was recorded
at the laptop with 1024Hz sampling rate, and the online
sampling frequency band is 0–200Hz.

Besides the 30 channel EEG signal, 4 extra channel which
record the IMU data are fxed on the left upper leg and four
pressure sensors (FSR sensors) are fxed under the left foot to
record the foot pressure synchronously, which is shown in
Figure 3. Te preprocessing of all subjects was completed
one by one in EEGLAB. First, all session data of each subject
were merged together, then the data were down sampled to
250Hz, and the band-pass fltering from 0.1Hz to 48Hz was
completed. Te linear fltering of signals was completed
using the cleanline tool, the electrode positioning of all the
channels was completed according to the electrode position
of EEG system, and all the bad electrode and irrelevant
channels were removed.

After the basic preprocessing, IMU data are fltered with
a low-passed flter (cut-of frequency is 10Hz) and combing
with the foot pressure signals from the heels, the onset of
each standing and sitting action is determined. Ten, all the
data were segmented into the epochs lasting about 7 s under
three conditions, in which 4.5 s prior and 2.5 s after the onset
of the motion action, and baseline correction were
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completed. Ten, the epochs which is greatly afected by
artifact is removed through visual detection, and the ICA
decomposition of all signals is completed using Runica.
Artifact components such aseye movement, eye blink,

muscle artifact, and other artifacts mainly caused by the
movement are removed with the help of SASICA toolbox.
After the artifact is removed, if necessary, the bad electrode is
interpolated and the data is re-referenced. Finally, we got 150
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Figure 1: Te block diagram of this study.
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epochs for each subject and thus there are 1950 samples in
total processed in the following sections and machine
learning classifers.

2.3. Slow Wave Extraction and Brain Region Division.
Previous studies about motor intention have found that the
EEG potentials such as ERD/ERS and MRPs are slow waves
[12]. Terefore, this study mainly focuses on the delta band
(0.1Hz–4Hz) signals, which is obtained through a zero-
phase 4 order Butterworth flter. In order to focus on the
complexity and entropy of EEGs in diferent brain regions
and the interdependence of diferent brain regions, as shown
in Figure 4, the 30 channels from the whole brain are divided
into 8 regions, which is left frontal (LF: FP1, F3, F3), right
frontal (RF: FP2, F4, F8), left central (LC: FC1, FC5, C3, CP1,
CP5), right central (RC: FC2, FC6, C4, CP2, CP6), left
temporal (LT: T7), right temporal (RT: T8), left occipital
(LO: P3, P7, O1), and right occipital (RO: P4, P8, O2).

2.4. Functional Brain Network Construction. Functional
brain network is an intuitive expression of dynamic neural
interaction between diferent neurons, neuronal clusters, or
cerebral cortex regions, which can represent the topological
structure and dynamic characteristics of brain network.
Based on the same EEG data set, diferent brain network
types and characteristics can be obtained according to
diferent construction methods, which have an important
role in the detection and recognition of diferent brain states.
In order to quantify the independence of diferent brain
regions, phase transfer entropy (PTE) is applied to discuss
the causal dependence of brain regions. PTE is a useful
measure for directed functional connectivity in a large-scale
investigation of human functional connectivities [13, 14].
Compare to other measures, it is more robustness to noise
and more efcient. When constructing the functional net-
work, all channel signals in each brain region were averaged
as the fnal signals of EEG in this brain region. Trough the
above analysis, we had a total of eight brain regions and then
got a value as an edge of our functional network connection
by calculating the PTE between two signals of each pair of
brain regions, as shown in Figure 5. In the end, we can obtain
an 8∗ 8 PTE weight matrix. Te matrix is the representation
of the interdependence between brain regions and can be
used to describe the topological connections between brain
regions.

2.5. Signal Complexity Analysis. Complexity analysis of
a signal is an important tool to reveal the characteristics of
a nonlinear system. In recent years, more and more re-
searchers began to evaluate the activity state of the brain
through the nonlinear dynamic analysis [15]. Among them,
entropy is one of the most widely used analysis methods. At
present, various entropy analyses [15, 16] have been used
for the neural signal analysis. In order to more compre-
hensively discuss the representation of various entropy on
EEGs during motion, this paper calculate various time-
domain entropies, such as Shannon entropy (ShEn),

approximate entropy (ApEn), sample entropy (SaEn),
permutation entropy (PeEn), conditional entropy (CoEn),
and fuzzy entropy (FuEn). Besides, spectral entropy (SpEn)
and wavelet entropy (WaEn), which represents time-
frequency characteristics, were also discussed. In addi-
tion, we also discussed the Hurst index (here we refer to
Hurst Exponent, HE), Kurtosis index (Kurtosis). Specif-
cally, Hurst index refects the autocorrelation of time series,
especially the long-term trend hidden in the series. Tese
parameters are normal slope descriptors (NSDs) used in
EEG. Tese measures were calculated for the averaged
signals in each region. Finally, through the statistical
analysis, we selected the brain regions and the complexity
measures which have signifcant diferences for the three
conditions to form the feature vector.

3. Results

3.1. Complexity for Each Region. In order to conduct
quantitative analysis of the complexity measure in each brain
region under the three conditions, as shown in Tables 1–3,
ten complexity measures are calculated for averaged EEGs of
each brain region, respectively. It can be seen that the values
of various parameters in the 8 brain regions are very close
and these parameters in LO and RO region are the largest,
followed by the LC and RC region. In order to determine the
diference among the three conditions, statistical analysis of
various parameters found that PeEn, ShEn, SpEn, and
Kurtosis in RT region were signifcantly diferent from that
of standing and sitting comdition. Te ShEn and Kutosis in
LF region; Kutosis in RF region; CoEn, ShEn, and Kurtosis
in RT region; and Kurtosis in LC, RC, LO, and RO region
show signifcant diference in standing and quiet condition.
While the CoEn, SaEn, ShEn and Kurtosis in LF region;
Kurtosis in RF region; ShEn in RT region; Kurtosis in LC
region; ShEn and Kurtosis in RC region; and Kurtosis in LO
and RO region show signifcant diference in sitting and
quiet condition.

3.2. Topology Network between Brain Regions. In addition to
the aforementioned complexity analysis of the EEGs from
the eight regions, this study also discussed the causal de-
pendence of these regions using PTE measures. As shown in
Figure 6 is the adjacency matrix of PTE interdependence
among the eight regions in the three conditions. Since PTE
can represent the causal dependence between two signals,
the corresponding adjacency matrix is an asymmetric ma-
trix. It can be seen from the fgure that both of the weight of
the network in the three conditions is large and mainly
between 0.4 and 0.6. Besides, the standing and sitting
condition present obvious dependency characteristics dif-
ferent from other windows in w5, which we believe is mainly
due to the fact that standing and sitting actions mainly
appeared in this time window. While in quiet condition, the
connection between the brain regions of each window is
basically stable. It can also be seen from the fgure that there
is no obvious diference between standing and sitting
condition.
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Actually, there are a large number of weak connections
in the adjacency matrix, which may be caused by the in-
teraction between noise or other noncharacteristic signals.
Terefore, it is necessary to set an appropriate threshold to

screen the weights of the connected edges in the above
adjacency matrices and to retain the important edges with
a certain degree of discrimination between diferent con-
ditions. To this end, frst, the weight of the PTE adjacency
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Table 1: Complexity parameters for each brain region (standing condition).

Parameters LF RF LT RT LC RC LO RO
ApEn 0.0817 0.0834 0.0762 0.0784 0.0940 0.0935 0.1015 0.1021
WaEn 0.0041 0.0044 0.0036 0.0041 0.0041 0.0044 0.0054 0.0055
CoEn 0.1272 0.1304 0.1220 ☆0.1239 0.1489 0.1474 0.1552 0.1540
FuEn 0.0113 0.0115 0.0095 0.0111 0.0114 0.0116 0.0138 0.0133
PeEn 1.0651 1.0707 1.0600 ★1.0684 1.2769 1.2784 1.2887 1.2879
SaEn 0.0672 0.0687 0.0623 0.0625 0.0757 0.0765 0.0829 0.0832
ShEn ☆2.0260 2.0587 2.0389 ☆★1.9843 2.4558 2.4478 2.4423 2.4338
SpEn 0.4964 0.5011 0.5162 ★0.5077 0.5983 0.6013 0.5902 0.5967
Kurtosis ☆3.2039 ☆2.9912 2.8832 ☆★3.3799 ☆3.4615 ☆3.5853 ☆3.9149 ☆3.8530
HE 0.9841 0.9841 0.9835 0.9837 1.1820 1.1815 1.1809 1.1807
Notice: “★” standing vs. sitting, p< 0.05; “☆” standing vs. quiet, p < 0.05; “#” sitting vs. quiet, p< 0.05.

Table 2: Complexity parameters for each brain region (sitting condition).

Parameters LF RF LT RT LC RC LO RO
ApEn 0.0731 0.0770 0.0779 0.0834 0.0897 0.0933 0.0961 0.0962
WaEn 0.0032 0.0035 0.0034 00039 0.0044 0.0051 0.0049 0.0047
CoEn #0.1166 0.1209 0.1227 0.1304 0.1453 0.1497 0.1512 0.1508
FuEn 0.0091 0.0096 0.0092 0.0103 0.0114 0.0123 0.0124 0.0125
PeEn 1.0661 1.0705 1.0805 ★1.0903 1.2859 1.2916 1.2974 1.2948
SaEn #0.0569 0.0606 0.0626 0.0667 0.0719 0.0768 0.0776 0.0774
ShEn #1.9936 2.0240 2.0374 #★2.0889 2.4077 2.4137 2.4478 2.4407
SpEn 0.5064 0.5031 0.4997 ★0.4699 0.6039 0.6088 0.5886 0.5910
Kurtosis #2.9882 #2.9582 2.8268 ★2.6581 #3.6595 #3.7483 #3.5659 #3.5773
HE 0.9844 0.9844 0.9840 0.9834 1.1803 1.1801 1.1800 1.1804
Notice: “★” standing vs. sitting, p< 0.05; “☆” standing vs. quiet, p< 0.05; “#” sitting vs. quiet, p< 0.05.
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matrix corresponding to the three conditions in each
window is fattened and combined to form a one-
dimensional vector and then the median in the distribu-
tion of the vector is taken as the threshold for all these
connection matrices. Figure 7 shows the frequency histo-
gram distribution of the vector and the determined
threshold (T� 0.51), which is used to binarize the afore-
mentioned connection matrices. Figure 8 shows the cor-
responding topological network after the threshold fltering.

Intuitively, the diference between standing and sitting is
not clear, but there are obvious diferences between quiet,
standing, and sitting. Generally speaking, during the whole
movement process, for the quiet condition, the connections
between the brain regions are mainly concentrated in the
frontal-parietal-temporal area, lacking the interaction with
the occipital region, and the interaction of diferent brain
regions has not changed much from w1 to w8. However, for
standing and sitting condition, there are extensive in-
teractions among the eight brain regions. It can be seen that
w5 has the strongest connection in the brain regions, the
connections before w5 is weaker and, on the whole, the
interactions become weaker after w5.

3.3. Classifcation. Based on the above discussed signal
complexity of the EEGs in each region and the in-
terdependence between brain regions, combined with the
statistical analysis results, the feature vector was constructed
with these parameters which has signifcant diference

among the three conditions. When constructing feature
vectors, we used the network parameters with signifcant
diferences in Tables 1–3 to complete the construction. In
contrast with diferent states, the characteristic composition
of this vector is diferent. According to the statistical analysis
results in the table, four parameters of RT brain region PeEn,
ShEn, SpEn, and Kurtosis were used for sitting and standing
states. For standing and quiet states, ShEn in LF brain region,
ShEn and CoEn in RT brain region, and Kurtosis from all
brain regions except the LT brain region were used. For
sitting and quiet states, CoEn, SaEn, and ShEn in LF brain
region; ShEn in RT brain region; ShEn in RC brain region
and Kurtosis on other brain regions except LTand RT brain
regions were used. Tables 1–3 show the statistical signif-
cance of each parameter.

Te specifc feature vector for sitting and standing
condition is defned as follows:

Vpara � (PeEn, ShEn, SpEn,Kurtosis)RF. (1)

Tree machine learning algorithms including support
vector machine (SVM), logistic regression (LR), and linear
discriminant analysis (LDA) are used to test the feature
vector to complete the recognition of the two types of
motion condition. Figure 9 shows the averaged classifcation
accuracy obtained after fve-fold cross-validation. It can be
seen that all the classifcation accuracies are over 80.9% and
the SVM has the best efect, which proves the efectiveness of
this method.

Table 3: Complexity parameters for each brain region (quiet condition).

Parameters LF RF LT RT LC RC LO RO
ApEn 0.0817 0.0800 0.0735 0.0878 0.0953 0.0923 0.0947 0.0947
WaEn 0.0040 0.0038 0.0035 0.0042 0.0046 0.0045 0.0044 0.0047
CoEn #0.1294 0.1288 0.1192 ☆0.1433 0.1531 0.1489 0.1521 0.1564
FuEn 0.0098 0.0093 0.0077 0.0111 0.0107 0.0101 0.0106 0.0113
PeEn 1.0772 1.0735 1.0611 1.0795 1.2851 1.2808 1.2818 1.2851
SaEn #0.0695 0.0677 0.0626 0.0744 0.0810 0.0788 0.0807 0.0832
ShEn #☆2.1169 2.1212 2.0764 #☆2.1990 2.5560 #2.5301 2.5437 2.5680
SpEn 0.5027 0.5035 0.5093 0.4784 0.5970 0.6011 0.5987 0.5909
Kurtosis #☆2.5608 #☆2.4897 2.4315 ☆2.4392 #☆2.8588 #☆2.8480 #☆2.8988 #☆2.8499
HE 0.9845 0.9847 0.9841 0.9834 1.1813 1.1810 1.1808 1.1809
Notice: “★” standing vs. sitting, p< 0.05; “☆” standing vs. quiet, p< 0.05; “#” sitting vs. quiet, p< 0.05.
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4. Discussion and Conclusion

Trough the above analysis, we get a good result, because the
complexity parameters selected in this paper, respectively,
represent diferent feature information in each brain region.
Indeed, the production of movement is mainly controlled by
the sensorimotor brain region, but it also requires co-
ordination and collaboration between brain regions. Te
changes of the topological relationships connected by
functional networks can refect the interaction between
brain regions during the whole movement process, and the
complexity and entropy of diferent brain regions can better
represent the characteristic information of each brain region
in the corresponding action process. Te characteristic
quantity sensitive to diferent actions can be found by sta-
tistical analysis, so diferent states can be efectively iden-
tifed based on these parameters.

Te control of this movement is mainly in the sensory
andmotor brain regions.We discussed eight brain regions in
the whole brain in this paper and calculated the average of
each channel in each brain region, which may eliminate
some characteristic information of electrode channels in
specifc regions. For example, the features of C3 and C4
electrodes in the motor brain region may be weakened, that
is why some of our classifers do not work very well. So we
will consider discussing the complexity parameters of each
electrode in the sensory-motor brain region in the future
work. Te sensitive channels and characteristic quantities of
standing and sitting movements were determined by sta-
tistical analysis; it should be helpful to improve the efciency
of recognition. And this is also an aspect of our future work.

In our preprinted paper [17], we proposed a feature
representation method based on the complexity and entropy
of each brain region signal. Te sensitivity features of actions
are determined by statistical analysis and classifed by ma-
chine learning algorithm. However, we neglected the di-
rected dynamic brain network analysis of brain regions so
that we did not fnd the efect of action on brain region
dependence. Tis paper is an improvement on the previous
preprint and is discussed in detail to make its results more
complete.

In this paper, frst, the complexity parameters of each
brain region are described in detail through several tables for
the reader to understand. Second, we also discussed the
causal dependence of these brain regions using PTE mea-
sures, which is a strong robustness and high efcient
method. Finally, we constructed the corresponding topo-
logical network after threshold fltering and found actions
that weakened the dependency between brain regions
leading to weakened network topology connections.

Tis paper completes the phase transfer entropy analysis
of EEGs in diferent brain regions of the subjects in standing,
sitting, and quiet conditions by designing a motion exper-
iment from sitting to standing. By constructing the func-
tional brain network on eight-time windows before and after
the onset of the action, the directional dependence of dif-
ferent brain regions during the whole action is displayed and
analyzed in the form of network topology. In addition, this
paper discusses a series of entropy features and complexity

parameters, respectively, for the grand averaged EEGs from
each brain region. Trough the statistical analysis, relevant
features with signifcant diferences among the three states
are screened out and combined with SVM, LDA and LR to
realize the classifcation of standing, sitting, and quiet. Te
classifcation accuracy is up to 86.8%, which proves the
feasibility of detecting and recognizing the lower limb
motion intention based on the complexity parameters of
EEGs. Functional connectivity analysis shows that the oc-
currence of standing and sitting actions will weaken the
interdependence of brain regions, resulting in the simpli-
fcation of network topology. Tis study also provides a new
insight into EEG-based motion intention detection and have
certain reference value for the development of BCI-based
lower limb walking aid and rehabilitation robot.
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