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Te ionospheric state is becoming increasingly important to forecast for the reliable operation of terrestrial and space-based radio-
communication systems which are infuenced by ionospheric space weather. In this study, we have investigated and tested
a multivariate long short-term memory (LSTM) deep learning model for its forecasting accuracy over diferent latitudinal regions
during the solar quiet and solar active years.We also tested its prediction capability during the occurrence of a geomagnetic storm.
Four stations qaq1 (60.7°N, 46.04°W), baie (49.18°N, 68.26°W), mas1 (27.76°N, 15.63°W), and bogt (4.64°N, 74.08°W) in the
northern hemisphere were used in this study. To optimize the feature extraction process, we used heat map to fnd the correlation
between TEC and the various exogenous parameters and fnally nine correlated parameters were used as inputs to train the LSTM
model. Te performance of the LSTM model was validated by comparing it with the multilayer perceptron (MLP) machine
learning algorithm using root mean square error (RMSE) and mean absolute error (MAE) as evaluation indices. Te results
showed an accuracy improvement of 70% and 64% over MLP during the solar quiet and active years, respectively. Te prediction
accuracy of our LSTMmodel was also 74% better than MLP during the geomagnetic storm event. Tese fndings demonstrate the
efectiveness of the developed LSTM model and the right selection of the exogenous parameters in estimating TEC, and suggest
that this LSTM model can be used for short-term TEC forecasting.

1. Introduction

Te ionosphere, found in the Earth’s upper atmosphere,
plays a crucial role in the propagation of radio signals.
Variations in the density of electrons in the ionosphere can
impact the speed and delay the radio signals traveling from
Global Navigation Satellite System (GNSS) satellites to re-
ceivers, ultimately decreasing positioning accuracy. Te
Total Electron Content (TEC) parameter is directly pro-
portional to the infuence of the ionosphere on satellite
signals. Te TEC causes delay in the radio waves traversing
through the ionosphere. Tus, it is a major source of error in
navigation systems like GNSS. Hence, prediction of iono-
spheric TEC is important in radio communications, radar
systems, navigation and positioning systems. Forecasting the
TEC successfully will help in correction of positioning errors

caused by the ionosphere [1]. Various physical processes,
such as solar radiation, geomagnetic storms, and atmo-
spheric tides, can signifcantly impact the ionosphere,
leading to substantial variations in TEC values. So, there is
a need to comprehend the spatiotemporal variations in TEC
and develop robust global and regional TECmodels [2].Tis
requirement has been emphasized by experts in this feld and
has become a critical research topic in ionospheric studies.
Tus, this research paper aims to investigate the parameters
which cause signifcant variations in TEC and develop ac-
curate model to improve the prediction of ionospheric
conditions for the reliable functioning of radio-
communication systems.

Ionospheric TEC forecasting methods can be classifed
into empirical methods, statistical methods and machine
learning methods. Empirical models describe the state of the
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ionosphere as a function of latitude, altitude, solar cycle, day
of the year, season, geomagnetic activity etc. Te traditional
ionospheric error mitigation approaches like the In-
ternational Reference Ionosphere (IRI) model [3], the
Klobuchar model [4], the NeQuick model [5] show limi-
tations during complex ionospheric dynamics. Statistical
methods like autoregressive [6], autoregressive moving
average (ARMA) [7], autoregressive distributed lag (ARDL)
model [8] have been developed in the past for forecasting
regional short-term ionospheric TEC. Over the years, several
neural network models have been developed for prediction
of TEC and various related parameters at regional levels.
Tese machine learning models use various algorithms to
map nonlinear and complex relationship between input and
output. Neural network [9–11], wavelet-based ANN [12],
support vector machines [13], nonlinear radial basis func-
tion [14], and genetic algorithm-based neural network [15]
are a few among them. However, these models fail to
consider the time sequential feature of TEC. In deep
learning, recurrent neural networks (RNNs) are very ef-
fective in modeling sequential data but vanishing and
exploding gradient problems are common issues in these
deep neural networks. LSTMs are a special type of RNN’s
which can model long range temporal dependencies due to
the presence of memory cells. Te ability to learn long-term
dependency in time series prediction makes LSTM models
more powerful than any other type of neural networks.
Several studies have analyzed and compared the perfor-
mance of LSTM prediction models for Total Electron
Content (TEC). LSTM was shown to outperform ARIMA
and seq2seq models during a magnetic storm [16]. It was
found that LSTM had the highest accuracy in predicting
ionospheric delay, compared to NN and IRI models [17].
LSTM had better prediction accuracy than MLP under both
quiet and stormy geomagnetic conditions [18]. Te pre-
diction of TEC using LSTM was better than back propa-
gation (BP) at midlatitude station during diferent solar
conditions [19]. Tese studies collectively provide evidence
that LSTM performs better in TEC prediction compared to
other neural networks and existing empirical models.
However, the performance of the TEC prediction models at
diferent latitudes and during diferent solar conditions
needs further study. Te current paper aims to investigate
the performance of TEC prediction model in high latitude,
midlatitude, low latitude, and equatorial region. Although
literature suggests diferent exogenous parameters that could
be used for TEC prediction, none of the literature studies
have found out the correlation between TEC and other
exogenous parameters which could be used for better pre-
diction accuracy. Tis study focuses on determining the
exogenous features which correlate well with TEC using heat
map and Pearson correlation coefcients and using them for
TEC prediction. Our model is tested for prediction accuracy
during low solar activity year 2008, high solar activity 2014
and during the occurrence of geomagnetic storms. Addi-
tionally, this study also compares the prediction results of
LSTM with MLP at diferent latitudinal regions during
diferent solar and geomagnetic conditions.

Te contributions of the present study are as follows:

(i) A multivariate deep learning LSTM model for
prediction of ionospheric TEC is developed and its
performance is compared with Multilayer Percep-
tron (MLP).

(ii) Using heatmap and Pearson correlation coefcients,
the parameters that correlate well with TEC are
determined and used as exogenous parameters for
the proposed model to improve the accuracy of TEC
prediction.

(iii) Performance of the model is examined for high
latitude, midlatitude, low-latitude, and equatorial
region and during diferent solar conditions such as
solar quiet year (2008) and active year (2014) and
during the occurrence of geomagnetic storm event
(2011).

(iv) Te simulation results prove that the proposed
LSTM model achieved better performance than
multilayer perceptron at all times and for all regions.

2. Materials and Methods

2.1. Input Parameters for the LSTM Model. In the present
study, ionospheric TEC data along with other exogenous
parameters are used.Te TEC data sampled at every one hour
was downloaded from IONOLAB site [20]. Te major pa-
rameters that cause ionospheric TEC variations are the local
time, season, solar and geomagnetic activities [21, 22]. Te
solar parameters that afect TEC are solar radio fux F10.7 and
sunspot number (SSN). Planetary index (Kp, Ap) and Dis-
turbance storm time index (Dst) are used as geomagnetic
parameters in the study of ionospheric TEC variations
[23–26]. Also, the interplanetary magnetic feld (IMF) data By
and Bz alongwith plasma speed (Vp) and proton density (Np)
have shown to yield better results in prediction of TEC maps
[27]. Tus, the literature suggests various exogenous pa-
rameters that can be used for better prediction of TEC. To
select the right exogenous parameters which could be used for
TEC prediction, we plotted the correlation heat map which
shows the correlation of the exogenous parameters with TEC
(see Figure 1). Correlation coefcients quantify the re-
lationship between variables. A heat map provides a visual
representation of these correlations, making it easier to
identify patterns and relationships between variables. Strong
correlations may indicate a potential relationship or de-
pendency between variables. Tis can help identify which
variables are most infuential or redundant in the dataset,
allowing us to make informed decisions about feature se-
lection. Te Pearson correlation coefcients are plotted in
Figure 2. Based on the correlation values we selected the input
parameters for the LSTM model. Te exogenous parameters,
which show strong positive correlation with TEC are Np, Ap,
and Kp with correlation coefcient greater than 0.6. By and
F10.7 show moderate positive correlation with correlation
coefcient greater than 0.35. Dst, Vp, and Bz show amoderate
negative correlation with correlation coefcients in the range
−0.63 to −0.41 whereas time shows amild negative correlation
with correlation coefcient −0.24. Although, time showed
a mild negative correlation still it was used as one of the
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exogenous parameters since TEC exhibits diurnal charac-
teristics. Auroral Electrojet (AE) shows very low negative
correlation (−0.075) and hence wasn’t used in this study (see
Figures 1 and 2).

Table 1 shows the exogenous parameters used along with
their units and symbols. All these parameters were obtained
from NASA OMNI website and were sampled after every
1 hour to maintain consistency with TEC data [28].
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Figure 1: Heat map showing the correlation of TEC with other exogenous parameters.
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Figure 2: Pearson correlation coefcient between TEC and other exogenous parameters.
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A brief description of these exogenous parameters is
given as follows:

Solar fux F10.7: TEC tends to be lower during periods
of low solar activity and higher during times of high
solar activity [25]. Tis is because solar activity afects
the ionosphere, which in turn afects TEC. One
commonly used measure of solar activity is the F10.7
solar fux, which is directly linked to the number of
sunspots, as well as the levels of ultraviolet and visible
solar radiation. Terefore, we use F10.7 since it is
a reliable predictor of solar activity levels.
Disturbed storm index Dst: Te intensity of geo-
magnetic storms is often measured using the Disturbed
storm index, also known as the Dst index. Tis index
quantifes the deviation of the earth’s magnetic feld
from its normal variation during a quiet day. Under
normal conditions, the Dst index typically ranges from
0 to −50 nT. However, during intense geomagnetic
storms, the index can drop to below −200 nT [26].
Te Interplanetary Magnetic Field has two components
that are particularly relevant for understanding its
impact on the ionosphere: Te east-west (By) com-
ponent and the north-south (Bz) component [26, 27].
IMF By: Te By component of the magnetic feld is
oriented perpendicular to the plane of the Earth’s
magnetic equator and is responsible for the formation
of the equatorial ionization anomaly (EIA). Te EIA is
a region of enhanced ionization that forms over the
magnetic equator and is responsible for the peak in
ionospheric total electron content (TEC) observed in
the daytime. During periods of strong felds, the EIA
can extend to higher latitudes, leading to an increase in
TEC at these locations as well.
IMF Bz: Te Bz component of the magnetic feld is
oriented parallel to the earth’s magnetic axis and is
responsible for the formation and behavior of high-
latitude ionospheric structures, such as the auroral oval.
During periods of southward (negative) Bz, the solar
wind can penetrate deeper into the Earth’s magneto-
sphere, leading to enhanced ionization and TEC at high
latitudes.
Plasma speed, Vp: Tis refers to the speed at which
plasma, a gas consisting of ions and free electrons,
moves in the ionosphere. Te plasma speed in the

ionosphere is afected by a variety of factors, including
the earth’s magnetic feld, solar activity, and the density
of the plasma. When the plasma speed is high, it can
cause irregularities in the ionosphere, which can lead to
variations in TEC [27].
Proton density, Np: Np refers to the number of posi-
tively charged hydrogen ions in the ionosphere. Proton
density is also afected by various factors, such as solar
activity and the earth’s magnetic feld.When the proton
density is high, it can increase the ionization of the
atmosphere, which can cause an increase in TEC [27].
Planetary 3-hour range index Kp: Tis index is
a measure of the geomagnetic activity that is obtained
by averaging the standardized K-index from 13 ob-
servatories located between 44° and 60° latitudes in both
the hemispheres. Tis index serves as an indicator of
the overall level of geomagnetic activity, with higher
values indicating more severe activity [25].
Planetary index Ap: Te Ap index is a measure of the
strength of geomagnetic activity that ranges from 0 to
400. Higher values of Ap index correspond to more
intense geomagnetic activity [25].
Time of the day: Te ionospheric TEC exhibits a daily
pattern where the electron density increases gradually
to reach its peak at noon, then decreases to its lowest
point at midnight. Te sine and cos functions,
sin(2π/24) h and cos(2π/24) h, where local time, h,
ranges from 0 to 23, help in normalizing the time input
in the range (−1, 1) [25].

To study the impact of latitude on TEC prediction, we
used four stations in the northern hemisphere each corre-
sponding to a diferent latitudinal region. Te stations used
along with their latitudes and longitudes are shown in Ta-
ble 2. We used TEC data from 1st–31st July, 2008 corre-
sponding to the low solar activity year, 1st–31st July, 2014,
corresponding to the high solar activity year and 1st July to
31st October, 2011, for the geomagnetic storm event.

2.2. Analysis of the LSTMModel. Te LSTM model is made
of multiple LSTM cells. Each LSTM cell has a forget gate,
input gate, memory cell and output gate. Te fow of in-
formation at any timestep t in the LSTM cell is controlled by
three gates, namely, the forget gate, input gate, and the

Table 1: Exogenous parameters used for the LSTM model.

Selected parameters Units Symbols used
Solar fux F10.7 sfu (10−22Wm−2·Hz−1) F10.7
Disturbance storm time index nT Dst
IMF By nT By
IMF Bz nT Bz
Plasma speed m/s Vp
Proton density n/cm3 Np
Planetary index, Kp 0–9 Kp
Planetary index, Ap nT Ap
Time of the day (sine and cosine components) hour T
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output gate [16–19].Te internal structure of each LSTM cell
is shown in Figure 3.

Forget gate: Te previous hidden state, ht−1, and the
current input data, xt, are fed into a forget gate, which is
a neural network. Tis network (which uses a sigmoid
function) is trained such that for irrelevant input it
outputs close to 0 and closer to 1 when the input is
relevant. Te output of this gate is ft. Tese values are
then point wise multiplied with the previous cell state
ct−1 to yield cft. By performing a pointwise multipli-
cation, the cell state components that the forget gate
network has identifed as irrelevant will be multiplied
by a value close to zero. As a result, these components
will have minimal infuence on the following stages of
the process. Te forget gate is represented mathe-
matically by (1) and (2).

ft � σ Wf. ht−1, xt  + bf , (1)

cft � ct−1 ∗ft. (2)

Store/Update the current cell state: Te input gate
decides which new information should be added to the
network’s long-term memory (cell state). Te process
involves two neural networks: the memory cell and the
input gate. Te memory cell uses the tan h activation
function to generate a new candidate vector gt that
determines how much each component of the long-
term memory should be updated based on the new
input data.Te input gate utilizes the sigmoid activation
function to selectively determine which information
from the input should be stored in the new memory
vector.Te outputs it and gt are pointwise multiplied to
retain only the relevant information. Te resulting
combined vector, cit, is then added to the cell state, cft,
to update the long-termmemory of the LSTM network,
ct. Tis way, the network can selectively store and
update relevant information while discarding irrelevant
information.

it � σ Wi. ht−1, xt  + bi( , (3)

gt � tan h Wc. ht−1, xt  + bc( , (4)

cit � it ∗gt, (5)

ct � cft + cit. (6)

Output gate: Te output gate decides the new hidden
state ht . We frst pass the cell state through tan h to

force the values in the interval [−1, 1]. Te output gate
with the sigmoid function determines what goes from
this LSTM cell to the output.

ot � σ Wo. ht−1, xt  + bo( , (7)

ht � ot ∗ tan h ct( , (8)

whereW denotes the diferent weight matrices with the
connections of each weight matrix indicated by its
indices and b denotes the bias terms of each of the fully
connected layers. Equations (1) to (8) mathematically
represent the internal operations occurring in each of
the LSTM cell.

2.3. Implementation of the LSTMModel. We built the LSTM
model using Keras and TensorFlow deep learning libraries in
Python. Te fowchart for the development and imple-
mentation of proposed methodology is shown in Figure 4.

Te various steps performed to build, train, and test the
model are as follows:

Step 1: Data Preparation
First, we read the .csv fle and fnd if there are any
missing values. Next, to eliminate the infuence of
diferent measurement scales and range diferences
among the variables, the entire dataset is standardized
using the minmax scaler between (0, 1). We then
convert the time series into a supervised learning
problem by using a sliding window algorithm [2]. In
the sliding window approach, we have used a fxed-size
window that slides over the time series data, and the
model is trained on each window sequentially. At each
time step, the input sequence to the LSTMmodel is the
past observations within the window, and the output is
the next value in the time series. Te window is then
moved by a fxed step size and the process is repeated

Table 2: Selected stations with latitudes and longitudes.

Region Stations Latitude and longitude
High-latitude region (60° to 80°) qaq1 (Greenland, Denmark) 60.7°N, 46.04°W
Midlatitude region (30° to 60°) baie (Comeau, Canada) 49.18°N, 68.26°W
Low-latitude region (10° to 30°) mas1 (Maspalomas, Spain) 27.76°N, 15.63°W
Equatorial region (0° to 10°) bogt (Columbia) 4.64°N, 74.08°W

forget 
gate 

σ

Input 
gate

σ

Memory
cell
tanh

Output
gate 

σ

X +

X

Previous 
hidden
state 
ht-1

Previous 
cell 

state 
ct-1 ft it

X New 
hidden 

state
ht

ot

tanh

New 
cell 

state 
ct

Current 
input 

xt

cft

gt

cit

Figure 3: Internal structure of LSTM cell.
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until the end of the time series. Consider the time series
data of length N, window size W, and the step size 1
(see Figure 4). We frame N − W instances of length
W + 1 containing input and output datasets to train the
LSTMmodel (see Figure 5).Te frstW samples of each
instance is considered as training input data and the
W + 1th sample is the target data. In our algorithm, we
have used past 24 values in each window as the input
and the next value as the output. Te step size is taken
as 1. For predicting the future TEC values, the model is
trained to predict for one next time step and then the
state of the network is updated after every prediction.
For training, validation, and testing the model for solar
quiet and active years, we have used 1month data each.
Te TEC data is sampled after every one hour, thus the
total number of TEC samples is 744. Te total number
of exogenous parameters used are 10 and these are also
sampled after every one hour.Tus, the total number of
samples used for exogenous data equals 7440. For
training, validation, and testing the model for the
geomagnetic storm event, we have used 4months data.
Total number of TEC samples is 2952. Te total ex-
ogenous parameters used are 10 and total number of
samples used for exogenous data = 29520. Tis data is
partitioned into 70-14-16 split. 70% of the data is used
for training the model, 14% is used for validation, and
then the model is tested on 16% of the data.
Step 2: Design and ft the model

Te LSTM model consists of an input layer, one LSTM
layer, dense (fully connected layer), and an output layer
(see Figure 6). Te input layer inputs the past TEC data
along with the selected exogenous parameters to the
LSTM layer. Te model consists of a single layer LSTM
with the 100 LSTM cells. Te fully connected dense
layer with one output unit produces a single TEC value
as the fnal prediction. Te model is trained such that it
learns to predict the next time step for each iteration of
the input time step. Te network optimizer is chosen as
Adam and the loss function is MSE. Te number of
epochs is set to 100, and validation loss value is
monitored by the early stopping method, where pa-
tience is set to 10. Te dense layer (fully connected
layer) uses the Leaky ReLU activation function to avoid
the dead neuron problem.
Some important hyperparameters for LSTM models
include the number of LSTM layers, the number of
LSTM cells per layer, the learning rate, the batch size,
and the dropout rate [29]. In this work, the LSTM
network with 100 LSTM cells has been used to achieve
an adequate LSTMmodel’s performance.We have used
the hyperparameter grid search method for hyper-
parameter tuning and selecting the optimal values of
batch size, dropout rate, and number of epochs. In
addition, the Adam solver, a step-descent algorithm
with a variable learning rate of 0.001 and the drop rate
of 0.2 for 100 epochs, is considered (see Table 3).
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Figure 4: Flowchart for development and implementation of the LSTM methodology.
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Step 3: Forecast TEC
Te model predicts one TEC value at a particular time
step, and then the network state is updated. Tus, for
each future prediction, it uses the past predicted value

as an input. Since, the entire data were standardized to
[0, 1] before training the model, we do the inverse
normalization to recover the actual data. We calculate
the MAE and RMSE. We also plot the observed and
predicted TEC waveforms for the test data. Te plot of
training and validation loss v/s number of epochs
shows that the model ft is exact and the model can be
used for forecasting (see Figure 7).

Te validity of our model’s results could not be com-
pared to the existing literature in a meaningful way due to
the signifcant variations in methodologies used across
studies, including diferences in station selection, amount of
training data used, and the solar quiet and active years used.
So, we simulated an MLP NN model for the same stations
during the same solar quiet and active years, and we
compare our results with the MLP NN model.

2.4. Implementation of MLP NN Model. A multilayer per-
ceptron (MLP) is an artifcial neural network that consists of
an input layer, one or more hidden layers, and an output
layer. Input features are normalized and passed through the
network where each hidden layer applies an activation
function to the weighted sum of inputs. Te output of each
hidden layer is passed to the next layer until the fnal output
is produced. Te weights of an MLP are updated during
training using an optimization algorithm such as the sto-
chastic gradient descent, based on the diference between the
predicted and actual outputs. Te objective of training is to
minimize the error or loss function while avoiding over-
ftting or underftting. MLP can handle nonlinear re-
lationships between inputs and output, but the number of
hidden layers and neurons can signifcantly afect perfor-
mance. Choosing the optimal hyperparameters, such as
hidden layer size and activation function (fa), is critical. In
our algorithm, hls can take four diferent values, (50), (100),
(50, 50), and (100, 100), while fa can take three diferent
values, (“relu,” “tanh,” and “logistic”). Te optimal hyper-
parameters are determined by performing a grid search to
evaluate all possible combinations of hyperparameters and
selecting those with the best performance metrics, such as
RMSE, MAE, and R2. Table 4 shows the optimized
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Figure 5: Sliding window algorithm.
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Figure 6: LSTM model implemented in Python.

Table 3: Hyperparameters for the LSTM model.

Hyperparameters Values
Number of LSTM layers 1
Te number of LSTM cells 100
Optimizer Adam
Learning rate 0.001
Batch size 32
Number of epochs 100
Regularization (dropout rate) 0.2
Loss function MSE
Activation function (dense layer) Leaky ReLU
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hyperparameters selected for both the solar quiet year 2008
and the solar active year 2014.

Using these hyperparameters, we train and later test the
MLP NN model.

2.5. Evaluation Metrics. To evaluate the robustness and
efectiveness in predicting TEC, we use RMSE and MAE as
the metrics. RMSE helps in assessing the accuracy of fore-
casting models, as it measures the square root of the average
squared diferences between the predicted and actual values.
On the other hand, MAE provides the average of absolute
errors, which can better indicate the magnitude of the errors
in the predicted values. Terefore, using both RMSE and
MAE provide a more comprehensive evaluation of the
forecasting models.

RMSE �

������������


N
i�1 yi − yi( 

2

N



MAE �
1
N



N

i�1
yi − yi( ,

(9)

wheret yi and yi are the actual and the predicted TEC values
and N is the total number of observations.

3. Results and Discussion

3.1. For the SolarQuietYear 2008. Te original and predicted
TEC waveforms for the period from 28th July to 31st July,
2008, are plotted in Figure 8. Figures 8(a)–8(d) show the
original and the predicted TEC for the qaq1, baie, mas1, and
bogt stations in the high-latitude, mid-latitude, low-latitude
region, and the equatorial region, respectively.

Figures 8(a)–8(d) clearly show that that the predicted
TEC is very close to the original TEC most of the times
except for small deviations when TEC reaches the maximum
or minimum values. Te predicted TEC waveform, most of
the times, exactly overlaps the original TEC for all the
stations during the solar quiet year 2008. We tested the
LSTM model performance by computing RMSE and MAE
(see Table 5).

Te average RMSE and MAE values are 1.038 and 0.719
TECU, respectively. Te results indicate an accuracy im-
provement of 70% (using RMSE metric) and 76% (using
MAE metric) over MLP.

3.2. For the Solar Active Year 2014. Te original and pre-
dicted TEC waveforms are plotted in Figure 9 for the period
from 28th July to 31st July, 2014. Figures 9(a)–9(d) show the
original and the predicted TEC for the qaq1, baie, mas1, and
bogt stations in the high-latitude, midlatitude, low-latitude
regions and the equatorial region, respectively.

Figures 9(a)–9(d) show that that the predicted TEC is
very close to the original TEC for high latitude (qaq1) and
midlatitude (baie) stations compared to the low-latitude
(mas1) and equatorial (bogt) regions. Tis is because the
ionosphere is more intensely ionized near the equator
during solar active years. We also tested the model per-
formance for the solar active year (2014) by computing
RMSE and MAE (see Table 6).

Te average RMSE and MAE are 2.656 and 2.111 TECU,
respectively, which is much lower than that predicted by
MLP. Te results indicate an accuracy improvement of 64%
(using RMSE metric) and 66% (using MAE metric) over
MLP. Te comparison of the MLP and LSTM models using
RMSE and MAE evaluation metrics is shown in Figures 10
and 11, respectively.

As expected and as shown in Tables 5 and 6 and Fig-
ures 10 and 11, the RMSE increases with decreasing latitude,
indicating better prediction at higher and midlatitude re-
gions compared to lower and equatorial regions for both the
solar quiet and active years. Te ionospheric TEC variations
over the low-latitude regions are difcult to model and
predict due to the equatorial ionization anomaly [17]. Te
presence of more sunspots on the surface of the sun during
an active solar year causes an increase in the amount of solar
radiation that reaches the earth, resulting in a higher TEC in
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Figure 7: Training loss and validation loss vs. number of epochs.

Table 4: Optimized hyperparameters for the MLP NN model
during the solar quiet and active year.

Station code
MLP 2008 MLP 2014

hls fa hls fa
qaq1 (50, 50) tanh (100,100) tanh
Baie (100, 100) tanh (100, 100) tanh
mas1 (100, 100) tanh (50, 50) Relu
Bogt (100, 100) tanh (100, 100) tanh
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the ionosphere. Tis phenomenon is particularly noticeable
at the equator, where the ionosphere is most intensely
ionized. During years of high solar activity, such as those
with more solar fares and coronal mass ejections, there may
be temporary disruptions in the ionosphere, leading to
short-term increase in TEC. As a consequence, the RMSE
and MAE also tend to be higher during such high solar
activity periods (see Figures 10 and 11). Tis fnding is
consistent with the research in this feld.

3.3. During Geomagnetic Storm Events. Te year 2011 ex-
perienced 3 geomagnetic storms with a minimumDst of less
than −100 nT [30]. Te date of occurrence of these storms

along with the corresponding Dst values are shown in Ta-
ble 7. We tested our LSTM model for prediction of TEC
during the geomagnetic storm at the midlatitude baie
station.

Te geomagnetic storm with Dst values −115 nT,
−118 nT, and −147 nT on days of the year (DOY) 218, 269,
and 298 caused sudden fuctuations in TEC (see Figure 12)
[30]. We used the data from July 1st, 2011, to October 31st,
2011, which included these three storm events. Te data
from July 1st, 2011, to October 12th, 2011, was used to train
the LSTMmodel, and then it was tested for unseen data from
October 13th to October 31st, 2011, which included a strong
geomagnetic storm with Dst� −147 nT.
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Figure 8: (a) Original and predicted TEC for the qaq1 station for the solar quiet year 2008. (b) Original and predicted TEC for the baie
station for the solar quiet year 2008. (c) Original and predicted TEC for the mas1 station for the solar quiet year 2008. (d) Original and
predicted TEC for the bogt station for the solar quiet year 2008.

Table 5: RMSE and MAE comparison for MLP and LSTM during the solar quiet year 2008.

Station code
MLP LSTM

RMSE (TECU) MAE (TECU) RMSE (TECU) MAE (TECU)
qaq1 1.451 1.253 0.477 0.376
Baie 2.265 1.950 0.48 0.363
mas1 4.106 3.579 1.402 1.005
bogt 5.933 5.012 1.792 1.132
Average 3.439 2.949 1.038 0.719
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Figure 9: (a) Original and predicted TEC for the qaq1 station for the solar active year (2014). (b) Original and predicted TEC for the baie
station for the solar active year (2014). (c) Original and predicted TEC for the mas1 station for the solar active year (2014). (d) Original and
predicted TEC for the bogt station for the solar active year (2014).

Table 6: RMSE and MAE comparison for MLP and LSTM during the solar active year (2014).

Station code
MLP LSTM

RMSE (TECU) MAE (TECU) RMSE (TECU) MAE (TECU)
qaq1 2.978 2.422 1.23 0.98
baie 4.182 3.459 1.348 1.102
mas1 9.842 8.372 3.831 3.018
bogt 12.61 10.39 4.216 3.342
Average 7.403 6.161 2.656 2.111
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Figure 10: Comparison of RMSE values for theMLP and LSTMmodels for qaq1, baie, mas1, and bogt stations during solar quiet (2008) and
solar active year (2014).
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Figure 13 shows the original and predicted TEC by our
LSTM model during the occurrence of the geomagnetic
storm during the period from 13th October to 31st October,
2011. Tis includes a very strong storm with Dst� −147
occurring between 24th and 25th October, 2011. Before the

occurrence of the storm, TEC increases steadily, but during
the storm event, there is a sudden decrease in TEC, which is
correctly and accurately predicted by our LSTM model (see
Figure 13). Te periodic variation is also accurately captured
by the LSTM model.
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Figure 11: Comparison of MAE values for the MLP and LSTMmodels for qaq1, baie, mas1, and bogt stations during solar quiet (2008) and
solar active year (2014).

Table 7: Geomagnetic storms in the year 2011.

Period of the storm DOY Min. Dst (nT)
05/08/2011-06/08/2011 218 −115
26/09/2011–28/09/2011 269 −118
24/10/2011-25/10/2011 298 −147
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Figure 12: Plot of TEC and Dst during the geomagnetic storm.
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Table 8 shows the comparison of the MLP and LSTM
model during the occurrence of the storm event. Te results
indicate that the accuracy of our LSTM model is 74% better
(using RMSE metric) and 77% better (using MAE metric)
than MLP.

Compared to MLP, LSTM has predicted TEC with more
accuracy (see Tables 5, 6, and 8). Tis is because LSTM has
a memory cell, which allows the LSTM model to learn and
maintain information about past inputs over longer periods
of time.Tis is especially important for time series data, such
as TEC, since it exhibits diurnal characteristics. MLPs do not
utilize history information, so they may struggle to capture
long-term dependencies in the data. As a result, MLPs fail to
predict accurately in cases where the data is noisy or tur-
bulent, such as in the case of TEC data, particularly during
solar active years and during the occurrence of geomagnetic
storms.

4. Conclusion

We propose a multivariate deep learning LSTM model for
the prediction of TEC data. We determined the correlation
of TEC with other exogenous parameters and used the ones
that correlated well with TEC.We validated the performance
of our model at diferent latitudinal regions during the quiet
and active solar years. We also tested our model during the
occurrence of a geomagnetic storm event. LSTM is a pow-
erful tool for TEC prediction because it is capable of cap-
turing long-term dependencies, handling nonlinear
patterns, dealing with variable-length sequences, and miti-
gating the vanishing gradient problem, thus maintaining
accuracy and performance while dealing with time series
TEC prediction. Te proposed LSTM model has better
performance accuracy than the classic MLP during the solar
quiet year, the solar active year, and also during the

occurrence of the geomagnetic storm. Te RMSE and the
MAE values obtained using the LSTMmodel are found to be
very low, suggesting that this method could be well-suited
for forecasting the ionospheric TEC at all times and for all
latitudinal regions. In the future, we wish to develop a global
deep learning model that can capture both the spatial and
temporal features of TEC data and can help in the prediction
of TEC data covering a larger latitudinal and
longitudinal range.
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nous parameters were obtained from NASA OMNI website:
https://omniweb.gsfc.nasa.gov/form/dx1.html.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

References

[1] B. Alexandre, N. Cherrie, and C. Tibaut, “Ionospheric ac-
tivity prediction using convolutional recurrent neural net-
works,” 2017, https://arxiv.org/abs/1810.13273.

[2] P. Xiong, D. Zhai, C. Long, H. Zhou, X. Zhang, and X. Shen,
“Long short-term memory neural network for ionospheric
total electron content forecasting over China,” SpaceWeather,
vol. 19, no. 4, 2021.

[3] D. Bilitza, D. Altadill, V. Truhlik et al., “International Ref-
erence Ionosphere 2016: from ionospheric climate to real-
time weather predictions,” Space Weather, vol. 15, no. 2,
pp. 418–429, 2017.

[4] J. A. Klobuchar, “Ionospheric time-delay algorithm for single-
frequency GPS users,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 23, no. 3, pp. 325–331, 1987.

[5] B. Nava, P. Coı̈sson, and S. M. Radicella, “A new version of the
NeQuick ionosphere electron density model,” Journal of
Atmospheric and Solar-Terrestrial Physics, vol. 70, no. 15,
pp. 1856–1862, 2008.

[6] X. Li and D. Guo, “Modeling and prediction of ionospheric
total electron content by time series analysis,” in Proceedings
of the 2nd International Conference on Advanced Computer
Control, pp. 375–379, Shenyang, China, March 2010.

[7] A. Krankowski, W. Kosek, L. W. Baran, and W. Popinski,
“Wavelet analysis and forecasting of VTEC obtained with GPS
observations over European latitudes,” Journal of Atmospheric
and Solar-Terrestrial Physics, vol. 67, no. 12, pp. 1147–1156,
2005.

[8] N. Shenvi, H. Virani, and E. Chandrasekhar, “Forecasting of
ionospheric total electron content data using autoregressive
distributed lag model for mid-latitude region during solar
minimum and maximum,” in Proceedings of the International
Conference on Data Science, Agents and Artifcial Intelligence
(ICDSAAI), pp. 1–6, Chennai, India, December 2022.

[9] E. Tulunay, E. T. Senalp, S. M. Radicella, and Y. Tulunay,
“Forecasting total electron content maps by neural network
technique,” Radio Science, vol. 41, no. 4, 2006.

[10] R. F. Leandro and M. C. Santos, “A neural network approach
for regional vertical total electron content modelling,” Studia
Geophysica et Geodaetica, vol. 51, no. 2, pp. 279–292, 2007.

Original TEC
Predicted TEC

100 200 300 4000
Time (hours)

10

20

30

40

TE
C 

(T
EC

U
)

Figure 13: Original and predicted TEC during the geomagnetic
storm event.

Table 8: RMSE and MAE comparison for MLP and LSTM models
during the geomagnetic storm event.

Evaluation metrics MLP LSTM
RMSE 6.876 1.785
MAE 5.511 1.273

12 Journal of Electrical and Computer Engineering

https://www.ionolab.org
https://omniweb.gsfc.nasa.gov/form/dx1.html
https://arxiv.org/abs/1810.13273


[11] A. Yilmaz, K. E. Akdogan, and M. Gurun, “Regional TEC
mapping using neural networks,” Radio Science, vol. 44, no. 3,
2009.

[12] S. Bhardwaj, E. Chandrasekhar, P. Padiyar, and V. M. Gadre,
“A comparative study of wavelet based ANN and classical
techniques for geophysical time-series forecasting,” Com-
puters and Geosciences, vol. 138, Article ID 104461, 2020.

[13] K. Sivakrishna, D. V. Ratnam, and G. Sivavaraprasad,
“Support Vector Regression model to predict TEC for GNSS
signals,” Acta Geophysica, vol. 70, no. 6, pp. 2827–2836, 2022.

[14] Z. Huang and H. Yuan, “Ionospheric single-station TEC
short-term forecast using RBF neural network,” Radio Science,
vol. 49, no. 4, pp. 283–292, 2014.

[15] R. Song, X. Zhang, C. Zhou, J. Liu, and J. He, “Predicting TEC
in China based on the neural networks optimized by genetic
algorithm,” Advances in Space Research, vol. 62, no. 4,
pp. 745–759, 2018.

[16] R. Tang, F. Zeng, Z. Chen, J.-S. Wang, C.-M. Huang, and
Z. Wu, “Te comparison of predicting storm-time iono-
spheric TEC by threemethods: ARIMA, LSTM, and Seq2Seq,”
Atmosphere, vol. 11, no. 4, p. 316, 2020.

[17] I. Srivani, G. Siva Vara Prasad, and D. Venkata Ratnam, “A
deep learning-based approach to forecast ionospheric delays
for GPS signals,” IEEE Geoscience and Remote Sensing Letters,
vol. 16, no. 8, pp. 1180–1184, 2019.

[18] W. Sun, L. Xu, X. Huang et al., “Forecasting of ionospheric
vertical total electron content (TEC) using LSTM networks,”
in Proceedings of the 2017 International Conference on Ma-
chine Learning and Cybernetics (ICMLC) Ningbo, vol. 2,
p. 340, Ningbo, China, July 2017.

[19] Z. Wen, S. Li, L. Li, B. Wu, and J. Fu, “Ionospheric TEC
prediction using Long Short-Term Memory deep learning
network,” Astrophysics and Space Science, vol. 366, no. 1, p. 3,
2021.

[20] U. Sezen, F. Arikan, O. Arikan, O. Ugurlu, and
A. Sadeghimorad, “Online, automatic, near-real time esti-
mation of GPS-TEC: ionolab-tec,” Space Weather, vol. 11,
no. 5, pp. 297–305, 2013.

[21] T. L. Gulyaeva, “Regional analytical model of ionospheric
total electron content: monthly mean and standard de-
viation,” Radio Science, vol. 34, no. 6, pp. 1507–1512, 1999.

[22] N. Jakowski, S. M. Stankov, S. Schlueter, and D. Klaehn, “On
developing a new ionospheric perturbation index for space
weather operations,” Advances in Space Research, vol. 38,
no. 11, pp. 2596–2600, 2006.

[23] A. Ramazan and S. Selçuk, “Te investigation of relationship
between solar parameters and total electron content over mid-
latitude ionosphere,” Celal Bayar University Journal of Sci-
ence, vol. 13, no. 3, pp. 707–716, 2017.
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