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In order to solve the problem of low image identifcation accuracy of Trichagalma glabrosa insect gall pests in a complex natural
environment, an image identifcation method of Trichagalma glabrosa insect gall pests based on YOLOv5s was designed and
introduced in this study. Te original images were preprocessed with the grayscale maximum method and diferent gradients of
noise, which reduced the color diference interference with complex backgrounds and improved the image identifcation rate. A
total of 6090 images of insect gall pests under opposite light, back light, and complex backgrounds were constructed, which were
divided into a training set and a test set with a ratio of 7 : 3. Te results showed that the precision, recall, and mean average
precision of YOLOv5s were 94.35%, 95.42%, and 95.8%, respectively. YOLOv5s, YOLOv4, and Faster-RCNN were compared and
analyzed under the same test conditions. Te identifcation accuracy of YOLOv5s was higher than that of YOLOv4 and Faster-
RCNN, and its model size was only 13.8MB. It was considered that the designed YOLOv5s method could help accurately and
quickly identify Trichagalma glabrosa insect gall pests with high identifcation accuracy and a small model capacity, which was
more conducive to the migration application of the model, and provide a new method for the rapid identifcation of Trichagalma
glabrosa insect gall pests in a complex natural environment.

1. Introduction

Quercus variabilis and Quercus acutissima are distributed in
most areas of China.Tey are not only good ornamental tree
species for greening but also good tree species for building
windbreak forests, water conservation forests, and pro-
tection forests. Tey play a very important role in forestry
production [1]. Trichagalma glabrosa is the main pest that
harms Quercus variabilis and Quercus acutissima. Its larvae
can induce spherical insect galls on the front and back of the
leaves and hide in the insect galls to absorb leaf juice for
damage [2]. When the insect galls damage the large areas of
leaves, it will seriously weaken the photosynthesis of the
leaves, cause the color of the leaves to deepen and turn
yellow, or even fall of, which seriously afect the normal
growth of the Quercus variabilis and Quercus acutissima
[3, 4].

In recent years, scholars have carried out a lot of research
studies on Trichagalma glabrosa, which mainly related to the
biological characteristics, spatial distribution, main natural
enemy species and life history, biological characteristics of
dominant natural enemies, screening of efective agents, and
others [5]. However, there are few relevant research studies
on predicting the occurrence dynamics of Trichagalma
glabrosa by using the intelligent identifcation of insect galls.
Accurately monitoring the occurrence dynamics of pests is
the premise of efective control and the basis of integrated
pest management [6, 7]. Trichagalma glabrosa mainly relies
on artifcial monitoring in the forest. It is time-consuming
and laborious to investigate the insect galls on the leaves at
high altitude because the average tree height in the young
Quercus variabilis forest is more than 7.6m [8, 9]. Moreover,
the data obtained are not accurate enough for meeting the
current production of actual monitoring needs.
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With the rapid development of some technologies such
as computer vision, image identifcation, deep learning, and
others, the application of image identifcation technology
based on deep learning to the feld of intelligent identif-
cation of pests and the establishment of digital and in-
telligent identifcation models and methods of pests received
increasing attention. For example, Omrani et al. [10] used
artifcial neural networks and support vector machines to
classify diseases of apple leaves. Kamal et al. [11] proposed an
image identifcation model of plant leaf pests with a deeply
separable convolution structure. Yang et al. [12] proposed
a color texture characteristics support vector machines
(CTX-SVM) method combined with color texture features
for identifying tomato leaf pests in complex environment.
Yue et al. [13] proposed a detection model for the diseased
spots of apple leaves based on improved the YOLOv3model.
Zhang et al. [14] used an improved target detection algo-
rithm to improve the detection accuracy of YOLOv3 model.
Sun et al. [15] constructed a forestry pest detection and
identifcation method based on YOLOv5 model. Shi et al.
[16, 17] used chaotic back-propagation neural network to
identify items, which greatly improved the speed. In addi-
tion, the electronic nose system developed greatly improved
the item recognition rate. At present, there are few reports
on the identifcation of Trichagalma glabrosa insect
gall pests.

In this study, based on the image database of Trichagalma
glabrosa insect gall pests obtained from feld investigation, the
identifcationmethod of Trichagalma glabrosa insect gall pests
based on the YOLOv5s model was proposed, which can ef-
fectively improve the image identifcation accuracy of Tri-
chagalma glabrosa insect gall pests in complex natural
environment and provide accurate data for the prevention
and control of the Trichagalma glabrosa insect gall pests.

2. Materials and Methods

2.1. Materials

2.1.1. Data Collection. In this study, the images of Tricha-
galma glabrosa insect gall were collected in Baiyun Temple
National Forest Park, Huixian County, Henan Province,
China. Te geographical location was at this latitude of
35°26′ north and longitude of 113°31′ east. Te Quercus
variabilis leaves with insect gall pests were collected from
May to July 2022. Te collected images are all the leaves of
the Quercus variabilis under natural light, including leaves
with diferent distances, diferent insect gall densities, and
diferent insect gall locations to ensure the stability and
accuracy of image identifcation. A total of 1015 original
images were collected in this experiment. Te format of the
images was JPG with the horizontal resolution of 96 dpi, the
vertical resolution of 96 dpi, and the bit depth of 24. Te
sample images are shown in Figure 1.

2.1.2. Test Platform. Te test process was carried out under
the Win10 operating system with the processor model of
Intel(R) Core(TM) i7-10700KCPU@ 3.80GHz 3.79GHz and
the graphics card of Nvidia GeForce RTX 2080Ti. Te deep

learning framework is PyTorch1.6. Te programming plat-
form is PyCharm, and the programming language is Python.

2.2. Test Methods

2.2.1. Image Preprocessing. First of all, the all images were
classifed into three datasets: opposite light, back light, and
complex scene. Since the background of the images will
cause large errors in the target identifcation process, the
scope of the insect gall on the leaf images should be pre-
served and other background ranges should be reduced in
the early image preprocessing. In this study, the original
image data were preprocessed by using grayscale maximum
method to reduce the interference of background data, and
then, the generated grayscale image data were used to ex-
pand the training sample, as shown in Figure 2.

A total of 1015 original images were collected, and 2030
copies were stored in the image database after image pre-
processing. Ten, the images were normalized, and the
ofine data were enhanced by adding 5% noise and 10%
noise, respectively. Tus, the processed data were taken as
the sample of image data, and our sample data reached 6090
copies. Subsequently, LabelImg was used to label the images,
generate XML label data, and mark the target area. At the
end, the labeled dataset was divided into a training set and
a test set with a ratio of 7 : 3.

2.2.2. YOLOv5s Network Model. YOLOv5 is a classic one-
stage target detection algorithm, which has the advantages of
fast running speed and good identifcation performance, and
it is usually applied to real-time target detection systems in
the industry. Currently, YOLOv5 has four versions:
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. Among
them, the YOLOv5s model has small depth and fewer pa-
rameters, and its reasoning speed is faster than that of the
other three versions, which is more suitable for the iden-
tifcation and the detection of Trichagalma glabrosa insect
gall pests. Te network structure of YOLOv5s mainly
consists of four parts: Input, Backbonc, Neck, and Output,
which is shown in Figure 3. In the Input section, the original
images were normalized and adjusted to the size of 640 ∗
640. Ten, Mosaic data enhancement and adaptive image

Figure 1: Te sample image example.
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scaling were adopted to scale and splice the images and
adaptively fll the images into the network.

Te Backonc section was used to complete the feature
extraction of the images, which used a 6 ∗ 6 convolution to
replace the original Focus module in the frst layer, so that the
images could be better processed in parallel. In addition, several
Maxpool layers were added to the SPP module to form the
SPPF module, which can compress the model to a greater
extent. In order to integrate multilayer features, the Neck layer
used the FPN+PAN structure. Te FPN mainly transmitted
semantic features from top to bottom, and the PAN mainly
strengthened positioning information from bottom to top.Te
output section was mainly used to compare losses and evaluate
the number of iteration regression, and the CIOU_Loss was
used as the loss evaluation of the boundary frame.

2.2.3. Evaluation Criterion. In this study, four indexes such
as precision (P), recall (R), mean average precision (mAP),
and model size were used to evaluate the identifcation
model of Trichagalma glabrosa insect gall pests. When IoU
(Intersection over Union)≥ 0.5, it is a true positive example.
When IoU< 0.5, it is a false positive example. When IoU� 0,
it is a false negative example. Te calculation of precision,
recall, and mean average precision are shown in the fol-
lowing formulae.

mAP �


C
C�1AP(C)

C
, (1)

P �
TP

TP + FP
× 100%, (2)

R �
TP

TP + FN
× 100%, (3)

where TP is the number of the true positive, FP is the
number of the false positive, and FN is the number of the
false negative.Te true positive represents the actual positive
case, which is classifed as positive by the classifer; the false
positive represents the actual negative case, which is clas-
sifed as positive by the classifer; the false negative repre-
sents the actual positive case, which is classifed as negative

by the classifer. C is the number of detection categories. In
this study, only identifcation is required, and hence, C� 1.
AP is the average precision, which represents the enclosed
area of the precision-recall curve.

3. Results

3.1.Model Training. Te frame diagram of the overall model
is shown in Figure 4, which was divided into two parts. One
was the training stage, and the other was the test stage.
During the training process, the images were frstly pro-
cessed with gray scale and noise to improve the robustness of
the model. Ten, the dataset was expanded, and the target
was calibrated by LabelImg. Finally, the calibrated data were
sent to the network for model training. In the test phase,
target identifcation was performed on the input images.

In this study, a total of 500 rounds of training were
conducted. Te results from the network training are shown
in Figure 5. At the beginning of the model training, the
learning efciency was high, and the loss curve converged fast.
When the number of iterations reaches about 289 times, the
model learning efciency gradually reaches saturation, and
the loss value fuctuated around 0.02. Te precision value of
the fnal training model was 94.35%, the recall value was 0.92,
and the mean average precision value (IoU� 0.5) was 95.42%.

3.2. Identifcation Results. In order to test the generality of
the model, it is necessary to study the identifcation of
Trichagalma glabrosa insect gall images in diferent envi-
ronments because of the variety of scenes under real natural
conditions. In order to verify the identifcation efect of
YOLOv5s in diferent environments, three identifcation
environments of opposite light, back light, and complex
background were constructed according to the real scene in
the natural environment. Te images for the identifcation
efect are shown in Figures 6–8.

Under the opposite light, back light, and complex
background, the identifcation efect of precision values with
the YOLOv5s model were 96.1%, 91.5%, and 86.5%, re-
spectively; recall values were 95.7%, 90.1%, and 84.7%, re-
spectively; and mean average precision values were 96.4%,
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Figure 2: (a) Original image; (b) image preprocessed by the gray maximum method.
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92.7%, and 86.9%, respectively. YOLOv5s showed excellent
identifcation performance and better reliability in three
diferent environments.

4. Performance Comparison of Different
Identification Algorithms

In order to verify the efect of YOLOv5s on the image
identifcation of Trichagalma glabrosa insect gall pests,

YOLOv5s was compared with YOLOv4 and Faster-RCNN
under the same conditions, and the number of training
iterations was set to 500. Ten, the models were evaluated
using the same test dataset. Four evaluation indexes of
YOLOv5s, YOLOv4, and Faster-RCNN are listed in Table 1,
which were precision, recall, mean average precision, and
model size, respectively.

It can be seen from Table 1 that the precision values of
YOLOv5s, YOLOv4, and Faster-RCNN were 94.35%, 89%,
and 71.28%, respectively; the recall values were 95.42%, 87%,
and 87%, respectively; the mean average precision values
were 95.8%, 89%, and 87.52%, respectively; and the model
sizes were 13.8MB, 243MB, and 108.2MB, respectively. It
could be concluded that the precision value of YOLOv5s was
5.35 and 23.07 percentage points higher than that of
YOLOv4 and Faster-RCNN, respectively; the recall value
was 8.42 percentage points higher than that of YOLOv4 and
Faster-RCNN, respectively; the mean average precision was
6.8 and 8.28 percentage points higher than that of YOLOv4
and Faster-RCNN, respectively; and the model size was
229.2MB and 94.4MB smaller than that of YOLOv4 and
Faster-RCNN, respectively.

In this study, the identifcation efects of YOLOv5s,
YOLOv4, and Faster-RCNN were compared and analyzed
for Trichagalma glabrosa insect gall pest images under op-
posite light, back light, and complex background. According
to the comparison results shown in Table 2, the identifcation
efect of YOLOv5s was better than that of YOLOv4 and
Faster-RCNN in diferent backgrounds. Terefore,
YOLOv5s was more suitable for the image identifcation of
Trichagalma glabrosa insect gall pests.
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Figure 3: Te network model of YOLOv5s.
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Figure 4: Te fowchart of the YOLOv5s model training test.
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Figure 5: (a) Change diagram of precision values; (b) change diagram of recall values; (c) change diagram of mean average precision values;
(d) change diagram of loss value values.

Figure 6: Te identifcation efect under opposite light.

Figure 7: Te identifcation efect under back light.
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5. Conclusion

In order to quickly and efciently identify Trichagalma
glabrosa insect gall pests, one method of using YOLOv5s to
perform the image identifcation of Trichagalma glabrosa
insect gall pests was constructed in this study. Te main
fndings were as follows:

(1) For several target identifcation algorithms, a large
number of studies were conducted, and YOLOv5s was
selected for the image identifcation of Trichagalma
glabrosa insect gall pests. Trough experiments, it has
been verifed that the precision, recall, mean average
precision, and model size of YOLOv5s were better
than those of YOLOv4 and Faster-RCNN.

(2) Te diferent scenes were constructed according to
the natural environment, that is, the images of Tri-
chagalma glabrosa insect galls under opposite light,
back light, and complex background were con-
structed. Experiments were conducted to verify the
high efciency of YOLOv5s under diferent scenes.

(3) During the test of some scenes, there were some
problems; for example, the insect galls of some small
pixel and the back of leaves were missed or falsely
identifed. In the future, further research on the
fusion of these specifc scene constructions and the

feature of Trichagalma glabrosa insect gall will be
conducted to reduce the probability of missing
identifcation or false identifcation so as to improve
the identifcation efect of the Trichagalma glabrosa
insect gall images in complex scenes.
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Figure 8: Te identifcation efect under complex background.

Table 1: Performance evaluation of the three target identifcation algorithms.

Network Precision (%) Recall (%) Mean
average precision (%) Model size (MB)

YOLOv5s 94.35 95.42 95.8 13.8
YOLOv4 89 87 89 243
Faster-RCNN 71.28 87 87.52 108.2

Table 2: Performance comparison of the three target identifcation algorithms under diferent backgrounds.

Network Background Precision (%) Recall (%) Mean
average precision (%)

YOLOv5s
Opposite light 96.1 95.7 96.4
Back light 91.5 90.1 92.7

Complex background 86.5 84.7 86.9

YOLOv4
Opposite light 90.1 92.4 91.8
Back light 84.6 84.5 82.6

Complex background 78.9 76.8 80.1

Faster-RCNN
Opposite light 78.4 75.4 76.7
Back light 68.1 67.5 61.9

Complex background 67.2 66.4 64.7
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