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To address the problems of 5G network planning and optimization, a 5G user time delay prediction model based on the BiLSTM
neural network optimized by APSO-SD is proposed. First, a channel generative model based on the ray-tracing model and the
statistical channel model is constructed to obtain a large amount of time delay data, and a 5G user ray data feature model based on
three-dimensional stereo mapping is proposed for input feature extraction. Ten, an adaptive particle swarm optimization
algorithm based on a search perturbation mechanism and diferential enhancement strategy (APSO-SD) is proposed for the
parameters’ optimization of BiLSTM neural networks. Finally, the APSO-SD-BiLSTMmodel is proposed to predict the time delay
of 5G users. Te experimental results show that the APSO-SD has a better convergence performance and optimization per-
formance in benchmark function optimization compared with the other PSO algorithms, and the APSO-SD-BiLSTM model has
better user time delay prediction accuracy in diferent scenarios.

1. Introduction

Cellular systems are evolving towards 5G wireless systems
due to the explosive growth of mobile devices and mobile
trafc. Compared to 4G networks, the 5G network make
new standards across generations in spectrum, air in-
terface, and network architectures to meet future 5G
application scenarios. Tese new standards and tech-
nologies bring challenges to 5G wireless network planning
[1–3]. In addition, large-scale antenna arrays increase the
difculty of network optimization, and the complex
spatial correlation makes it difcult for traditional fxed-
point road tests and quantitative coverage models to meet
the requirements of fast, comprehensive, and accurate
assessment of raster-level network performance. Al-
though traditional network performance simulations can
achieve accurate analysis, the massive computation and
time overhead make the simulation impossible to apply in
the actual feld [4].

With the widely used application of neural networks in
information, automation, medicine, economy, and other
felds, many researchers used the neural networks to predict
channel characteristics and network performance [5–7]. Te
literature [8] used neural networks to predict the channel
impulse response in wireless orthogonal frequency division
multiplexing systems. Te literature [9] used neural net-
works to predict the quality of downlink channels. Te
literature [5] used neural networks to predict the deviation
angle of the transmission path in the user channel. Su et al.
[10] used the whale optimization algorithm (WOA) and the
long short-term memory neural network (LSTM) to predict
network delay in narrowband communication networks.
Wang and Zhang [11] proposed a least squares support
vector machines (LS-SVMs) optimized by an improved PSO
algorithm to predict the communication network time delay.
Shi and Guo [12] proposed a wavelet neural network (WNN)
delay prediction algorithm based on an improved set-
averaged empirical modal decomposition and cuckoo
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search (CS) optimization. Owing to the high cost of sample
collection and the need to regenerate the sample data when
the network parameters are changed, these methods are
difcult to apply in actual networks.

Te literature [13] used neural networks to predict 5G
channel state information online, but only the wireless
channel characteristics were predicted without network
performance, and there has been shortcoming such as limited
prediction parameters, small application range, and long data
collection cycle. Te literature [14] predicted the path loss of
a wireless channel using a feedforward neural network al-
gorithm based on the path loss data.Tis approach had a good
performance in path loss prediction, but it could not collect
data before the existing network was set up, and the cost of
obtaining data through transmitters is relatively high. Te
network time delay prediction model based on gated re-
current neural networks was designed and validated based on
real delay data between ofsite server rooms at Amazon in the
literature [15]. Te model had a good result in terms of
enterprise device latency but had a narrow scope of appli-
cation for the complex 5G user usage scenario. Zhu et al. [16]
implemented network latency prediction by deep neural
networks for grid-level users. Tis method was efective in
realistic 5G network planning and optimization, but it did not
consider the impact of deep neural network parameter set-
tings on the network time delay prediction performance.

From the previous research, it can be seen that the
current research on 5G user time delay prediction had
achieved certain results, but there had some problems in the
user time delay modeling process and model prediction
accuracy. Addressing the shortcomings of the previous
methods, this paper proposes a 5G user ray data feature
model based on three-dimensional stereo mapping, and it
uses the deep neural network BiLSTM to learn the ray data
features. Te trained network model is used to predict the
grid-level user network time delay. However, BiLSTM has
shortcomings such as slow convergence speed and easy to
fall into local optimization due to its random assignment of
initial weight thresholds. In order to improve the accuracy of
5G user time delay prediction, this paper proposes an
adaptive particle swarm optimization algorithm based on
a search perturbation mechanism and diferential en-
hancement strategy (APSO-SD) to optimize the initial pa-
rameters of the BiLSTM network.

Te main contributions of this paper are follows:

(1) An adaptive particle swarm algorithm with a mi-
gration strategy and search disturbance mechanism
(APSO-SD) for the parameter optimization of
BiLSTM neural networks is proposed

(2) A 5G user time delay data feature model based on
three-dimensional stereo mapping is proposed

(3) A 5G user time delay data prediction model (APSO-
SD-BiLSTM) based on BiLSTM optimized by
APSO-SD is proposed

Te context of the article is as follows: Section 2 in-
troduces the correlation theory. Section 3 introduces the 5G
user ray data feature model based on three-dimensional
stereo mapping. Section 4 introduces the adaptive particle
swarm optimization based on the search perturbation
mechanism and diferential enhancement strategy. Section 5
introduces the 5G user time delay prediction based on the
BiLSTM neural network optimized by APSO-SD. Te ex-
perimental and simulation results are introduced in Section
6. Te conclusion is put at the end.

2. Correlation Theory

2.1. TimeDelay SimulationModel. Temain fowchart of the
time delay simulation model used in this article is shown in
Figure 1.Tismodel frst utilizes the fusion of the ray-tracing
model and the statistical model to generate a channel matrix
and then inputs the channel matrix to the 5G simulation
platform to generate grid-level user delay. A large amount of
the 5G user time delay data can be obtained through the
delay simulation model.

2.1.1. Channel Generative Model Based on the Ray-Tracing
Model and Statistical Channel Model. Statistical channel
models can generate channel matrices based on specifc
scenario confguration model parameters. Te ray-tracing
model can output the geometric information of all emis-
sion points between the starting and ending points of the ray,
including the three-dimensional coordinate information of
the starting point, ending point, and refection point, as well
as the large-scale path loss information of each ray [17]. Due
to the ray-tracing model not containing small-scale in-
formation, only the geometric position information of the
rays cannot calculate multipath efects.Terefore, the missing
part must rely on the probability distribution information of
the statistical model. To calculate the complete channel fading
coefcient matrix, it is necessary to supplement the radiation
data with antenna layout information, antenna pattern, and
power delay distribution information. Te antenna layout
information and antenna pattern support the standard an-
tenna confguration of 3GPP38.901, as well as antenna
template input. Te power delay distribution information is
based on the probability distribution and parameter gener-
ation success rate delay distribution information of diferent
scenarios defned by 3GPP38.901. Tis article proposed
a channel generative model based on the ray-tracing model
and the statistical channel model to generate the channel
matrix. Te new model calculates the channel matrix
according to the process and method defned in 3GPP38.901.
Te information that the ray-tracing model can provide is
based on the ray-tracing model, while the remaining in-
formation is based on a statistical model. Te specifc pa-
rameters of the channel matrix are shown in Table 1.

Te fnal equation of the channel coefcient is shown as
follows:
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whereN represents the ray cluster,m represents the rays within
the cluster, Pn represents the number of receiving and
transmitting antennas,M represents the number of rays within
the cluster, θn,m,ZOA and φn,m,AOA represent the horizontal and
vertical azimuth angles of the receiving antenna u, θn,m,ZOD and
φn,m,AOD represent the horizontal and vertical azimuth angles
of the transmitting antenna s, Rrx,u,θ and Rrx,u,φ are directional
maps of the feld of the receiving antenna u in the vector
direction of the spherical base θ and φ, Rtx,s,θ and Rtx,s,φ are
directionalmaps of the feld of the transmitting antenna s in the
vector direction of the spherical base θ and φ, rrx,n,m and rT

tx,n,m

are the spherical unit vectors with azimuths φn,m,AOA and
φn,m,AOD, and drx,u and dtx,s are the direction vectors of the
receiving and transmitting antennas.

2.1.2. Time Delay Calculation Method. Te latency in this
paper refers to the airport delay on the wireless side,
mainly considering the single downstream delay of the

packet from the MAC layer of the base station to the MAC
layer of the user. It is assumed that packets do not need to
be split and merged, the FULL BUFFER model is used in
the service model, the hybrid automatic retransmission
request (HARQ) channel confguration is 8, the packet
single transmission duration (no retransmission) is 4 ms
(1TTI), and the maximum number of packet retrans-
missions is 4. Te packet retransmission process is shown
in Figure 2.

Tis paper calculates the downlink unidirectional
transmission delay of the user’s wireless side by counting the
number of packet retransmissions. By counting the number
of retransmissions of a single packet, the transmission delay
of the packet in this transmission task can be calculated, and
the user’s delay can be obtained by counting the trans-
mission delay of all the user’s packets during the simulation
period, as shown in the following equation:

T
∗

� t + N∗Td, (2)
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Figure 1: Flowchart of the delay simulation model.

Table 1: Specifc parameters of the channel matrix.

Name Related settings
Channel model 3D-UMa
Antenna confguration for base stations Number 64, planar array 16∗ 4, cross-polarisation
User’s antenna confguration Number 2, cross-polarisation
Terminal movement speed 0 km/h
Multiuser launch precoding algorithm JSDM
Base station transmitting power 46 dBM
Simulation bandwidth 20Mkz
Carrier frequency 2GHz
Intercell interference elimination Support
Number of scheduling layers 8

Journal of Electrical and Computer Engineering 3



where T denotes the transmission delay of a single packet, t
denotes the transmission delay of the frst successful
transmission of a packet, N denotes the number of
retransmissions of a packet, and Td denotes the time re-
quired for a retransmission to occur. Te user’s time delay
calculation process is shown in the following equation:

T �
TS

Pn

, (3)

where T denotes the user’s transmission delay, TS denotes
the total transmission delay of all packets from the user
during the simulation, and PN denotes the total number of
packets sent during the simulation.

2.2. Bidirectional Long Short-Term Memory (BiLSTM)
Network. In 1997, Schmidhuber et al. proposed a variant
recurrent neural network long short-term memory (LSTM)
network [18], which introduces a gating mechanism to
simply and efectively solve the gradient explosion or dis-
appearance problem of traditional recurrent neural net-
works. Te LSTM controls the information transfer between
each cell by means of a gating mechanism.Te calculation of
each gate in the LSTM model is shown in the following
equations:

it � σ Wi ht− 1, xt  + bi( , (4)

ft � σ Wf ht− 1, xt  + bf , (5)

ct � ft ⊕ ct− 1 + it ⊕ tanhct, (6)

ct � tanh Wc ht− 1, xt  + bc( , (7)

ot � σ Wo ht− 1, xt  + bo( , (8)

ht � ot ⊕ tanh ct( , (9)

where it, ft, and ot represent the input gate, forgetting gate,
and output gate, ct represents the cell unit, σ and tanh are
two activation functions, Wf represents the weight matrix
connected by the forgetting gate, bf represents the ofset
value of the forgetting gate, Wi represents the weight matrix
of the input gate connection, bi represents the ofset value of

the input gate, Wo represents the weight matrix of the output
gate connection, bo represents the ofset value of the output
gate, and ⊕ represents the multiplication of two matrix
elements.

Although LSTM solves the problems of gradient van-
ishing and long-term dependence, for user delay prediction
problems, the current state of the network is not only related
to the previous state but may also be related to the sub-
sequent state. In order to improve the prediction efect, the
bidirectional long short-term memory (BiLSTM) network is
introduced to predict user delay [19]. BiLSTM is composed
of two LSTM layers stacked forward and backward, and its
structure is shown in Figure 3.

Te output of BiLSTM is determined by both LSTM
layers together, the forward LSTM layer can be seen as
a forward calculation from the starting moment to the last
moment and the reverse LSTM layer can be seen as a reverse
calculation from the last moment to the starting moment,
with both layers being processed in the same way during
calculation. Finally, the outputs of the forward and reverse
layers are combined at each moment to obtain the output for
that moment.

Te state calculation at each moment in the BiLSTM
model is shown in equations (10) and (11). Te output is
jointly determined by the states of LSTM in these two di-
rections, as shown in equation (12):

h
→

t � LSTM xt, h
→

t− 1 , (10)

h
⟵

t � LSTM xt, h
⟵

t− 1 , (11)

ht � Wt h
→

t + vt h
⟵

t + bt,
(12)

where Wt represents the weight matrix of the forward
output, vt represents the weight matrix of the reverse output,
and bt represents the ofset at time t.

3. The5GUserRayDataFeatureModelBasedon
Three-Dimensional Stereo Mapping

In Section 2.1.1, the ray data are the input of the channel
model and the frequency-domain channel matrix is the
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Figure 2: Packet retransmission process.
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output of the channel model.Te ray data contain the spatial
characteristics of ray propagation, a large-scale path loss,
and delay information of rays. Te spatial feature vector of
the channel matrix is contained in the geometric parameters
of ray propagation. Once the position of the ray refection
point relative to the user and base station is determined, the
spatial feature vector of the channel matrix is determined
accordingly. Using the frequency-domain channel matrix
generated by channel generation as an input to the 5G
wireless simulation platforms, combined with other infu-
encing factors, the user delay on the wireless side can be
output.

Using neural network models to predict user delay re-
quires designing reasonable input features. For this reason,
this paper proposes a three-dimensional feature model that
extracts the features of ray data as input features for the
neural network model’s training.

As shown in Figure 4, the user’s ray data contain spatial
features of ray propagation. Once the location of the base
station, user, and ray refection point is determined, the
propagation path of the user ray is determined. Te three-
view feature model projects all refection points of user ray
data onto three planes: XOY, XOZ, and YOZ. Each plane
contains a part of the spatial features of user ray data. By
combining the spatial features of the three planes, the spatial
features of user ray data can be fully restored.

Taking the refection points on the XOY plane as an ex-
ample, all refection points of user ray data are projected onto
the XOY plane. Simple processing of the XOY plane is required
before projection. Because the base station coverage range in
this article is 1000m, therefore, the base station is used as the
coordinate origin to extend 1000m to the positive and negative
directions of the X and Y axes, respectively, to form a coverage
area. Similar to the pixel data in image processing, the
1000 ∗ 1000 base station coverage area of the XOY plane is
divided into grid data such as 32 ∗ 32. After dividing the cells,
it is necessary to determine the projection position of the
refection point, which is the small grid on the XOY plane
where the refection point falls. In the XOY plane, there are
some cells without projection points and some cells with
multiple projection points. After the projection position of the
refection point is determined, if there are no projection points
in the cell, zero will be flled in the cell. If there are multiple
projection points in the cell, the large-scale path loss or delay

information of the ray will be averaged and flled in the cell to
construct grid data as the input data for subsequent neural
network models. In addition, due to the refection points being
all above the ground, the Z-axis only extends 100m in its
positive direction (height) to construct the coverage area.

4. Adaptive Particle Swarm Optimization
Basedon the SearchPerturbationMechanism
and Differential Enhancement Strategy

PSO is a global search algorithm proposed by Kennedy and
Eberhart by observing the foraging behavior of birds [20].
Te algorithm initializes a group of particles randomly and
assigns each particle a random speed and position, and each
particle represents a random solution. During the iteration
process, each particle completes the update by tracking the
individual extreme value and the global extreme value. Te
standard PSO is described as follows:

V
k+1
i,n � ωV

k
i,n + c1 Pbestki,n − X

k
i,n  + c2 Gbestki,n − X

k
i,n ,

(13)

X
k+1
i,n � V

k+1
i,n + X

k
i,n, (14)

where ω represents the inertia weight, k represents the
number of iterations, n represents the vector dimension, c1
and c2 are the random numbers between 0 and 1, Vk

i,n, Xk
i,n,

Pbestki,n, and Gbestki,n are, respectively, the speed, position,
individual extreme value, and global extreme value of the ith
particle in the nth dimension of the kth iteration.

Similar to other intelligent algorithms, the PSO algo-
rithm is prone to premature convergence and falling into
local optimizations when solving complex high-dimensional
functions. From the perspective of improving the particle
iteration mechanism, this paper proposes an adaptive par-
ticle swarm optimization based on the search perturbation
mechanism and diferential enhancement strategy (APSO-
SD). Te APSO-SD algorithm mainly proposes corre-
sponding optimization strategies for the diferent problems
that exist in the population generation and optimization
stages of the PSO algorithm. Te optimization strategy is
divided into the following two aspects:
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(1) In order to expand the search space of particles and
increase the diversity of solutions, disturbance fac-
tors are introduced to perturb the optimization state
of particles to achieve intelligent search.

(2) To avoid the loss of excellent genes from poorer
individuals, genetic mechanisms are utilized to
prevent inefective operations caused by “in-
breeding.” Ten, particle irrelevance is introduced,
and the “distant relatives” of the diferential in-
dividuals were found for diferential variation to
increase the population diversity.

4.1. Search Disturbance Mechanism. In APSO-SD, in order
to balance the global search and local search of particles,
this paper introduces the conversion mechanism in the
fower pollination algorithm (FPA) [21]. In the FPA, the
simulated pollen heterogeneous pollination method is
global search and the simulated pollen self-pollination is
local search. Te two search methods are controlled by
the transition probability P, where P is a random number
between 0 and 1. Te smaller the transition probability P
is, the easier it is for the particle to perform a local search.
Te larger the transition probability P is, the easier it is for
the particle to perform a global search. To address the
above problems, this paper uses a linearly varying
transition probability to make it decrease linearly from
the maximum value Pmax to Pmin, as in the following
equation:

P � Pmax −
t • Pmax − Pmin( 

T
. (15)

Based on experimental data in the literature [21], gen-
erally, it is better to set Pmax at 0.95 and Pmin at 0.4.

In the process of global search, in order to strengthen the
algorithm’s search capability, this paper will modify the
search strategy of the particles by combining the advantages
of the iterative mechanism of lioness foraging in the lioness
algorithm [22] to randomly select a particle from the
population to assist the current particle in the global search,
and it increases the exchange of information between par-
ticles, as shown in equation (16). In the process of local
search, to help the particles jump out of the local optimum,
a sinusoidal disturbance factor is introduced in this paper, as
in Eq. (17):

x
t+1
i �

x
t
i + x

c
i

2
1 + αfc  + v

t+1
i , (16)

x
t+1
i � x

t
i + sin r1(  • v

t+1
i , (17)

where xc
i is the historical best position of a randomly selected

collaborating partner from the remaining particles, αf is the
disturbance factor, αf � step • exp(− (30t/T))10.
step � 0.1 • (xmax − xmin), xmax and xmin are the maximum
andminimum values of the particle activity space, c is a (0.1)
uniformly distributed random number, and r1 is a random
number generated by the uniform distribution of (0, 2π).

4.2. Diferential Enhancement Strategy. Te entire optimi-
zation process of the PSO algorithm is only driven by it-
erations of the historical optimal positions of individuals and
society. Te evaluation results are only used as a measure of
the optimization efect. Te results after each iteration
cannot be efectively fed back to the population, so the
population cannot make corresponding adjustments to the
next operation based on the current search results. In order
to efectively feed back each search result of the PSO al-
gorithm to the population and make the population ener-
getic, the population is required to perform corresponding
transformations based on the optimization results to achieve
the adaptive adjustment. Tis paper introduces the re-
construction probability, which is the probability that
a particle is selected to rebuild the intermediate population
based on the ftness value of the particle. According to the
reconstruction probability, some poor individuals are se-
lected in the optimization process of the PSO algorithm to
build the intermediate population. By optimizing and en-
hancing some poor individuals, particles can accelerate their
convergence to the global optimal solution.

Second, all operations of the population are only aimed
at excellent individuals, which is easy to ignore other particle
information in the population, especially for poor in-
dividuals. Te genes in poor individuals and excellent in-
dividuals often difer signifcantly, which leads to the gradual
loss of genes, and the population is prone to falling into local
extreme values and unable to escape. In order to continue
the excellent genes of the poorer individuals in the in-
termediate population, this paper proposes a diferential
enhancement strategy, which introduces particle irrelevance
based on the genetic concept of “distant breeding, hybrid-
izing to yield advantages.” Particle irrelevance is used to
calculate the selection probability. Te selection probability
is used to identify the “distant” individuals for hybrid
breeding, efectively ensure the inheritance of excellent
genes, keep the population active during the search process,
and avoid the algorithm from falling into local extremes.

4.2.1. Te Reconstruction Probability. Assuming the ftness
function value of the ith particle generation k is fk

i , the
reconstruction probability of the particle being selected to
form the intermediate population is shown in the following
equation:

P
k
i �


NP

i

f
k
i − f

k
i

2 
NP

i

f
k
i

, (18)

where i � (1, 2, 3, . . . , NP/3) and NP is the population size.
Equation (18) indicates that when constructing an in-
termediate population, particles in the population are
generated based on the reconstruction probability.When the
particle ftness value is lower, the corresponding re-
construction probability is greater, and the probability of
particles being selected to form an intermediate population
is greater.
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4.2.2. Te Irrelevance of Particles. Assuming that Xk
i1,n and

Xk
j1,n are the nth dimensional vectors corresponding to the

i1th and j1th particle in the k-generation population, the
irrelevance between individuals Xk

i1,n and Xk
j1,n is shown in

the following equation:

R X
k
i1,n, X

k
j1,n  � 

n

i

X
k
i1,n, X

k
j1,n



, (19)

where t�(1.2, . . ., n) and t is the specifc one dimension of the
nth dimensional vector. Equation (19) indicates that if there
is a signifcant diference in the values of variables among
individuals, irrelevance is greater.

4.2.3. Selection Probability. Assuming that Pc(Xk
j1,n/X

k
i1,n) is

the probability that an individual Xk
j1,n will be selected and

undergo diferential variation with Xk
i1,n, the selection

probability calculation equation is shown in the following:

Pc
X

k
j1,n

X
k
i1,n

⎛⎝ ⎞⎠ �
1

np
1 +

R X
k
i1,n, X

k
j1,n  − Ravg

Rmax − Rmin
⎛⎝ ⎞⎠, (20)

where np is the remaining individuals in the intermediate
population except the individuals Xk

i1,n and 1/np is the av-
erage probability of individuals being selected, and Ravg,
Rmax, and Rmin are, respectively, the average, maximum,
and minimum values of irrelevance between the remaining
individuals and the selected individuals.

Te diferential enhancement strategy frst uses the re-
construction probability to reconstruct the intermediate
population based on the roulette wheel to select some in-
dividuals with low ftness values and then randomly selects
the diferential individuals in the intermediate population.
Based on the irrelevance of the particles, the selection
probability of the remaining individuals is calculated. Using
the selection probability, two distantly related individuals
with signifcant genetic diferences from the diferential
individuals are found in the intermediate population, and
diferential mutation is performed to form temporary in-
dividuals. Te retained individual genes with high ftness
values enter the next generation of the population. When all
individuals in the intermediate population have completed
the local distant relative diferential enhancement operation,
the average ftness values before and after the intermediate
population are compared. If the average ftness value after
the local distant relative diferential enhancement operation
is high, the initial intermediate population is replaced with
the existing intermediate population. If the distant relative
diferential enhancement strategy does not optimize the state
of the intermediate population, the population does not
change.

4.3. Implementation Steps and Pseudocode of APSO-SD.
Te APSO-SD algorithm uses a randomization method to
initialize the population. After the population is generated,
frst the current local and global optimal solutions of the
population are calculated, the particle search perturbation
mechanism are used to update the speed and position of the

particles, and the population enters the local diferential
enhancement stage. Second, the updated population ftness
value is calculated, and the reconstruction probability is used
to select individuals with lower ftness values to form an
intermediate population. Finally, the average ftness value of
the initial intermediate population is calculated, the selec-
tion probability is calculated based on the irrelevance of
particles in the population, and two individuals with sig-
nifcant diferences from the mutated individuals are se-
lected for mutation, crossover, and selection operations. Te
calculation equation for the mutation operation is shown as
follows:

V
k+1
i � x

k
r1 + F x

k
r2 − x

k
r3 

S.T. i≠ r1≠ r2≠ r3,
(21)

where xk
r1 is the ith individual of the kth generation, which is

the selected individual in the current population, xk
r2、xk

r3 is
a randomly selected diferent individual, xk

r2 − xk
r3 is a dif-

ference vector generated by two random individuals, and F is
a mutation operator that controls the scaling scale of the
diference vector. Reasonable scaling can balance the search
step size and search rate of individuals. Vk+1

i is a mutant
intermediate of xk

r1 in the (k+1)th generation.
Te cross-operation calculation equation is shown as

follows:

U
k+1
i,n �

v
k+1
i,n , rand(0, 1)≤CRi or n � nrand,

x
k
i,n, otherwise,

⎧⎪⎨

⎪⎩
(22)

where CRi is the crossover probability. When the random
number rand (0, 1) generated by individual i is less than the
crossover probability, the check vector Uk+1

i,n selects the
mutation intermediate individual vk+1

i,n ; otherwise, it inherits
the parent vector xk

i,n.
Te selection operation calculation equation is shown as

follows:

x
k+1
i �

u
k+1
i , f u

k+1
i ≤f x

k
i ,

x
k
i , otherwise.

⎧⎪⎨

⎪⎩
(23)

When the ftness value of the test vector uk+1
i is smaller

than that of the parent vector xk
i , the algorithm selects the

test vector uk+1
i to enter the next generation population, and

the population undergoes a successful update in
generation kth.

After the local diference enhancement of all individuals
in the intermediate population is completed, the average
ftness value of the intermediate population is recalculated
and compared with the average ftness value of the initial
population. If the ftness value is optimized, the algorithm
returns to the particle swarm optimization algorithm, re-
places the initial intermediate population with the enhanced
intermediate population, and continues the particle swarm
optimization algorithm. Otherwise, it continues to perform
local diferential enhancement operations on these in-
termediate individuals until the ftness value of the in-
termediate population is optimized or the calculation times
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of the intermediate population reach a preset value and then
ends the local diferential enhancement operation.When the
evolution number of the entire particle swarm optimization
algorithms reaches a preset value, the APSO-SD algorithm
ends its optimization.

Te implementation steps of the APSO-SD algorithm are
as follows:

(1) Step 1: Initialize the population.
(2) Step 2: Calculate the ftness value of each particle

based on the speed and position of the current
particle and obtain the individual historical best
position Pbest and the global best position Gbest.

(3) Step 3: Judge that the condition rand< P1 is satisfed
or not. If the condition is satisfed, the particle
position is updated by equation (16). Otherwise, the
particle position is updated by equation (17).
Recalculate the ftness value for each particle and
update Gbest and Pbest.

(4) Step 4: Use equation (18) to calculate the population
reconstruction probability.

(5) Step 5: Initialize the intermediate population using
roulette.

(6) Step 6: Use equation (19) to calculate particle
irrelevance.

(7) Step 7: Use equation (20) to calculate the selection
probability and select the diferential individuals.

(8) Step 8: Use equations (21–23) to perform mutation,
crossover, and selection operations, respectively.

(9) Step 9: Recalculate the average ftness value of the
intermediate population and compare it with the
average ftness value of the initial population. If the
ftness value is optimized, replace the initial in-
termediate population with the intermediate pop-
ulation after the diference enhancement.
Otherwise, continue with the particle swarm opti-
mization algorithm.

(10) Step 10: Determine whether the algorithmmeets the
termination conditions for the iteration. If the al-
gorithm meets the termination conditions for the
iteration, the algorithm jumps to the next step.
Otherwise, the algorithm jumps to Step 3 for the
next iteration optimization.

(11) Step 11: Output the global optimal value and the
algorithm ends.

Te pseudocode implementation of the APSO-SD al-
gorithm is shown in Table 2.

5. 5G User Time Delay Prediction Based on
the BiLSTM Neural Network Optimized by
APSO-SD

For BiLSTM networks, the selection of parameters in the
structure is crucial to the efect of the model, such as the
number of hidden layers, weights, the number of hidden
layer cells, and learning rate. Many researchers determine

these parameters based on experience or trial-and-error
methods, which makes the robustness and accuracy of the
model unreliable. Terefore, in this paper, a particle swarm
algorithm with simple principles, low complexity, fast
convergence, and suitable for dealing with real-valued
problems is selected to optimize the structure parameters
of the BiLSTM network.

5.1. Construction of the BiLSTMModel. Te BiLSTM model
used for the experiments in this paper is shown in Figure 5.

(1) BiLSTM layers: by two BiLSTM layers, their com-
bined before-and-after capabilities can be fully
exploited to enhance the model’s learning capability

(2) Dropout layer: avoid overftting of the model and
improve generalisation

(3) Dense layer: set the last layer as dense, transform the
output dimension, and get the prediction result

5.2. APSO-SD-BiLSTM Model. Te APSO-SD-BiLSTM
model is based on the fast optimization ability of
APSO-SD to optimize the related parameters of BiLSTM,
and it improves the situation prediction efect of BiLSTM.
Te specifc steps of the APSO-SD-BiLSTM model are as
follows:

(1) Step 1: According to the size of the sliding window,
the training set samples and test set samples are
constructed.

(2) Step 2: Te range of values for each dimension in the
particles to be optimized is set. Te particle di-
mensions, iterator, n1, n2, and s represent the
learning rate, the number of model iterations, the
number of cells in the frst hidden layer, the number
of cells in the second hidden layer of the LSTM, and
the random seeds in the BiLSTMmodel, respectively.

(3) Step 3: Te relevant parameters in APSO-SD are
initialized, which include the maximum and mini-
mum values of the search dimension D, the number
of particles PN, the acceleration factors c1 and c2, the
maximum number of iterations max_iter, the initial
position of the particles x0

i and the initial velocity v0i ,
the inertia weight factor ω, and the learning factors r1
and r2.

(4) Step 4: Te APSO-SD algorithm is carried out to
optimize the BiLSTM parameters.

(5) Step 5:Te optimal parameters obtained are assigned
to the BiLSTM model to obtain the time delay
prediction results.

Te fowchart of the APSO-SD-BiLSTM model is shown
in Figure 6.

6. Experimental and Simulation Results

Te experimental environment for this paper is Ubuntu
18.04.5 (64 bit), a 2.90GHz 8-core CPU, a GTX 1080Ti GPU,
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16GB of RAM, a 500GB hard drive, and Python 3.8.2 as the
development language.

6.1. Particle Swarm Optimization Comparison Experiments

6.1.1. Benchmark Function. In order to verify the perfor-
mance of APSO-MS, PSO-HS, PSONHM, CS-PSO, SE-PSO,
E-PSO, AERPSO, and AdPSO are chosen as the comparison
algorithms for the comparative analysis of performance
[23–29]. In APSO-SD, the inertia weight ω� 0.3, the
learning factor c1 � c2 �1.5, the maximum transition

probability Pmax � 0.95, the minimum transition probability
Pmin � 0.4, c � 0.5, r1 � 0.2, and the mutation operator
F� 0.5. Te parameter settings of other algorithms are
consistent with those in the literature [23–29]. In this sec-
tion, the performance of the PSO algorithms is tested in
experiments using six benchmark tests. Te detailed de-
scription of each function is shown in Table 3, and the image
of each function is shown in Figure 7.

In order to reduce the infuence of the randomness of the
PSO algorithm on the experimental results, the average of 30
independent run trials is used to evaluate the performance of
the algorithm in this paper. For all the benchmark functions,
the search dimension of the algorithm is set to 30 and 50 for
experiments. Te maximum number of iterations per run is
set to 3000.

6.1.2. Function Optimization Results. In this section,
a comparison of the PSO algorithms over six benchmark
functions is carried out, and the mean values of the opti-
mization results for each algorithm are shown in Tables 4-5.

It can be observed that whether D� 30 or D� 50, the
quality and stability of APSO-SD search solutions are superior
to the other seven algorithms for most functions, which in-
dicates that APSO-SD uses a diferential enhancement strategy
to maintain the diversity of the population and enable it to
continuously search for the optimal solution. Te accuracy of
the search solution is also better than that of other algorithms,
which indicates that the search perturbation mechanism
adopted by APSO-SD is conducive to maintaining the vitality
of the population and the diversity of particles.

6.1.3. Te Efectiveness Verifcation of Individual Improve-
ment Measures

(1) Search Perturbation Mechanism. In order to verify the
efectiveness of the search perturbation mechanism (SPM),
this section uses test functions f2 and f6 to verify the basic

Table 2: Pseudocode for the APSO-SD algorithm.

Algorithm: APSO-SD
Initialization:
1: for i� 1 to NP do
2: for n� 1 to D do
3: Xk

i,n � rand(n, i)

4: Vk
i,n � rand(n, i)

5: end for
6: Pbestki,n � Xk

i,n

7: if f(Pbestki,n)<f(Gbestki,n) then
8: Gbestki,n �Pbestki,n
9: end if
10: end for
Interation Steps:
11: for i� 1 to NP do
12: if P1> rand() then
13: xt+1

i � xt
i + xc

i /2(1 + αfc) + vt+1
i

14: end if
15: if P1 ≤ rand() then
16: xt+1

i � xt
i + sin(r1)•vt+1

i

17: end if

18: Pk
i � 

NP

i

fk
i − fk

i /2 
NP

i

fk
i

19: Constructing an intermediate population with a scale of
(NP/3) through roulette
20: R(Xk

i1,n, Xk
j1,n) � 

n
i |Xk

i1,n, Xk
j1,n|

21: Pc(Xk
j1,n/X

k
i1,n) � 1/np(1 + R(Xk

i1,n, Xk
j1,n) − Ravg/Rmax

− Rmin)

22: V
k+1
i � x

k
r1 + F(x

k
r2 − x

k
r3)

S.T. i≠ r1≠ r2≠ r3
,

Uk+1
i,n �

v
k+1
i,n , rand(0, 1)≤CRi or n � nrand

x
k
i,n, otherwise

⎧⎨

⎩ ,

xk+1
i �

u
k+1
i , f(u

k+1
i )≤f(x

k
i )

x
k
i , otherwise



23: if 3
NP

f(
NP/3
j1�1 Xk

j1,n) < 3/NPf(
NP/3
i1�1 Xk

i1,n) then
24: Xk

j1,n � Xk
i1,n

25: end if
26: Vk+1

i,n � ωVk
i,n + c1(Pbestki,n − Xk

i,n) + c2(Gbestki,n − Xk
i,n);

27: Xk+1
i,n � Vk+1

i,n + Xk
i,n;

28: k� k+ 1
29: if k> Itermax then
30: Save the Gbestki,n and Pbestki,n
31: end if
32: end for

Input

BiLSTM

BiLSTM

Drop

Dense

Output

Figure 5: BiLSTM model.
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APSO-SD algorithm execution phase

Start

Initialize the APSO-PSO population, 
calculate the fitness value of each particle, 

and determine the pbest and gbest

Y

P1>rand ()

Global search:
Use Eq. (16) to update the particle 

position

Local search:
Use Eq. (17) to update the 

particle position

Use Eq. (13) to update the particle 
velocity

N

Better than the average fitness of 
the initial intermediate population

Use Eq. (18) to calculate the 
reconstruction probability

Initializing intermediate 
populations using roulette

Use Eq. (19) to calculate particle 
irrelevance

Use Eq. (20) to calculate the 
selection probability and select 

the differential individuals

Using Eq. (21) for Mutation 
Operations

Using Eq. (22) for Cross 
Operations

Using Eq. (23) for Selection 
Operations

Calculate the fitness values of
particles

Replace the initial intermediate 
population with the intermediate 

population after the difference 
enhancement

Update the individual extremum 
and global extremum

k >= Itermax

k=k+1

N

Y

Output the optimal solution

End

Y

N

Calculate the average fitness of 
the intermediate population

Initialize the relevant parameters of 
BiLSTM neural network

Input prediction sample dataset

Using the BiLSTM with optimal
parameters for the time delay

prediction

Figure 6: Flowchart of the APSO-SD-BiLSTM model.
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PSO, APSO-SD-SPM (cancel the SPMmechanism in APSO-
SD), and APSO-SD. Te experimental results are shown in
Table 6.

It can be seen from Table 6 that the variance of the ftness
value of PSO in function f2 and f6 is 6.57E+ 02 and
3.44E+ 06 times of APSO-SD. When operating for 1000,
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Figure 7: Benchmark function images.

12 Journal of Electrical and Computer Engineering



2000, and 3000 times, the ftness values of PSO in function f2
are 1.35E+ 06, 4.36E+ 05, and 5.96E+ 04 times of APSO-SD.
Te ftness values of function f6 are 8.05E+ 15 and
6.93E+ 15 times of APSO-SD.Te ftness variance of APSO-
SD-SPM in functions f2 and f6 is 1.27E+ 00 and
3.98E+ 01 times of APSO-SD. When operating for 1000,
2000, and 3000 times, the ftness values of APSO-SD-SPM in
function f2 are 4.77E+ 00, 1.07E+ 01, and 9.54E+ 01 times of
APSO-SD.Te ftness values of function f6 are 1.61E+ 12 and
4.84E+ 10 times.

In conclusion, the optimization results of APSO-
SD-SPM are signifcantly improved compared to the basic
PSO, but there is still a certain gap between APSO-SD and
APSO-SD. Tis is because the APSO-SD and APSO-
SD-SPM is through crossover and mutation to generate new
individuals. However, the APSO-SD algorithm uses the
search perturbation mechanism to increase the diversity of
the particle population in each iteration, whichmakes it have
better results in the process of optimization.

(2) Diferential Enhancement Strategy. To verify the efec-
tiveness of the diferential enhancement strategy (DES), this
section uses test functions f2 and f6 to validate the basic PSO
and APSO-SD-DES (canceling the DES mechanism in
APSO-SD) and APSO-SD algorithms. Te experimental
results are shown in Table 7.

Table 7 shows that compared to the basic PSO, the
optimization results of APSO-SD-DES are signifcantly

improved, but there is still a certain gap between APSO-
SD-DES and APSO-SD. Tis is because both APSO-SD and
APSO-SD-DES increase the diversity of particle populations
through search perturbation mechanisms. However, the
APSO-SD algorithm generates two populations through DE
and PSO in each iteration, and it compares the two pop-
ulations to select the best Pbest and Gbest, thus achieving
better optimization results.

From the results of the previous two single validation
experiments, it can be concluded that the perturbation
strategy and the local distantly related diferential en-
hancement strategy proposed in this paper have signifcant
advantages in both the convergence rate of the algorithm
and the maintenance of the population diversity.

6.1.4. T-Test and Friedman Test. In the comparative analysis
of swarm intelligence optimization algorithms, researchers
usually use the T-test [30], Friedman test [31], Wilcoxon
signed-rank test [32], and Mann–Whitney U test [33] to
compare the signifcant diferences between the algorithms.
Based on this, this article selects the T-test and Friedman test
to test the performance of eight algorithms on six test
functions. Te experimental results are shown in Table 8.

Here, “+” indicates that the APSO-SD algorithm out-
performs the other algorithms, “� ” indicates that there is no
signifcant diference between the algorithms, “− ” indicates
inferiority to the other algorithms, and w/t/l indicates the

Table 4: Experimental results of the function test (D� 30 dimensions).

PSO-HS PSONHM CS-PSO SE-PSO E-PSO AERPSO AdPSO APSO-SD
f1 1.02E − 12 1.43E − 05 9.37E − 06 7.06E − 08 2.37E − 07 4.04E − 05 1.02E − 12 1.43E − 05
f2 1.63E − 01 6.13E − 01 2.09E − 01 5.26E − 02 1.31E+ 01 1.20E+ 00 1.63E − 01 6.13E − 01
f3 5.32E − 02 6.87E+ 00 2.24E+ 00 4.16E+ 00 1.18E+ 01 1.26E − 01 5.32E − 02 6.87E+ 00
f4 6.81E − 05 8.78E − 03 1.28E − 02 8.94E − 04 1.88E − 02 5.55E − 03 6.81E − 05 8.78E − 03
f5 1.02E − 12 1.43E − 05 9.37E − 06 7.06E − 08 2.37E − 07 4.04E − 05 1.02E − 12 1.43E − 05
f6 2.86E − 01 3.92E+ 00 4.36E − 03 3.44E+ 00 3.65E+ 00 7.00E − 02 2.86E − 01 3.92E+ 00

Table 5: Experimental results of the function test (D� 50 dimensions).

PSO-HS PSONHM CS-PSO SE-PSO E-PSO AERPSO AdPSO APSO-SD
f1 3.67E+ 02 3.49E+ 02 2.02E+ 03 4.25E+ 02 7.73E+ 01 6.09E+ 02 8.97E+ 02 1.23E+ 02
f2 1.92E − 03 8.58E+ 01 1.13E+ 02 1.19E − 03 4.35E+ 02 2.26E+ 02 2.73E+ 01 3.92E − 05
f3 7.51E+ 02 2.06E+ 04 1.04E+ 04 8.30E+ 00 2.02E+ 03 7.30E+ 02 4.05E+ 03 8.39E+ 02
f4 3.96E − 02 2.70E+ 01 6.92E+ 01 8.33E+ 00 1.98E+ 01 3.06E − 02 1.14E+ 02 2.01E − 03
f5 3.67E+ 02 3.49E+ 02 2.02E+ 03 4.25E+ 02 7.73E+ 01 6.09E+ 02 8.97E+ 02 1.23E+ 02
f6 3.16E+ 02 3.01E+ 02 1.75E+ 03 3.67E+ 02 1.06E+ 01 5.26E+ 02 7.74E+ 02 6.68E+ 01

Table 6: Diversity and rate comparison of the algorithm.

Functions Algorithm Variance
Number of evaluation

1,000 2,000 3,000

f2
PSO 6.08E+ 05 6.65E+ 00 2.16E − 01 2.31E − 03

APSO-SD-SPM 1.18E+ 03 1.39E+ 00 2.02E − 02 2.42E − 05
APSO-SD 9.26E+ 02 4.91E − 06 4.96E − 07 3.87E − 08

f6
PSO 4.27E+ 02 4.57E+ 01 3.03E+ 01 2.12E+ 01

APSO-SD-SPM 4.93E − 03 9.13E − 03 2.12E − 04 8.82E − 16E
APSO-SD 1.24E − 04 5.67E − 15 4.38E − 15 0.00E+ 00
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number of statistics for each of these three comparative
results.

Te T-test results show that APSO-SD has better per-
formance on four test functions compared with that of the
PSO-HS algorithm, and the two tests have no diference.
Compared with that of PSONHM, APSO-SD has better
performance on two test functions, three with no diference
and one with worse performance. Compared with that of
CS-PSO, APSO-SD has better performance on four test
functions, one with no diference and one with worse
performance. Te performance diference between SE-PSO
and APSO-SD is signifcant. APSO-SD has better perfor-
mance on four test functions, one with no diference and one
with worse performance. APSO-SD has better performance
on fve test functions and one worse compared to that of
AERPSO. APSO-SD has better performance on fve test
functions, one with no diference, compared to that of
AdPSO. From the Friedman test results, it can be concluded
that APSO-SD has the smallest rank mean value and the best
performance compared with other algorithms.

Based on the previous experimental results, it can be seen
that, to the single-peak and multipeak function, the
APSO-SD algorithm can obtain high-quality optimization
results. Compared with other algorithms, the proposed al-
gorithm has better stability and search ability. Te algorithm
alleviates the contradiction between precocity and conver-
gence speed and balances the global search and local search
efectively.

6.2. User Delay Prediction Comparison Experiments

6.2.1. Dataset Construction. In this section, the refective
points are frst projected onto a 3-dimensional plane. Ten,
the refective points are extended 1000m in both the positive

and negative directions on the X and Y axes with the base
station as the center and 100m above the base station in the
Z-axis direction starting from the ground. Finally, all the
three planes are divided into 64∗ 64 grids to determine the
intervals where the refective points are located and to build
the dataset for neural network training.

6.2.2. Evaluation Indicators. Te expression for the
relative error in time delay can be given by the following
equation:

ξ �
1
n



n

i�1

Xi − Yi




Yi

, (24)

where Xi is the predicted value of the network model, Yi is
the actual value, and n is the number of users.

Te relative error in the number of message packet
retransmissions could be expressed as follows:

ξ �
1
n



n

i�1

Xi − Yi




Nmax
, (25)

where Nmax is the maximum value of the sum of the number
of message packet retransmissions.

Te expressions for the mean and standard deviation of
the errors are shown as follows:

τ �
1
n



n

i�1
Xi − Yi


,

d �
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1
n



n

i�1
Xi − Yi


 − τ 

2


. (26)

Table 8: Results of the T test and Friedman test for four algorithms.

f1 f2 f3 f4 f5 f6 w/t/l Rank
mean

PSO-HS + + + � + � 5/3/0 2.87
PSONHM � � — + � + 3/4/1 1.89
CS-PSO + + � + — + 5/2/1 2.13
SE-PSO + + + + + + 7/1/0 1.96
E-PSO + � — + + + 6/1/1 2.53
AERPSO + + + � + + 6/0/2 2.18
AdPSO + + — + + + 4/4/0 2.27
APSO-SD 1.68

Table 7: Diversity and rate comparison of the algorithm.

Algorithm Variance
Number of evaluation

10,000 20,000 30,000

f2
PSO 3.90E+ 06 4.26E+ 01 1.39E+ 00 1.48E − 02

APSO-SD-DES 7.55E+ 03 8.93E+ 00 1.30E − 01 1.55E − 04
APSO-SD 5.93E+ 03 3.15E − 05 3.18E − 06 2.48E − 07

f6
PSO 2.73E+ 03 2.92E+ 02 1.94E+ 02 1.36E+ 02

APSO-SD-DES 3.16E − 02 5.85E − 02 1.36E − 03 6.38E − 14E
APSO-SD 7.93E − 04 3.63E − 14 2.80E − 14 0.00E+ 00
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6.2.3. Parameter Selection. In the APSO-SD BiLSTMmodel,
the parameter settings of the APSO-SD algorithm are
consistent with those in Section 5.1. Te number of input
layer nodes in the BiLSTM neural network is 5, the depth of
the hidden layer is 2, and the number of output layer nodes is
3. Tis section uses diferent time steps and batch sizes to
train the APSO-SD-BiLSTM model.

Figure 8 shows the training results of the APSO-SD-
BiLSTM model. Te time step and batch size gradually
converge to the optimal values as the algorithm is updated.
Figure 8 shows that the batch size of the model training data
is 2 and that the optimal time step is 5.

6.2.4. Wireless Side Network Latency Prediction. In this
section, network latency is frst predicted directly using the
APSO-SD-BiLSTM model in the experiments. Ten, the
number of message packet retransmissions predicted by the
APSO-SD-BiLSTM model is processed as a regression task
to predict network latency indirectly. Finally, the number of
message packet retransmissions predicted by the APSO-SD-
BiLSTMmodel is processed as a classifcation task to predict
network latency indirectly. Among them, the number of
training samples is 90,000 and the number of prediction
samples is 9,000.

(1) Direct Prediction of User Network Latency. In this sec-
tion, the APSO-SD-BiLSTM model is used to directly
predict the network delay, and the predicted delay is
shown in Figure 9. From Figure 9, it can be seen that the
trend of the predicted value and the actual value is ba-
sically matched.

Te evaluation metrics for the network delay prediction
results are shown in Table 9. As can be seen from Table 9,
both the relative error and the mean value of the error
are small.

(2) Regression-Oriented Tasks User Network Latency Indirect
Prediction. Te number of message packet retransmissions
predicted by the APSO-SD-BiLSTM model is treated as
a regression task to indirectly predict network latency. Te
prediction results are shown in Figure 10. As can be seen
from Figure 10, the trend of the predicted and actual values
is generally consistent.

Te evaluation metrics for the prediction results are
shown in Table 10. Table 10 shows that the relative error and
the mean value of the error for the indirect prediction of the
network delay for the regression-oriented task are large
compared to the results for the direct prediction of the
network delay.

(3) Indirect Prediction of User Network Latency for Classi-
fcation Tasks. Te number of message packet retrans-
missions predicted by the APSO-SD-BiLSTM model is
treated as a classifcation task to indirectly predict network
latency. Te prediction results are shown in Figure 11. As

can be seen from Figure 11, the trend of the predicted and
actual values is generally consistent, and only a few points
difer.

Te evaluation metrics for the prediction results are
shown in Table 11. Table 11 shows that the relative error and
the mean error of the indirect prediction results for the
classifcation-oriented task network time delay are slightly
improved compared to the indirect prediction results for the
regression-oriented task network time delay.

(4) Error Analysis for Predicting Network Delay. Te relative
error probability distributions for direct prediction of net-
work latency and indirect prediction of the number of
message packet retransmissions are shown in Figures 12 and
13, respectively. From Figure 12, it can be seen that the
relative error of direct prediction of network latency is
concentrated at 1%. From Figure 13, the relative errors of
indirect prediction of user network latency for regression
task and indirect prediction of user network latency for
classifcation task are not signifcantly diferent, and the
relative errors of message packet retransmission number for
both are concentrated at 10%.

6.2.5. Comparison with Existing Forecasting Methods. To
verify the validity of the models, this section replaces
BiLSTM [34], PSO-BiLSTM [35], APSO-BiLSTM [36],
IPSO-BiLSTM [37], ASPSO-BiLSTM [38], APSO-MS-LSTM
(BiLSTM in the APSO-MS-BiLSTM model with LSTM),
APSO-MS-RNN (BiLSTM replaced by RNN in APSO-MS-
BiLSTM model), CNN [16], CNNDP [39], AMCA [40],
PABAFT [41], OCEAN [13], CNN-LSTM [13], and
CNN-KF [42] with APSO-SD-BiLSTM models for direct
prediction of network delay, respectively. Te experimental
results are shown in Table 12.

Te results of the experimental comparison are as
follows:

(1) Compared with BiLSTM, PSO-BiLSTM, APSO-
BiLSTM, IPSO-BiLSTM, and ASPSO-BiLSTM, the
prediction results of APSO-SD-BiLSTM achieved
better results in all three evaluation metrics. Tis is
mainly because the APSO-SD algorithm has better
outcome-seeking performance relative to the PSO
algorithm and can fnd the relevant parameters that
give the BiLSTM neural network better prediction
performance.

(2) Compared with APSO-SD-LSTM and APSO-SD-
RNN, the prediction results of APSO-SD-BiLSTM
have a large degree of improvement in all three
evaluation metrics. Tis is mainly due to the fact that
BiLSTM can better capture the premoment and
postmoment dependence information of time-delay
data compared to LSTM and RNN, which is con-
ducive to improving the prediction accuracy of the
temporal data.
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(3) Compared with existing models such as CNN,
CNNDP, AMCA, PABAFT, OCEAN, CNN-LSTM,
and CNN-KF, the APSO-SD-BiLSTM model has the
highest prediction accuracy and can efectively
achieve the user’s time-delay prediction. Tis is
mainly because the APSO-SD-BiLSTMmodel makes
full use of the dependence of user latency data on the
latency data of the preceding and following
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Figure 8: Te parameters of BiLSTM.
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Figure 9: Results of direct network delay prediction.

Table 9: Evaluation results of direct network delay prediction.

Indicators Assessment results
Relative error (%) 5.9235
Mean value of error (time delay diference)
(ms) 0.0361

Error standard deviation (time delay
diference) (ms) 0.0312

Predicted hours used by 9000 users 13.0778
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Figure 10: Predictions for the regression-oriented task number of message packet retransmissions.

Table 10: Evaluation results of the predicted number of message packet retransmissions under the regression task.

Indicators Assessment results
Relative error (%) 10.762503
Mean error (number of message packet retransmissions) (time) 3.228742
Error standard deviation (number of message packet retransmissions) (time) 3.303858
Predicted hours used by 9,000 users 11.850617
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Figure 11: Prediction of the number of message packet retransmissions for classifcation tasks.

Table 11: Evaluation results of the predicted message packet retransmission count metric under the classifcation task.

Indicators Assessment results
Relative error (%) 11.725394
Mean error (number of message packet retransmissions) (time) 3.517547
Error standard deviation (number of message packet retransmissions) (time) 3.661282
Predicted length of time for 10,000 users 14.165685

Journal of Electrical and Computer Engineering 17



43 6 751 20
relative error (%)

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Figure 12: Relative error probability distribution of direct prediction network delay.

10 300 50 9020 40 70 8060
relative error (%)

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty

Direct prediction of user network delay
Indirect prediction message packet retransmissions

Figure 13: Relative error probability distribution of indirect prediction message packet retransmissions.

Table 12: Test results of the models.

Models

Evaluation indicators

Relative error (%)
Mean value of

error (time delay
diference) (ms)

Error standard deviation
(time delay diference)

(ms)
BiLSTM 9.1282 0.0600 0.0506
PSO-BiLSTM 8.0581 0.0516 0.0474
APSO-BiLSTM 7.2241 0.0477 0.0407
IPSO-BiLSTM 9.2003 0.0639 0.0525
ASPSO-BiLSTM 10.0092 0.0708 0.0595
APSO-SD-LSTM 11.3953 0.091 0.0683
APSO-SD-RNN 11.6042 0.0960 0.0736
CNN 14.6404 0.1615 0.0810
CNNDP 10.8311 0.1048 0.0823
AMCA 12.0359 0.1117 0.0843
PABAFT 13.7760 0.1009 0.0891
OCEAN 11.7894 0.1413 0.0956
CNN-LSTM 12.1966 0.1202 0.0916
CNN-KF 12.8941 0.1583 0.0934
APSO-SD-BiLSTM 5.9235 0.0361 0.0312

18 Journal of Electrical and Computer Engineering



moments, and it efectively achieves the mining of
user historical latency data.

7. Conclusions and Future Work

In this paper, a 5G user time delay data prediction model is
proposed based on the BiLSTM neural network optimized
by APSO-SD. First, a large amount of delay data is obtained
by using the delay simulation model based on the ray-
tracing model and statistical model fusion. Ten, a user ray
data feature model is proposed based on 3D stereo map-
ping. Finally, the 5G user network time delay prediction
model (APSO-SD-BiLSTM) is carried out based on the
BiLSTM neural network optimized by APSO-SD. Te ex-
perimental results show that the APSO-SD-BiLSTM model
has better prediction accuracy than the existed prediction
models, and it can efectively achieve the network delay
prediction.

TeAPSO-SD BiLSTMmodel proposed in this paper has
two main limitations. First, the feature model of 5G user ray
data proposed in this paper only considers the user’s tem-
poral characteristics; second, the APSO-SD BiLSTM model
only focuses on optimizing the structural parameters of
BiLSTM. Notwithstanding its limitation, the APSO-SD
BiLSTM model can still efectively predict 5G user
time delay.

In the future research, the following three aspects can be
carried out:

(1) On the basis of extracting ray refection point fea-
tures, the temporal and spatial features of 5G user
time delay data are fused and user time delay pre-
diction is performed based on the fused features.

(2) Te APSO for the joint optimization of the initial
weight parameters and structural parameters of
BiLSTM is used, and then, optimized BiLSTM to
further improve the accuracy of user latency data
prediction is used.

(3) Te diference between 5G user delay characteristics
and 6G user delay characteristics is studied, and 6G
user delay based on the combination of the swarm
intelligence algorithm and neural network is
predicted.
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