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For the mixed trafc fow, obtaining the distribution of connected vehicles (CVs) and regular vehicles (RVs) is of great signifcance
for road network analysis and cooperative control in intelligent transportation systems (ITSs). However, whether it is based on
fxed sensors or based on CVs and trafc mechanism to estimate the spatial distribution of RVs, the implementation complexity
and low estimation accuracy are the points that need to be improved. Tis paper proposes a regular vehicle spatial distribution
estimation method using adjacent connected vehicles as mobile sensors. First, to investigate the hidden relationship between the
interaction information of adjacent CVs and the spatial distribution of RVs among CVs, the Gaussian mixture model-hidden
Markov model (GMM-HMM) is selected as the identifcation method. Ten, three sets of experiments were designed to study the
infuence of observed features on the identifcation capability of the model, generalization capability validation, and comparison
with other methods, respectively. Finally, the proposedmethod is verifed by the dataset generated by the car-followingmodel.Te
experimental results show that selecting the relative position and time headway as observed features can efectively refect the
regular vehicle spatial distribution between adjacent CVs. Te average accuracy of the proposed method to identify the regular
vehicle spatial distribution is over 93.7%, which can provide valuable suggestions for the Internet of Vehicles application.

1. Introduction

ITSs have developed rapidly in recent years because of their
great potential for improving trafc fow characteristics,
such as solving existing trafc congestion problems, low
safety, and low resource utilization. As an essential part of
the deployment of ITS, CVs are known as vehicles that can
share information (such as position, velocity, and accel-
eration) with other CVs by using the vehicle to everything
(V2X) technology. Terefore, a safer, more efcient, and
energy-saving road network is created. However, the
penetration of CVs will not be entirely popularized in the
short term. At this stage, CVs and RVs will coexist on the
roads, and a mixed trafc fow will be emerging [1]. At the
same time, many researchers have conducted in-depth
research on the characteristics of the mixed trafc fow,
such as the queue safety evaluation [2], capacity analysis
[3], and vehicle to road cooperative control
optimization [4].

Tese studies explain the critical role of CVs in the
overall improvement of trafc fow characteristics. However,
due to the existence of RVs, the application performance of
CVs is inevitably limited. Terefore, estimating the distri-
bution of RVs and CVs is indispensable for deploying ITS
(e.g., analyzing road networks and achieving trafc opti-
mization control). Traditional trafc fow state estimation
methods widely use fxed sensors [5], such as loop detectors,
cameras, and other equipment, to monitor the road trafc
fow and vehicle state information. However, these methods
have limitations, such as fxed monitoring positions and
high installation and maintenance costs. Unlike fxed sen-
sors, CVs can interact with roads, vehicles, and cloud
platforms. With the advantages of high fexibility and low
cost, it has become a reality for CVs to collect data as mobile
sensors for trafc fow analysis [6]. Reference [7] analyzed
the characteristics of a mixed trafc fow with the maximum
platoon size of CAVs. Te conclusion shows that the trafc
beneft does not increase all the time when the vehicle

Hindawi
Journal of Electrical and Computer Engineering
Volume 2023, Article ID 4954035, 11 pages
https://doi.org/10.1155/2023/4954035

https://orcid.org/0000-0002-9075-4185
https://orcid.org/0009-0008-5757-807X
https://orcid.org/0000-0002-7701-8351
https://orcid.org/0000-0002-0579-276X
mailto:liulin@cqupt.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/4954035


platoon reaches a certain level. References [8, 9] pointed out
that there are three spatial distributions of CVs and RVs in
the queue. In the frst case, CVs are concentrated; the road
trafc efciency is the highest, and the safety is the best. In
the second case, CVs and RVs are uniformly distributed on
the road, the road trafc efciency is the lowest, and the
safety is the worst. CVs and RVs are randomly distributed in
the third case, and the trafc fow characteristics are between
the previous two cases. Reference [10] proposed a method
for estimating the trafc state andmarket penetration of CVs
on highways. CVs and roadside units are used as mobile and
fxed sensors to form a hybrid sensor. A fltering approach is
used to estimate the trafc state under the mixed trafc fow.
Reference [11] used the Markov chain to prove that the
orderly arrangement of CVs signifcantly increased the road
capacity. At the same time, relative entropy was introduced
to quantitatively describe the orderliness of the mixed trafc
fow, and the root cause of the improvement of road trafc
capacity by CVs was clarifed. Reference [12] pointed out
that the emergence of RVs inhibits the formation of CV
queues, which is not conducive to realizing cooperative
driving. Te discrete hidden Markov method is used to
estimate the number of RVs in adjacent CVs. However, the
discretization process of this method is prone to problems
such as quantization error and signal distortion, which
weakens the resolution of the model, so the recognition
accuracy needs to be improved.

Overall, there are two areas for improvement in the
existing methods for estimating the state of mixed trafc
fows. First, they rely on fxed sensors to detect the road fow
and vehicle status, and it is difcult to identify the specifc
distribution of CVs and RVs. Second, some of the methods
start from studying trafc fow mechanism characteristics,
and the theoretical techniques and implementation are
relatively complicated, and the accuracy needs to be
improved.

Aiming to address the problem of the regular vehicle
spatial distribution estimation without introducing complex
statistical derivation processes or adding other monitoring
equipment, this paper proposes a method to estimate the
spatial distribution of RVs by using the interaction in-
formation of adjacent CVs. Based on the concept of data
driven, by analyzing the internal mechanism of the spatial
distribution of RVs and the information interaction of CVs,
a GMM-HMM model is established by taking the relative
position and the time headway of adjacent CVs as the input
and the spatial distribution of RVs as the output. Teoretical
derivation and numerical simulation verify the efectiveness
of this method.

2. Modeling of Regular Vehicle Spatial
Distribution Estimation

2.1.Mechanistic Analysis. CVs and RVs are most likely to be
driven by humans at this stage. CVs can use V2X to share
vehicle driving status information within a certain com-
munication range. At the same time, it reduces the reaction
delay time of the driver’s decision making during driving so
that the vehicle can drive on the road with minor headway

and spacing. For the mixed trafc fow composed of CVs and
RVs, the spatial distribution of RVs and the information of
CVs are spatially and temporally correlated, as shown in
Figure 1.

In Figure 1, within a certain communication range, CVs
interact with each other for driving information, such as
position xn(t), xn−1(t), velocity vn(t), vn−1(t), and acceler-
ation an(t), an−1(t)) at diferent times. Tis time-varying
information is closely related to the spatial distribution of
RVs (the number of RVs in the green dotted box in Figure 1)
and can be collected for further processing. Te relative
position ∆xn(t), relative velocity ∆vn(t), relative accelera-
tion ∆an(t), and time headway Th(t) of adjacent CVs are
defned as follows:

∆xn(t) � xn−1(t) − xn(t), (1)

∆vn(t) � vn−1(t) − vn(t), (2)

∆an(t) � an−1(t) − an(t), (3)

Th(t) �
xn−1(t) − xn(t)

vn(t)
, (4)

where xn−1(t), vn−1(t), and an−1(t) denote the position,
velocity, and acceleration of the leading connected vehicle,
respectively; xn(t), vn(t), and an(t) denote the position,
velocity, and acceleration of the following connected vehicle,
respectively.

Using diferent combinations of the abovementioned
four features as the observed features (the dimensionality is
determined by the number of selected features), it is esti-
mated that the regular vehicle spatial distribution can be
implemented by using machine learning methods.

2.2. Model Construction. Before introducing the model of
our paper, we present some key assumptions to facilitate the
modeling process.

(1) We consider only the longitudinal behavior of all
kinds of vehicles. Tat is, the behavior of vehicle
changing the lane is not considered.

(2) Te network information is reliable, and the trans-
mission delay is ignored. All drivers fully obey the
advanced driving assistance suggestions.

(3) All kinds of vehicles are driven by humans, re-
gardless of the existence of automatic drive.

2.2.1. Methodology. Te extracted features of the in-
formation of CVs are continuous and generally present
a Gaussian distribution. To estimate the hidden regular
vehicle spatial distribution from the visible observed fea-
tures, this paper uses the GMM-HMM [13] as the identi-
fcation method.

In this paper, the spatial distribution of RVs between
adjacent CVs is regarded as the hidden state to be identifed.
More specifcally, there are 0 RV, 1 RV, and at least 2 RVs
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between adjacent CVs represented by hidden states q3, re-
spectively. Te feature information of adjacent CVs (dif-
ferent combinations of relative position, relative velocity,
relative acceleration, and time headway) is used as the
observed features. Te transition of the hidden state at
diferent moments is described by the state transition
probability, and the mapping relationship between the
observed features and the hidden state is described by the
output probability, as shown in Figure 2.

GMM-HMM is composed of the initial probability
vector π, the state transition matrix A, and the output
probability matrix B, which is represented by a triple symbol
λ � (π,A,B). When the hidden state sequence
I � (i1, i2, . . . , iT) and the observation feature sequence O �

(o1, o2, . . . , oT) of the model are given, the initial probability
vector π � (π1, π2, . . . , πN) with N components, which
satisfes the following equation:

πj � P i1 � qj ,

j � 1, 2, . . . , N.
(5)

Te state transition matrixA � [aij]N×N, which describes
the probability of transferring from the hidden state qi at
time t to the hidden state qj at time t + 1, satisfes the
following equation:

aij � P it+1 � qj it � qi

 , i � 1, 2, . . . , N. (6)

Te output probability matrix B � [bj(k)]N×k refers to
the mapping relationship between the hidden state value qi

and the observed feature vk at any time which satisfes the
following equation:

bj(k) � P ot � vk it � qj

 . (7)

Since the observed feature vk is continuous, the multi-
dimensional mixed Gaussian distribution describes the joint
probability distribution between the hidden state value qi

and the observed feature vk. Equation (7) can be rewritten as
follows:

bj(k) � 

M

m�1
cjmN ot ujm

 , 
jm

⎛⎝ ⎞⎠,



M

m�1
cjm � 1, 0≤ cjm ≤ 1,

N ot | ujm,Σjm  �
1

(2π)
(D/2) Σjm




(1/2)

· exp −
1
2
ot − ujm 

T
Σjm

− 1 ot − ujm  ,

(8)
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Figure 1: Te information of CVs corresponds to RV spatial distribution at diferent times.
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where cjm is the weight coefcient of the m − th Gaussian
distribution in the GMMwhen it is in the hidden state qj; M

is the number of Gaussian components; D denotes the di-
mensionality of the observed random variable ot; and
ujm ∈ RD×1 and Σjm ∈ RD×D are the mean vector and the
covariance matrix of Gaussian distribution N(ot | ujm,Σjm),
respectively.

2.2.2. Model Training and Testing Process. Te number of
hidden states N and Gaussian components M in the
GMM-HMM is regarded as hyperparameters. Te
remaining model parameters need to be trained by EM
(expectation-maximum) algorithm through massive his-
torical data. Temodel training and testing process is shown
in Figure 3.

Te EM algorithm is used to estimate the model pa-
rameters, including initial state probability distribution πj,
state transition probability aij, mixed Gaussian distribution
weight coefcient cjm, mean vector ujm, and covariance
matrix Σjm. After the abovementioned training process, the
model parameters λ � (π,A,B) are obtained. Given the
observation feature sequence O � (o1, o2, . . . , oT), the
Viterbi algorithm can be used to determine the hidden state
sequence I � (i1, i2, . . . , iT).

3. Experimental Verification

3.1. Data Preparation and Processing. Te basic dataset used
in this paper comes from NGSIM (next generation simu-
lation) [14]. From this dataset, 50 vehicle trajectories with
recorded position, speed, and acceleration information were
randomly extracted from the I-80 section. Due to some noise
and errors in the raw data, the vehicle position, velocity, and
acceleration are preprocessed using a moving average flter.
Te original data and fltered data are shown in Figure 4.

To obtain the characteristic data of the combination of
CVs and RVs required for the study using the theory
proposed in Reference [15], the car-following models of CVs
and RVs are considered IDM [16] with diferent response
delay times. Te acceleration of the following vehicle n at
time t + τ satisfes the following equations:

an(t + τ) � a 1 −
vn(t)

vf

 

σ

−
s∗ vn(t),∆vn(t)( 

sn(t)
 

2
⎡⎣ ⎤⎦,

s
∗

vn(t),∆vn(t)(  � s0 + vn(t)T −
vn(t)∆xn(t)

2
��
ab

√ ,

(9)

where an and vn denote the acceleration and velocity of the
vehicle n, respectively; s∗(·) is the desired minimum gap;
∆vn � vn−1 − vn and ∆xn � xn−1 − xn denote the speed dif-
ference and position diference between the leading vehicle
n − 1 and the following vehicle n, respectively; a and b

denote the maximum acceleration and expected deceleration
of the vehicle n, respectively; vf is the desired velocity; and s0
and T denote the jam gap and safe time headway,
respectively.

Te abovementioned 50 vehicles are the leading vehicles,
and the sampling time is set to 0.1 s. When the market
penetration rate (MPR) of CVs is 0.3, 0.5, and 0.7, the feature
datasets (the corresponding sample sizes are 36400 groups,
72800 groups, and 109200 groups, respectively) of 500mixed
CVs and RVs are generated, respectively. In the mixed trafc
fow, the spatial distribution of CVs and RVs is random. It
should be noted that only if both the following and the
leading vehicle are CVs, the following vehicle can apply the
car-following model of the CVs. Otherwise, the RV car-
following model is used.Te diference between the two is in
the driver’s reaction delay time, and the CV has a lower time
delay than the RV. Te parameters are given in Table 1.

Observed feature v1 Observed feature v2 Observed feature v3
Observed feature vk

aij

bj (k)

State transition probability

Output probability

Hidden state q1

Hidden state q2

Hidden state q3

Hidden state q1 Hidden state q2 Hidden state q3

Figure 2: Te structure of GMM-HMM.
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Te database of the observed features required for model
training and testing is obtained by recording the information
of CVs at each simulation step and then processing the
information using equations (1)–(4).

3.2. Experiment Setting. Te model parameters need to be
initialized before using the GMM-HMM. Among hyper-
parameters, the number of Gaussian components M � 2 and
the number of hidden states N � 3. Te initial probability
vector π is uniformly distributed. Te mean vector and the
covariance matrix in the state transition matrix A and the
output probability matrix B are generated by the initiali-
zation of the k-means algorithm.Te number of iterations is
set to 50, and the convergence threshold is set to 1× 10−4.
Te classifcation model evaluation method proposed in
reference [17] was used to evaluate the model performance.
Accuracy (ACC), macroaverage precision (MAP), macro-
average recall (MAR), class balance accuracy (CBA), and the
F1 score (F1), which integrates accuracy and recall, were
used as indicators to evaluate the model performance. At the
same time, to make the evaluation results of the model
convincing and efectively avoid overftting and underftting,
k-cross validation is adopted to use all the data for training
and testing.

In experiment 1, to determine the efect of diferent
observed features on the recognition ability of the GMM-
HMM, fve groups of observed features are used as the
model’s input to obtain the state estimation results of the
GMM-HMM. Te fve diferent observed features are as
follows:

(1) Relative position+relative velocity (∆xn + ∆vn)
(2) Relative position+time headway (∆xn + Th)
(3) Relative position+relative acceleration (∆xn + ∆an)
(4) Relative position+relative velocity+relative acceler-

ation (∆xn + ∆vn + ∆an)
(5) Relative position+relative velocity+relative accel-

eration+time headway (∆xn + ∆vn + ∆an + Th)

In experiment 2, to verify the adaptability of the model
under diferent MPR environments, the mixed trafc fow
dataset generated at a certain MPR is taken as the training
set. Te data generated from the remaining MPR are used as
the test set (e.g., the features data obtained at an MPR of 0.5
for the CVs are used as the training set, and the feature data
at MPRs of 0.3 and 0.7 are used as the test set) to verify the
generalization ability of the model.

In experiment 3, GMM-HMM is briefy compared with
other machine learning methods, such as the support
vector machine (SVM) and artifcial neural network (ANN)
for RV spatial distribution estimation. Te same dataset is
used for training and testing to make the experimental
results relatively fair. Te parameters of both SVM and
ANN are selected by constantly adjusting the grid search
method.

3.3. Results and Discussion

3.3.1. Determine the Optimal Observed Features. In this
paper, diferent combinations of relative position ∆xn, rel-
ative velocity ∆vn, relative acceleration ∆an, and time
headway Th of adjacent CVs are extracted as observed
features. In order to estimate the spatial distribution of RVs,
it is necessary to combine the four features in the process of
establishing the GMM-HMM.Te distributions of ∆xn, ∆vn,
∆an, and Th under diferent hidden states are shown in
Figure 5.

It can be directly seen from Figure 5 that the spatial
distribution of RVs between adjacent CVs (the hidden state)
can be refected by the information of CVs. Tere are dif-
ferences in the probability distribution of information under
diferent hidden states. Te characteristic information of
network connection varies greatly in diferent hidden states.
Tis point is shown in the fgure as “thin” and “fat” degrees
are diferent. Te fundamental reason is that the mean value
and the standard deviation of the network characteristic
information are diferent. Statistical methods are used to
describe the distribution of information, as shown in Table 2.

Dataset

Test set

Training 
set λ= (π, A, B)

EM

cjm
(0),ujm

(0),Σ jm
(0)

cjm ,ujm ,Σ jm 

K-means
EM

GMM

Estimation 
result

Viterbi

GMM-HMM

Figure 3: Te training and testing process of GMM-HMM.
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In this section, fve diferent observed features were
selected to train and test the model. Te fve evaluation
indices (the evaluation indices take values ranging from 0 to

1, with values closer to 1 indicating better model perfor-
mance) derived from the confusion matrix are used to
further analyze the model’s performance. Te results are
shown in Figure 6.

Figure 6 shows the efect of selecting diferent observed
features on the model performance. It can be observed that
the relative position ∆xn and time headway Th of adjacent
CVs are selected as the input of the model, which can make
GMM-HMM have the best efect on the spatial distribution
estimation of RVs. More specifcally, the combination of
the relative position ∆xn and time headway Th as the
observed features can efectively refect the spatial distri-
bution of RVs. In the cross-validation experiment, the
accuracy reached 0.972 in the best case, 0.891 in the worst

Table 1: Parameters setting of the car-following model for CVs and
RVs [15].

Parameters CVs RVs
Desired velocity vf (m/s) 33 33
Jam gap s0 (m) 2 2
Safe time headway T (m) 1.4 1.4
Maximum acceleration a (m/s2) 4 4
Acceleration exponent σ 2 2
Expected deceleration b (m/s2) 2 2
Time delay τ (s) 0 0.4

0

100

200

300

400

500
Po

sit
io

n 
x 

(m
)

15 20 2510 3530 454050
Time t (s)

Raw data
Filtered data

(a)

15 20 2510 3530 454050
Time t (s)

0

5

10

15

20

25

Ve
lo

ci
ty

 v 
(m

·s-1
)

Raw data
Filtered data

(b)

–4

–3

–2

–1

0

1

2

3

4

Ac
ce

le
ra

tio
n 
a 

(m
·s-2

)

15 20 2510 3530 454050
Time t (s)

Raw data
Filtered data

(c)

Figure 4: Comparison of the original trajectory data and the fltered trajectory data of the vehicle. (a) Vehicle position data. (b) Vehicle
velocity data. (c) Vehicle acceleration data.
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case, and the average accuracy was about 0.937. Consid-
ering the combination of relative position ∆xn, relative
velocity ∆vn, relative acceleration ∆an, and time headway
Th as the observed features, the accuracy of the former is
slightly lower than that of the former. Te accuracy of
recognition using the remaining three observed features is
much lower than that of the previous two. Similarly, from
the perspective of recall, precision, class balance accuracy,
and the F1 score, the combination of relative position ∆xn

and time headway Th is selected as the observed features,
which makes the model performance better than the
other four.

Te model’s performance using diferent observed fea-
tures is shown in Table 3. Te results show that the com-
bination of the relative position ∆xn and time headway Th is
selected as the observed features of the GMM-HMM, which
can efectively realize the spatial distribution estimation
of RVs.

3.3.2. Generalization Capability Validation. To verify the
adaptability of the proposed method in diferent environ-
ments, the observed features dataset extracted under a cer-
tain MPR is used for training, and the test dataset is from
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Figure 5: Te distribution of information. (a) Te distribution of relative position. (b) Te distribution of relative velocity. (c) Te
distribution of relative acceleration. (d) Te distribution of time headway.

Journal of Electrical and Computer Engineering 7



Table 2: Te statistics of information.

Information of
CVs

Means Standard deviations
Hidden state

q1

Hidden state
q2

Hidden state
q3

Hidden state
q1

Hidden state
q2

Hidden state
q3

Relative position ∆xn (m) 22.424 45.070 70.505 3.810 5.258 6.185
Relative velocity ∆vn (m/s) 0.416 0.818 1.052 0.762 1.081 1.296
Relative acceleration ∆an (m/s2) −0.007 −0.025 −0.059 0.526 0.620 0.727
Time headway Th (s) 1.737 3.605 6.118 0.489 0.694 1.265
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Figure 6: Continued.
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other MPR environments. In this section, the combination
of relative position ∆xn and time headway Th is used as the
input of the model and the accuracy of the model to identify
each hidden state is obtained. Te results are shown in
Table 4.

Te results show that the overall accuracy of the pro-
posed method in diferent MPR environments is above
0.918. It shows that the model also has good adaptability in
diferent MPR environments.

3.3.3. Comparison with Other Methods. After using
GMM-HMM to obtain the regular vehicle spatial distri-
bution estimation results, the same dataset is also used to
train and test SVM and ANN in the comparison experiment.
Te estimation results are shown in Figure 7.

Figure 7 shows the signifcant advantages of using
GMM-HMM for regular vehicle spatial distribution esti-
mation. Figure 7(a) shows the true labels of the 3 hidden
states. It can be seen that the estimated values of
GMM-HMM in Figure 7(b) are very close to the true labels.
Te regular vehicle spatial distribution estimation results
using SVM and ANN are shown in Figures 7(c) and 7(d),
respectively. However, these two methods’ estimated values
difer from the real labels. Te results of evaluating the
spatial distribution of RVs using diferent methods are
shown in Table 5.

Te experimental results show that GMM-HMM has the
highest accuracy in estimating the spatial distribution of
CVs, with a value of about 0.937. When using SVM and
ANN, the accuracy is 0.934 and 0.879, respectively. As for
the stability of the model, the class balance accuracy and F1
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Figure 6: Model performance is afected by the observed feature value. (a) ACC. (b) MAR. (c) MAP. (d) CBA. (e) F1.

Table 3: Te average efect of diferent observed features on model performance.

Observed features ACC MAR MAP CBA F1
Relative position + relative velocity (∆xn + ∆vn) 0.754 0.758 0.756 0.666 0.734
Relative position + time headway (∆xn + Th) 0.937 0.944 0.921 0.865 0.924
Relative position + relative acceleration (∆xn + ∆an) 0.730 0.746 0.735 0.626 0.706
Relative position + relative velocity + relative acceleration (∆xn + ∆vn + ∆an) 0.714 0.732 0.723 0.605 0.695
Relative position + relative velocity + relative acceleration + time headway
(∆xn + ∆vn + ∆an + Th)

0.847 0.871 0.859 0.729 0.832

Table 4: Te generalization ability in diferent environments.

Training environment Testing environment Hidden state
q1

Hidden state
q2

Hidden state
q3

Average accuracy

MPR� 0.3 MPR� 0.5 0.938 0.887 1.0 0.933
MPR� 0.7 0.930 0.891 1.0 0.924

MPR� 0.5 MPR� 0.3 0.965 0.882 1.0 0.963
MPR� 0.7 0.978 0.834 1.0 0.942

MPR� 0.7 MPR� 0.3 0.887 0.878 1.0 0.939
MPR� 0.5 0.965 0.819 1.0 0.918
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score of GMM-HMM reach 0.865 and 0.924, respectively,
which are higher than those of SVM (the class balance
accuracy and F1 score are 0.840 and 0.899, respectively) and
ANN (the class balance accuracy and F1 score are 0.741 and
0.812, respectively).

4. Conclusion

In this paper, GMM-HMM is used as the identifcation
method to solve the problem of regular vehicle spatial
distribution estimation in the mixed trafc fow.
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Figure 7: Estimated efect of diferent methods of regular vehicle spatial distribution. (a) Real labels. (b) Estimated efect of using GMM-
HMM. (c) Estimated efect of using SVM. (d) Estimated efect of using ANN.

Table 5: Comparison of diferent identifcation methods.

Methods ACC MAR MAP CBA F1
GMM-HMM 0.937 0.944 0.921 0.865 0.924
SVM 0.934 0.889 0.937 0.840 0.899
ANN 0.879 0.816 0.900 0.741 0.812
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Te spatial distribution of traditional vehicles is regarded
as a hidden state, and the diferent combinations of the
relative position ∆xn, relative velocity ∆vn, relative accel-
eration ∆an, and time headway Th of adjacent CVs are used
as observed features. From the perspective of sample dis-
tribution, the relative position ∆xn and time headway Th in
diferent hidden states are quite diferent. It shows that using
these two kinds of information can better establish the re-
lationship between the hidden state and the observed fea-
tures, and this view is verifed in the experiments. Te
experimental results show that using the combination of the
relative position ∆xn and time headway Th as the observed
features, the average accuracy is 0.937, the class balance
accuracy is 0.865, and the F1 score is 0.924, which is higher
than the other four observed features. To verify the model’s
generalization ability, this paper uses data in diferent MPR
environments for training and testing. Te experimental
results show that the overall recognition accuracy is above
0.918, and the model can adapt to diferent MPR environ-
ments. In addition, GMM-HMM is briefy compared with
SVM and ANN, and the experimental results show the ef-
fectiveness of the proposed method.

Data Availability

Te datasets used to support the fnding of this study are
publicly available and can be downloaded from the following
website: https://ops.fhwa.dot.gov/trafcanalysi.stools/
ngsim.html.
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