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A frequency counter is essential for resonance-based sensors like quartz crystal microbalance. An electronic nose or tongue using
a QCM sensor array requires a multichannel frequency counter to detect the frequency shift of the sensors simultaneously. Te
frequency counter’s resolution, precision, and sampling speed are important factors. Board size, energy consumption, and rapid
deployment are also considered in the design. Tis work shows the development of an independent multichannel frequency
counter using a commercial Xilinx Spartan 6 series XC6SLX9 board module and a microcontroller board. Both modules are
general-purpose modules; therefore, there is no need for a printed circuit board design, resulting in a quick implementation: the
use of FPGA results in a compact size and low energy consumption. Te developed counter is designed based on a reciprocal
counter utilizing the internal logic block of the FPGA.Te FPGA module has a built-in 50MHz TCXO clock and is the reference
clock. Te high-resolution timing of the counter is realized by multiplying the 50MHz clock by 6 to reach 300MHz. Te
multiplication utilizes the PLL modules in the FPGA. Te high precision and accuracy of the counter are achieved by calibrating
the timing clock to a 10MHz rubidium oscillator. Te data communication to the microcontroller is done via the SPI by
implementing the SPI protocol in the FPGA.Te resource is optimized by utilizing PLL and DSP blocks for the counter. Only 5%
registers and 5% LUTs of the FPGA resource are used to build a four-channel frequency counter.Te result shows that the counter
can measure the frequency of incoming signals with a resolution of 0.033Hz at 10MHz with a sampling time of 1 second. Te
system has been tested to monitor the frequency changes of a QCM sensor array.

1. Introduction

As a mass-sensitive sensor, the quartz crystal microbalance
(QCM) works on the principle of frequency shift. Te
sensor’s resonance frequency changes according to the
amount of the absorbing or desorbing molecule on the
sensor surface [1] or by other infuences such as force [2, 3],
friction [4], and others. A frequency counter is used as a data
acquisition system. Te frequency counter is developed
using discrete electronic components [5], the micro-
controller [6], CPLD [7], FPGA [8], or a combination of
them [9]. Tese days, CPLDs or FPGAs are preferred

because they have high-density logic components, are
fexible to confgure, and are small in size, so they do not take
up PCB space and consume a small amount of energy.

For many measurements, the frequency counter’s res-
olution is essential to enable the high sensitivity of the QCM
sensors [10]. Te high-resolution means that small fre-
quency changes can be detected. Tere are many methods
that have been developed to obtain a high-resolution fre-
quency counter by using high-frequency reference clock
[11], FFT [12], TDC [13, 14], and others. However, the
selection of this method needs to be selected by the appli-
cation and capabilities of the device used. Te method
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commonly used is the conventional method [15] or re-
ciprocal [16]. Both methods are very favorable to be applied
in digital circuits.

Te development of QCM sensors as an electronic nose
[14] or electronic tongue [15] requires a multiple-frequency
counter to measure the frequency shift of each sensor.
Sensor arrays require many sensors and nearly simultaneous
sampling [17]. Multiple counter devices can measure the
electronic nose or tongue sensor array. Another method uses
an electronic switch [18] or multiplexer [19]. Multichannel
counters mean more signal paths in the circuit and po-
tentially create new challenges and complexities due to
interference (crosstalk) and logic timing, especially signals in
the MHz order [20]. Tat problem also arises in developing
the multichannel frequency counter using FPGA.

Multichannel measurement on the microcontroller
utilizes the existing timers [6]. However, the channel
number is limited by the available timers. In addition, it only
works with a conventional method using the timers as time
gates. Te timer on the microcontroller works with diferent
frequencies and resolutions as its works serially. Te de-
velopment of FPGA devices has many advantages. Its
processing units can be performed in parallel according to
the basic architecture of the FPGA. Conventional methods
with multiple channels can also be applied to FPGAs [20].
Several studies have shown that this method can achieve
high-resolution [21].

Tis paper presents the development of 4 input channels
frequency counter with a resolution better than 1Hz for
1 second sampling time. Te counter consists of four in-
dependent reciprocal counters that work in parallel. Each
counter works independently with a separate up counter for
the reciprocal timing determination. Signal synchronization
between the timing and measured signals was done locally
on each counter. Te system was developed using available
general purposes FPGA board and microcontroller board
modules in the market.

2. Materials and Methods

Te components used are FPGA Spartan 6 XC6SLX9 and
STM32F103C microcontroller. Te Spartan 6 used is
a general-purpose development board. Te STM32F103C is
a generic microcontroller board. Both are available in the
market, as depicted in Figure 1. Tis board has a minimum
system and a TCXO crystal oscillator with a frequency of
50MHz. Te FPGA is confgured for the reciprocal counter,
and the microcontroller works as a data processing and
communication interface to a personal computer.Te FPGA
is confgured using Xilinx ISE Webpack, and the micro-
controller is programmed using Arduino IDE.

Te block diagram of the system is presented in Figure 2.
In the FPGA board, reciprocal counters and SPI commu-
nication is implemented. Te counted data in the common
counter are sent to the microcontroller via SPI communi-
cation. Te microcontroller receives the data, processes the
digital data, and sends the data in frequency values to the
host computer.

Te reciprocal time counter diagram is shown in Fig-
ure 3. Te reference clock determines the time interval used
in calculating the frequency. Te time intervals are de-
termined using an internally generated 300MHz reference
clock derived from an external 50MHz clock. Te multi-
plication uses a PLL on the Xilinx XC6SLX9 to generate
a 300MHz clock. Te time interval setting is calibrated with
a 10MHz rubidium oscillator.Te calibration aims to set the
counter value on the reference clock counter to determine
the time interval for the time gate signal. Te reference clock
counter is sent from the FPGA to the microcontroller for
frequency calculation.

Te input signal and the reference clock signal are
calculated in the time gate signal intervals. Te sync gate of
each counter signal synchronizes the frequency count. Te
counter starts once the time gate is high and the frst rising
edge of the input channel signal is encountered. Tis input
signal’s frst rising edge event triggers a transition of the sync
gate signal to high. When the sync gate signal is high, the
reference clock counter starts counting the reference signal,
and the input line counter starts counting the input channel
signal. At the end of the enumeration period, the input
channel counter and reference clock counter result values
are sent to the microcontroller via SPI communication. Te
microcontroller calculates the frequency value based on the
counter value received from the input signal and the ref-
erence signal.

Each channel has two counter data, i.e., the reference
clock and the input signal value.Te frequency calculation of

Figure 1: FPGA board and microcontroller board.
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Figure 2: Block diagram of FPGA and MCU.
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the incoming signal from the QCM oscillator is carried out
using the following equation:

finput �
Ninput

Nref
∙fref . (1)

Te finput value is the calculated frequency of the QCM
oscillator. Te Ninput is the signal from the QCM oscillator,
and the Nref is the counted from the reference clock. Te fref
value is the reference signal frequency used in the reciprocal
block, calibrated to 300MHz.

Te system’s hardware is implemented using Xilinx
XC6SLX9 FPGA board, STM32F103 board, and UART to
USB module. Te pin connection among the modules is
presented in Figure 4. Only four digital I/O connections exist
between the FPGA and microcontroller boards. Pins 45, 47,
50, and 56 are selected.Te global clock at Pins 124, 126, 133,
and 134 is connected to the input signal from the QCM
sensor oscillator output. Measurement data are sent via
UART to the CH340 serial USB module.

3. Results and Discussion

3.1. Counter Design. A VHDL code has been developed in
the XILINX ISE Webpack. Te program consists of four
digital blocks and is presented in the ISEWebpack in the top
view in Figure 5. Te blocks are reference clock, time gate,
reciprocal counter, and SPI. Te reference clock multiplies
the 50MHz signal from the external oscillator (TCXO) to
the internal clock of 300MHz and 100MHz.Te PLL circuit
inside the FPGA performs multiplication. Te reciprocal
counter uses the output signal 300MHz, while the Time Gate
module uses the 100MHz to generate a one-second signal.
Te reciprocal counter block (consists of four identical
blocks) counts the upcoming signal within the one-second
time gate. Te counter value of the measured signal and
reference clock is sent to the SPI. Te SPI module com-
municates with the external microcontroller.

Te one-second time gate is only used to generate
a sampling rate of approximately one second for the ac-
quisition. A sampling rate inaccuracy of 10–100 ns from one
second is adequate for typical QCM sensor data acquisition.
Te time gate module is an up counter which counts the
incoming signal from the generated clock of 100MHz. Te

VHDL code for the time gate is presented in Figure 6. Te
RTL schematic generated by the XILINX ISE Webpack of
the time gate is shown in Figure 7. Te counter starts from
zero up to a number around 100000000 to reach one second.
Te exact number of the counter is determined by cali-
brating it to the 10MHz Rubidium oscillator. Te timing
diagram of the time gate module is presented in Figure 8.

Te RTL schematic diagram of the reciprocal counter is
presented in Figure 9. Te main element of the reciprocal
counter is an up counter for the incoming signal (CH_CLK)
and an up counter for the reference clock (300MHz)
(REF_CLK). Every reciprocal counter consists of two up
counters; each up counter uses the 32 bits DSP48 in the
FPGA. A synchronizing gate is added in the diagram to
control both counters. Te timing diagram of the reciprocal
counters is presented in Figure 10. Te counter starts when
the time gate signal is high and the sync gate signal is rising.
Te counting ends when the Sync Gate is falling and the time
gate signal is high. Te counting values are sent to the
microcontroller via the SPI module block.

Te four reciprocal counter blocks work using a single
reference clock. It ensures the system has identical imple-
mentation results for each channel and works in parallel.
Tis design is implemented on Spartan using Xilinx ISE.
VHDL design is synthesized with balanced optimization.
Te foor plan of the system is presented in Figure 11. It can
be seen that the whole system only occupies one-fourth of
the available block. Te reciprocal counter is placed in the
two clock region, i.e., X0Y1 for counter channels 3 and 4 and
X0Y2 for channels 1 and 2.

Te used resources of the FPGA are presented in Table 1.
Te registers and LUTs (Look Up Table) occupy only 3% and
5% of the FPGA capacity, respectively. Te Spartan
XC6SLX9 has 16 DAP48 slices; eight are used in this
implementation. Te PLL resources are used 50% of the
FPGA capacity. It means there is still much room to add
other functionality or counter.

3.2. Counter Testing. Te counter was tested using
a VCOCXO and QCM sensor made of a 10MHz Quartz
Crystal resonator. Each source was split into four channels,
i.e., Channel 1, Channel 2, Channel 3, and Channel 4 of the
counter. Te VCOCXO oscillator is the 10MHz OX200-SC
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Figure 3: Reciprocal time counter diagram.
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(Connor Winfeld) with a center frequency of 10MHz, an
accuracy of 25 ppb, and a frequency to the temperature
stability of 1.5 ppb. Te recorded data are presented in
Figure 12. Te graphic image shows a resolution of the
frequency measurement of 0.033Hz, as expected.

For each channel, the average frequency of VCOCXO is
10000000.12Hz, and the recorded frequency varies from
10000000.07Hz to 10000000.20. Tere is no signifcant
frequency diference among the frequency counter. Te
maximum diference among the four channels is 0.033Hz;

i.e., the frequency resolution difers from one clock reference
signal of 300MHz. Te diference is due to the rounding
error of the reciprocal method and the signal propagation
delay from each counter which works independently
without clock synchronization among four counters. Tis
result is better than the other approach [22].

Figure 12 shows the occurrence of the measured fre-
quency of the incoming signal. Te frequency of each
channel is presented in a diferent color, i.e., black, red,
green, and blue, with the blue color (Channel 4) presented in
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the top layer of the graphic. A diferent counted frequency
among the counters is shown with a black, red, or green dot
color. From the 1800 recorded dataset, 74.2% of the recorded
frequency shows the exact frequency among the four
channels. Te diference between the one channel compared
to the other is only 0.033Hz due to the rounding error of the
reciprocal counter. It means that the four channels work
very well. Ideally, the four channels should show the same
counted frequency. Te diference may occur from the time
delay diference between the counter to the reference clock
source and the incoming signal. One clock signal diference
occurs when the propagation delay in the fip-fop of the
counter is more prolonged than 2 ns. Te diference is the
consequence of the design; as we mentioned before, each
counter was designed to work independently without syn-
chronization in the counter time gate.

Figure 13 shows the measured frequency of the incoming
signal from a silver electrode 10MHz QCM sensor made of
AT Cut Quartz resonator with a frequency tolerance and
stability of 30 ppm. Te measured frequency changed from
9995317.37 to 9995321.33Hz with the measured frequency’s
resolution of 0.033Hz. Te most signifcant diference
among the four channels is 0.13Hz. From the 1800measured
signal, 61.2% shows the same frequency for the four
channels.

Allan variance test has been done to investigate the
potential noise of the counter. Figure 14 presents the Allan
deviation of the recorded signal from the VCOCXO and
QCM resonator. Te datasheet of the oscillator states
a temperature stability of 1.5 ppb. Figure 14 shows a maxi-
mum deviation of 0.05 for the VCOCXO, which equals fve
ppb relative to the 10MHz center frequency.Te deviation is

entity fi_timegate_var is

port (

RST : in std_logic;

ENA : in std_logic;

CLK : in std_logic;

TIME_GATE_TOP : in slv_32t;

TIME_GATE_SIGNAL : out std_logic

);

end fi_timegate_var;

architecture Behavioral of timegate_block is

signal sim_r_TIME_GATE_counter_i : slv_32t := slv_zero;

begin

process (CLK, ENA, RST)

variable r_TIME_GATE_counter_i : slv_32t:=slv_zero

begin

if RST = '0' then

r_TIME_GATE_counter_i <= (others => '0');

TIME_GATE_SIGNAL <= '0';

elsif rising_edge (CLK) then

r_TIME_GATE_counter_i := r_TIME_GATE_counter_i + 1;

if r_TIME_GATE_counter_i < (TIME_GATE_TOP-1) then

TIME_GATE_SIGNAL <= '1';

else

TIME_GATE_SIGNAL <= '0';

r_TIME_GATE_counter_i <= (others => '0');

end if;

end if;

end process;

end Behavioral;

Figure 6: Time gate VHDL code.
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slightly higher than the described temperature stability in the
datasheet.

Te deviation of the QCM signal increases with time
intervals and reaches the constant deviation at around 1.Te
maximum deviation of the QCM sensor is 1.7, as depicted in
Figure 14. Interestingly, the crystal resonator with tolerance
and temperature stability of 30 ppm has a maximum de-
viation of only 1.7, equivalent to 0.17 ppm deviation. Te
VCOCXO and quart crystal resonator Allan variance test
showed that the developed frequency counters work
very well.

Te developed frequency counter was tested to measure
the frequency change of the QCM sensor with diferent
coatings in contact with gases. A sample of the measurement

result is presented in Figure 15. Te QCM sensor in channel
1 is QCM without coating. It means the sensitive layer is the
silver electrode itself. Sensors from Channel 2 to Channel 4
are sensors with polystyrene. Te coating thickness of the
sensor is 0.092 μm, 0.2 μm, and 1.25 μm for Channel 2,
Channel 3, and Channel 4, respectively. Te target gas is
chloroform at 15 ppm concentration. One can see that the
system can measure the frequency and hence the frequency
change of the QCM sensor with a diferent coating to a target
gas. Te sensitivity of the frequency measurement can be
seen in Figure 15 (see inset). Te frequency change reso-
lution is 0.03Hz. Tere is no jitter observed in Figure 15.
Each counter works independently without any signal
crosstalk among the frequency counter.

Time Gate

1 2 99.999.998 99.999.999 00 2

Reference Clock

Time Gate Counter

Time Gate Signal

1

100.000.000 Count = 1 Second Gate

Figure 8: Te timing diagram of the time gate module.

Figure 9: Reciprocal counter block diagram.

Figure 7: Block diagram of the time gate module.
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Table 1: Summary of slice logic utilization.

Slice logic utilization Used Available Utilization (%)
Number of slice registers 630 11,440 5
Number of slice LUTs 336 5,720 5
Number of BUFGs 9 16 56
Number of DSP48A1s 8 16 50
Number of PLL_ADVs 1 2 50
Number of bonded IOBs 11 102 10
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Figure 13: Te frequency measurement result of the 10MHz QCM oscillator.
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4. Conclusion

A four-channel independent reciprocal frequency counter
was successfully developed using a generic board of FPGA
andmicrocontroller modules.Te precision of the counter is
0.03Hz. Te four-channel frequency counter work paral-
leled independently. Te maximum frequency diference
among the four channels is only 0.033Hz for the VCOCXO
signal source and 0.13H for the signal source from the
quartz resonator.Te four reciprocal counters consume only
5% of registers and 5% LUTs, and 50% of PLL FPGA re-
sources. Te reciprocal counter utilizes the PLL module to
generate a 300MHz reference clock from 50MHz TCXO.
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