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In the process of steel production, the defects on the surface of steel will adversely afect the subsequent processing of a product.
Accurate detection of such defects is the key to improve production efciency and economic benefts. In this paper, an end-to-end
steel surface defect detection and size measurement system based on the YOLOv5 model is designed. Firstly, in consideration of
the defect location and direction correlation in the production process, a coordinate attention mechanism is added at the head of
YOLOv5 to strengthen the spatial correlation of the steel surface and an adaptive anchor box generation method based on defect
shape diference feature is proposed, which realizes the detection of three main types of defects on the Pytorch deep learning
framework. Secondly, BiFPN is used to strengthen the feature fusion and a transformer encoder is added to improve the
performance of detecting small defects. Tirdly, calculate the conversion ratio between the pixel and the actual size according to
the standard reference specimen and obtain the actual size through the pixel statistics of the defect area to achieve pixel level size
measurement. Finally, the steel surface defect detection and size measurement system are designed in this paper, which consist of
various hardware, related measurement, and detection algorithms. According to the experimental results, the comprehensive
defect detection accuracy of this method reaches 93.6%, of which the scratch detection accuracy reaches 95.7%. Te detection
speed reaches 133 fps and the defect size measurement accuracy reaches 0.5mm. Experimental result shows that the defect
detection and size measurement system designed in this paper can accurately detect and measure various industrial production
defects and can be applied to the actual production process.

1. Introduction

Surface defects detection is one of the most important factors
afecting the quality of steel products. Some defects on the steel
surface will not only afect the subsequent production, but also
afect the corrosion resistance and wear resistance of the fnal
product. Terefore, how to accurately detect steel surface
defects has become an important topic in the feld of steel
production. In recent years, machine vision-based detection
methods are known for their advantages of noncontact and fast
response. Te detection method is very important for the
detection system, which not only determines the accuracy and
real-time performance of defect identifcation and classifca-
tion, but also guarantees the subsequent tasks, such as defect
location and defect size measurement.

Te defect detection based on machine vision is a non-
contact detection; without manual intervention, just select the
appropriate camera and light source to collect the product
surface image and then use the relevant defect detection al-
gorithm to identify and classify defects. Tis method has high
detection efciency and can greatly improve the level of
manufacturing industry. Te defect detection based on ma-
chine vision can be divided into traditional methods and deep
learning methods. Te defect detection method based on
traditional machine learning is mainly based on texture, color,
and shape features. Deng et al. [1] proposed an improved
RAPID (reconstruction algorithm for probabilistic inspection
of defect) imaging method for detecting defects in composite
plates using machine learning-based feature identifcation. Wu
et al. [2] established a rail defect detection model based on the
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color and shape features obtained from the ultrasonic scanning
of the train track and the characteristics of the rail defect area
distribution and converted the detection problem to the
contour classifcation problem and improved the detection
performance of the three kinds of defects. Liu et al. [3] used an
improved local binary mode algorithm to extract the texture
features of steel plates on the production line to achieve real-
time defect detection under high temperature environment.
Czimmermann et al. [4] by optimizing Gabor flters and using
machine learning methods based on statistics and structure for
texture defect detection can not only detect steel surface defects,
but also overcome the problem that deep learning requires a lot
of computing resources. Sun et al. [5] used the MBSmethod to
extract the features of the weld defect and the classifcation
algorithm based on theGaussianmixturemodel, which can not
only efectively identify the weld defects, but also accurately
distinguish the weld defects types. Te abovementioned tra-
ditional defect detection methods need to manually determine
the features. For complex scenes, the manually extracted fea-
tures cannot fully express the feature information, which has
certain limitations.

In recent years, due to the signifcant improvement of
computer computing power, defect detection using deep
learning is more accurate and efcient than traditional
methods. Park et al. [6], based on the YOLOv3 tiny model,
detected the cracks on the surface of concrete buildings and
calculated the size of cracks with laser beam and distance
sensor, achieving real-time efects. Zhao et al. [7] proposed
a dual channel faster R-CNN [8], which divides defect lo-
cation and recognition into two network branches and
combines the idea of superresolution enhancement to detect
defects in key parts of the railway. Wu et al. [9] proposed an
end-to-end learning method for industrial defect detection,
achieving high accuracy and reducing the dependence on
image resolution. Guan et al. [10] proposed a defect de-
tection method for specular surfaces using a combination of
defectometry and deep learning techniques, which solved
the shortcoming that specular refection leads to unclear
features. Kou et al. [11] developed an end-to-end defect
detection model based on YOLOv3. Te proposed model
selected the ideal feature scale by removing the anchor frame
and enhanced the network’s characterization capability with
dense convolutional blocks. He et al. [12] proposed a con-
volutional neural network incorporating VGG16 [13] to
improve the classifcation performance and input the clas-
sifcation results into YOLO to obtain better detection ef-
fciency. Ihor et al. [14] put forward a recognition classifer
for scratch and wear on metal surfaces based on ResNet50
and ResNet152 deep residual neural network architecture
[15], which improved the accuracy of steel surface defect
detection. Sharma et al. [16] combined with the Unet [17]
semantic segmentation model to detect scratches on the steel
surface and achieved good accuracy. Xie et al. [18] reduced
the YOLO model by combining deep separable convolution
and established a new prediction bounding box loss function
to accelerate the convergence of the model. Zhang et al. [19]
improved the PP-YOLOE-m strip surface defect identif-
cation network by using the anchor-free method without
considering the optimization of the anchor box, reducing the

superparameters, and improving the accuracy of strip sur-
face defect detection. Guan et al. [20] evaluated the quality of
feature image through decision tree and adjusted the pa-
rameters and structure of VGG19 to obtain a new target
detection network, which signifcantly improved the de-
tection accuracy of steel surface defects. Yeung and Lam [21]
proposed a fused-attention network combined with adap-
tively balanced feature fusion algorithm for steel surface
defect detection, which improved the accuracy and speed of
steel surface defect detection. Liu et al. [22] designed the
periodic rolling mark defect generator, proposed the
CNN+LSTM [23] detection algorithm, and improved the
detection method based on the attention mechanism algo-
rithm, thus improving the rolling mark defect recognition
ability. Damacharla et al. [24] proposed a U-net framework
based on transfer learning to detect steel surface defects,
which demonstrated that the convergence speed of transfer
learning is better than random initialization, but for rare
defect types and complex shape defects, the performance of
transfer learning is poor. Yang et al. [25] proposed an FDIA
detection method based on secure federated deep learning,
using transformers to study the relationship between indi-
vidual electricity quantities and using a joint learning
framework to collaboratively train the detection model.
While improving detection efciency, it also protects data
privacy and reduces communication overhead. While deep
learning-based defect detection methods have been exten-
sively studied, the challenge of poor detection and classif-
cation performance resulting from variations in the shape of
steel surface defects remains unresolved. In this paper, we
address this issue through related research eforts.

Te steel surface defect detection and size measurement
system based on machine vision proposed in this paper
realizes defect detection through the improved YOLOv5
deep learning model and completes the real size measure-
ment of defects through the Canny edge detection algorithm
and pixel size converted by CCD camera internal parame-
ters. Tis paper combines the self-built dataset and
NEU-DET open source dataset, by adding coordinate at-
tention [26] mechanism and improving the clustering
method of the YOLOv5 adaptive anchor frame, it realizes
accurate detection of scratches, inclusion, patches, and other
types of defects and can measure the defect size of actual
objects. Its detection accuracy and measurement accuracy
meet the requirements of practical engineering application
scenarios.

2. Related Works

2.1. Object Detection. YOLOv5 is an object detection model
based on deep learning. Te model can achieve high rea-
soning speed under the premise of ensuring certain accu-
racy. Terefore, the YOLOv5 model is selected for the test.

2.1.1. YOLOv5 Model. YOLOv5 essentially realizes a deep
convolutional network with regression function. As the
initial step in the deep convolutional network, image feature
information is extracted. In contrast to two-stage detection
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algorithms that generate candidate boxes and then extract
features, the YOLOv5 algorithm conducts end-to-end
training and reasoning for all regions of the entire image,
resulting in faster processing speeds and superior
foreground-background distinction. In addition, the model
fuses features of diferent scales, which makes this algorithm
more conducive to identifying small targets and suitable for
defect detection. Te second step of objects detection is to
classify the extracted features. Te model divides the whole
picture into multiple regions. If the center of the object to be
detected falls in this region, the classifcation model is used
to classify this region.

For each network, there is a bounding box. Each pre-
diction will generate four parameters to determine the co-
ordinates of the bounding box, namely, the coordinates x
and y of the upper left corner, the width and the height.
Confdence will also be generated according to the logistic

regression. Confdence will be used to judge whether the
bounding box contains targets. If the confdence degree is
high, which means the bounding box contains targets, the
next step of target classifcation will be performed. YOLOv5
network structure is shown in Figure 1. And the steel surface
detect model proposed in this paper is shown in Figure 2.

2.1.2. Loss Function and Generation of Adaptive Anchor Box.
Loss function is an important part of deep learning. In the
process of iterative learning, deep learning is to continuously
reduce the value of loss function.

Te loss function of the YOLOv5 model consists of three
parts, namely, the position ofset loss, confdence loss, and
classifcation loss of the bounding box. Te loss function is
shown in the following equation:
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where K, S2, and B are the output feature map, bounding
box, and the number of anchors on each bounding box,
respectively. αbox is the weight of the loss of the bounding
box, αcls is the weight of the loss of the classifcation, and αobj
is the weight of the loss of the confdence. 

obj
kij indicates

whether the k-th output feature map, the i-th prediction box,
and the j-th anchor box is positive samples. If it is the
positive sample, 

obj
kij equals to 1, and if not, it is 0; tp is the

prediction vector and tgt is the ground truth vector. αbalancek is
used to balance the weight of the output feature map of each
scale. Te default value is (4.0, 1.0, and 0.4), corresponding
to the output feature map of 80× 80, 40× 40, 20× 20 suc-
cessively.Te learning process of YOLOv5 is to continuously
reduce the loss function, that is, the predicted value and the
real value are getting closer and closer, so as to achieve better
detection accuracy.

Te series of YOLO algorithms will generate a series of
anchor boxes with fxed positions before training data.Tese
anchor boxes can be regarded as candidate regions where the
target is located. Selecting an appropriate anchor box will
make it easier for the network model to obtain a good
detector. For the steel surface defect detection in this paper,
the shapes of diferent kinds of defects on the steel surface
vary greatly. For example, the shapes of scratches and in-
clusion are long strips, with large diferences in length and
width, while the patches are almost elliptical. Also, even the
same kind of defects will have large diferences in shape. If
the preset anchor box of the YOLOv5 model is directly used,
the iteration speed will be very slow and the accuracy of the
detector will not be high. Te anchor box in YOLOv5 is
obtained by the K-means clustering algorithm, which is
a very classical and efective clustering algorithm. By cal-
culating the distance (similarity) between samples, the closer
samples are clustered into the same category (cluster). When

using K-means, we mainly focus on two issues: (1) the se-
lection of cluster centers that also means dividing samples
into several categories, which need to be selected according
to the application scenario. (2) How to express the distance
between samples? Tis problem also needs to be designed
according to specifc scenarios. Diferent evaluation stan-
dards have diferent clustering efects.

In order to detect the defects on the steel surface, frst of
all, we use the K-means++ algorithm to replace the original
K-means algorithm in the selection of the cluster center. Te
K-means algorithm will randomly select the center when
initializing the cluster center. If the randomly selected initial
center is very poor, the iterative speed of the algorithm will
be very slow, and even the wrong clustering will occur. Te
K-means++ algorithm will select the cluster center in the
sample when initializing the cluster center, and the selected
cluster centers will be as far as possible, which will eliminate
the randomness of the K-means algorithm. For the selection
of the anchor box for steel defect detection, when clustering
algorithm is applied, the sample parameters are the length
and width of the anchor frame. Terefore, the anchor box
obtained by directly using the Euclidean distance as the
clustering evaluation standard is not very good for steel
surface defects with large diferences in shape. In this paper,
the IOU (Intersection over Union) of the anchor box and the
bounding box is selected as the evaluation standard. A
higher IOU indicates that the anchor frame is closer to the
corresponding bounding box, making it more suitable for
detecting the shape of steel surface defects.

2.1.3. Model Training Steps. Te YOLOv5 model detection
process mainly includes the following steps: frstly, load the
relevant datasets according to the confguration fle;
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secondly, preprocess the dataset to meet the input re-
quirements of the YOLOv5 model; thirdly, input the pro-
cessed data into the YOLOv5 model, the model starts
iterative training and updates the parameter values; fnally,
when the training times of the model reach the set number,
the network output the fnal model and the training end, as
shown in Figure 3.

2.2.CoordinateAttentionMechanism. Attentionmechanism
is often used to tell the model which content and which
position to pay more attention to, which has been widely
used in deep neural networks to enhance the performance of
the model. However, in a lightweight network whose model
capacity is strictly limited, most of the computing resources
required by the attention mechanism are unafordable for
the lightweight network. Considering the limited computing
power of the lightweight network, the SE (Squeeze-and-
Excitation) [27] attention mechanism was proposed to

calculate channel attention through 2D global pooling,
which provides signifcant performance improvement under
the condition of low computing cost, but the SE attention
mechanism only considers the encoding of information
between channels and ignores the importance of location
information. Terefore, it is very important to capture the
location information of steel surface defects. Te coordinate
attention mechanism is specifcally designed for lightweight
networks. It incorporates location information into channel
attention to enhance performance. Te coordinate attention
mechanism uses two one-dimensional global pooling op-
erations to aggregate the vertical and horizontal input fea-
tures into two independent directional awareness feature
maps. Ten, the two feature maps embedded with specifc
direction information are coded into two attention maps,
each of which captures the long-range dependence of the
input feature map along a spatial direction. Terefore, the
location information is saved in the generated attention
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Figure 1: YOLOv5 network structure.

Focus

608*608*3

CBL

304*304

152*152

CSP1_
1

CBL 76*76

CSP1_
3 CBL

38*38

CSP1_
3

CBL

SPP

CSP2_
1

CBL

19*19

Up
sampling

Co
nc

at

CSP2_
1CBL Up

sampling BiFPN
Concat

CSP2_
1 conv

CBL

BiFPN
Concat

CSP2_
1 conv

CBL
BiFPN
Concat

CSP2_
1 conv

conv

Trans

Trans

Trans

TransCSP2_
1

BiFPN
ConcatCBL

CSP2_
1

CBL

TPH

BiFPN

CA

Figure 2: Structure of the steel surface detect model.
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map, and the two attention maps are then multiplied by the
input feature map to enhance the representation ability of
the feature map. Te network structure of the coordinate
attention mechanism is shown in Figure 4.

In a highly automated steel production line, the ran-
domness of defect causes is very small and themain causes of
similar defects are determined. Terefore, for steel surface
defects, especially the same type of defects, their distribution
is related and the distribution position and direction of
defects are similar. A coordinate attention mechanism is
added to the head of YOLOv5, which makes the network
model paymore attention to the spatial correlation of defects
when extracting features, so as to achieve faster convergence
and better detection performance of the network model.

2.3. Feature Fusion. When detecting steel surface defects, it
is easy to make mistakes in classifcation. Te main reason
for this is that steel surface defects have great diferences in
appearance. Tere are many diferences between the same
kinds of defects and there are also similarities between
diferent kinds of defects. In addition, due to the change of
light and material, the gray level of the faw image will also
change. All these pose a great challenge to the detection of
steel surface defects. In order to deal with such problems, it is
particularly important to strengthen the feature extraction
of faws.

YOLOv5’s feature fusion adopts the feature pyramid
network (FPN) + path aggregation network (PANet) [27, 28]
scheme. Te structure of the FPN and PANet is shown in
Figures 5(a) and 5(b). Te FPN uses the idea of image
pyramid to obtain robust semantic information from top to
bottom, while the PANet structure is to convey location
features from bottom to top. When fusing features, most of
the input features with diferent resolutions are added
without distinction, but in fact, the contribution of these
diferent input features to the fused output features is often
unequal. In order to solve this problem, this paper uses the
bidirectional weighted feature pyramid network (BiFPN)
[29] for feature fusion. Te structure of the BiFPN is shown
in Figure 5(c). Te BiFPN introduces learnable weights to
learn the importance of diferent input features and re-
peatedly applies top-down and bottom-up multiscale feature
fusion. Traditional feature fusion usually only overlays
feature maps without distinguishing between feature maps
added simultaneously. However, diferent feature maps have
diferent resolutions, and their contributions to feature
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fusion are not equal. Terefore, simply adding feature maps
is clearly not appropriate. Terefore, the BiFPN weights the
features before fusion, and the fusion calculation method is
shown in equation (2). Compared with the FPN, NAS-FPN,
and other feature fusion networks, the PANet achieves better
accuracy, but requires more parameters and calculations. As
can be seen from the fgure, the BiFPN removes nodes with
only one input side to simplify the two-way network, and
unlike the PANet, which has only one top-down and one
bottom-up path, the BiFPN regards each pair of two-way
paths as the same feature network layer and can repeat the
same layer, which enables the BiFPN to achieve more ad-
vanced feature fusion.

Output � 
i

ωi × Ii

ε + jωj

. (2)

2.4. Transformer Prediction Head. Te varying sizes of de-
fects on steel surfaces can lead to detection errors, partic-
ularly with smaller defects. When there are gaps in the size of
defects, it can decrease the accuracy of detecting small
targets. YOLO series algorithms do not carry out regional
sampling, so they have good performance in global in-
formation but low accuracy in small target detection.
According to the characteristics of size diference, this paper
adds an additional detection layer at the head of the de-
tection network, corresponding to the detection of small
resolution targets, and uses the network prediction head
based on the transformer encoder [30] to improve the de-
tection accuracy of the network model for small size defects.

Te structure of the transformer encoder is shown in
Figure 6. Compared with the neck module of the original
YOLOv5, the transformer encoder can not only capture full
text information, but also obtain rich context information.
Each transformer encoder contains two sublayers. Te frst
sublayer is the multihead concern layer and the second
sublayer is the fully connected layer. Tere are residual
connections between each sublayer. Te transformer en-
coder can not only improves the ability to capture diferent

local information, but also enhances the prediction ability of
the target detection network. In this paper, transformer
encoder blocks are used in the head of the YOLOv5 to form
the transformer prediction head (TPH) because the feature
map at the end of the network have low resolution, and the
application of TPH on the low resolution feature map can
reduce the computing cost and improve the storage
efciency.

2.5. Defect Size Measurement. Te steel surface defect de-
tection system designed in this paper includes a defect size
measurement method. To accurately measure the size of
a defect, its edges must frst be detected. Edge detection in an
image is critical for object segmentation and positioning
within the image. Edge detection greatly reduces the amount
of data in the source image, eliminates the information
irrelevant to the object, and retains the important structural
attributes of the image. In order to extract more complete
edges, we used the Canny detection algorithm. Te Canny
detection algorithm uses Sobel operator twice and uses two
diferent thresholds to detect strong edges and weak edges,
respectively. Compared with the Sobel algorithm, the Canny
detection algorithm is slower, but it can identify edges with
diferent characteristics. Te result of the Canny detection
algorithm is shown in Figure 7.

According to the picture, it can be found that the Canny
operator can extract the defect contour more clearly, the
information expression is simple, clear, and the interference
is less.

Due to the reason that the shape of the defect is irregular,
we take the size of the small external rectangle of the defect as
the size of the defect itself. After the complete edge of the
defect is extracted, the minimum external rectangle of the
defect can be obtained. In this paper, a standardized ref-
erence is placed on the detect tray of the detection system.
Te reference is the given 10 ∗ 10mm square mold with an
accuracy of 0.05mm, as shown in Figure 8. Subsequently, the
actual size of each pixel in the image is determined by
measuring the size of a reference object within the image.

(a) (b) (c)

Figure 5: Structure of three feature fusion networks: (a) FPN, (b) PANet, and (c) BiFPN.
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Finally, the number of pixels occupied by the minimum
bounding rectangle of the defect is calculated, and the actual
size of the detected defect is obtained through the conversion
ratio between the actual size and the pixel size.

2.6. Steel Surface Defect Detection System. Te surface defect
detection system based on machine vision proposed in this
paper is to detect three main defects on the steel surface and
measure the defect size. Te whole process is shown in
Figure 9.

Te hardware of the steel surface defect detection system
designed in this paper is shown in Figure 10.

On the left is the acquisition module. In order to avoid
the interference of external ambient light on the detection of
steel surface defects, the acquisition module is carried out in
a light-shielded internal environment. Te acquisition
module includes a CCD camera, a light source, and the steel
being tested. Te upper computer of the detection system

LayerNorm

Multi-Head
Attention

Dropout

LayerNorm

MLP

Dropout

Embedded
Patches

Figure 6: Structure of transformer encoder.

Figure 7: Canny edge detection result.
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can control the detection process and view the detected
defect results. Te tested steel can be moved out of the
detection area through the conveyor belt. Te quality of the
image has a signifcant impact on the efect of image de-
tection, so we made a detailed analysis and comparison of
the hardware cameras and light sources involved in the
image acquisition module and fnally determined the
equipment model used in this system.

3. Experimental Results and Analysis

Te hardware confguration used in the experiment is
Ubuntu 18.04 operating system, Intel (R) Core (TM) I9-
9900K processor, NVIDIA RTX3090 independent graphics
card. Te development framework of deep learning is
Pytorch 1.13.

3.1. Experimental Dataset. In order to verify the practica-
bility of defect detection and defect size measurement
proposed in this paper, NEU-DET dataset is used for ex-
periments. NEU-DET surface defect detection dataset re-
leased by the Northeast University contains gray images of
surface defects of hot rolled steel strips, including three main
surface defects of hot rolled steel strips, namely, patches
(PA), inclusion (IN), and scratches (SC). Te NEU-DET
dataset is shown in Figure 11. Each defect has 300 pictures
with a resolution of 200 ∗ 200. Tere are totally 900 images
of three defects in the NEU-DET dataset. For defect de-
tection tasks, the dataset provides labels, marking the defect
category and location in each image. However, the defects in
each image are not only composed of a single defect in the
sample images. Also, there are similarities between diferent
defects, which bring challenges to the inspection task.

Figure 8: Size measurement reference and diferent defects.

Initialize Image
acquisition

Image
preprocessing

Surface
defect

detection

Defect size
measurement

Figure 9: Defect detection process.

The upper
computer

Conveyor belt

LED ring
light source

Detect area

CCD camera

Figure 10: Hardware of the steel surface defect detection system.
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Patches Inclusion Scratches

Figure 11: NEU-DET dataset.

Journal of Electrical and Computer Engineering 9



In this paper, three types of defects in the NEU-DET
dataset are selected for testing. In order to obtain better
generalization ability, this paper also makes a self-made

dataset combining with the NEU-DETdataset to train the
model. Te steel surface defect dataset made in this paper
was photographed with the selected MV-EM200 C

Patches Inclusion Scratches

Figure 12: Te self-made dataset.
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camera. We take pictures by adjusting the size and clarity
of the window, the focal length of the lens, the angle, and
brightness of the subject to an appropriate position.
Trough the abovementioned steps, the image of the
workpiece can be collected by the CCD camera and LED
ring light source. For 210 pictures collected in this paper,
in order to solve the problem of overftting caused by
small amount of picture data, we conduct data aug-
mentation processing on the images. To increase the
quantity of available data, we applied image fipping,
random clipping, and RGB channel exchange methods.
Tis process expanded the amount of defect picture data

to ten times the original size for our experiment. Te
experiment proved that it played a good role in the
follow-up model training and result testing, especially
the generalization ability of the model was improved.
Trough the abovementioned data augmentation tech-
nology, we expanded the dataset to 2100 samples. More
samples are conducive to improving the generalization
ability of the model. We made the dataset on the basis of
2100 pictures. Te self-made dataset used for training is
shown in Figure 12. Te original image has no location
coordinate of the area where the defect is located, which
needs to be manually marked. Use Labelmg software to
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Figure 13: Loss function curve: (a) Box_loss, (b) Cls_loss, and (c) Obj_loss.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 100 150 200 250 300 350 400 450 500 550 60050

Figure 14: mAP_0.5 curve.

Table 1: mAP_0.5 data comparison.

mAP_0.5 (ALL) (%) mAP_0.5 (IN) (%) mAP_0.5 (PA) (%) mAP_0.5 (CR) (%)
YOLOv5 90.4 90.2 86.9 94
YOLOv5 +TPH 90.8 90.6 87.1 93.7
YOLOv5 +BiFPN 91.2 89.8 88.4 94.1
Ours 93.6 93.3 91.8 95.7

Table 2: mAP_0.5 comparison of attention mechanisms.

mAP_0.5 (ALL) (%) mAP_0.5 (IN) (%) mAP_0.5 (PA) (%) mAP_0.5 (CR) (%)
YOLOv5 +CBAM 89.3 88.4 85.9 93.6
YOLOv5 + SE 90.5 89.6 88.1 93.9
YOLOv5 +CA (ours) 93.6 93.3 91.8 95.7
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mark the defects on the picture, that is, mark the location
coordinates of the defects and the types of defects. After
marking, divide all 3000 defect pictures in the self-made

dataset and NEU-DET dataset into training set and test
set in a 4 : 1 ratio. Tere are 2400 pictures in the training
set and 600 pictures in the test set.

Inclusion Patches Scratches

Figure 15: Defect detection.
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3.2. Model Training and Analysis. We build an improved
YOLOv5 model through the deep learning framework. First,
we conduct pretraining on the COCO dataset and then use
the pretraining results to train the defect image dataset. Te
image size of the model input is 416 ∗ 416. During training,
the batch size was set to 32, and 500 epochs were learned in
total. Te training loss function is shown in Figure 13. In the

fgure, the upper is the loss of the bounding box, the middle
is the classifcation loss, and the lower is the confdence loss.

Te fgure illustrates that the value of the loss function
gradually decreases and approaches convergence with an
increasing number of iterations. Notably, the classifcation
loss reaches convergence the fastest, followed by boundary
box loss, while confdence loss convergence is the slowest.

Figure 16: Defect size detection.
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Tis may be due to the large diference between the same
kinds of defects.

AP (average accuracy) is the average of accuracy rates
under diferent recall rates, which is usually used to evaluate
the accuracy of the model. mAP (mean average accuracy) is
the average detection accuracy of all target categories. It is
usually used to evaluate the overall performance of the
model. It is a commonly used comprehensive indicator in
the feld of object detection. It measures the overall detection
accuracy of the detection frame under diferent IOUs. Te
larger the value, the higher the model accuracy. mAP is
calculated using precision and recall. Te calculation for-
mula of mAP is shown in equations (3)–(6):

Precision �
TP

TP + FP
, (3)

recall �
TP

TP + FN
, (4)

AP � 
1

0
precision(recall)d(recall), (5)

mAP �


n
i�0AP(i)

n
. (6)

Among these, true positive (TP)examples are positive
examples that are correctly predicted, false positive (FP)
examples are negative examples that are wrongly predicted
as positive examples, and false negative (FN) examples are
positive examples that are wrongly predicted to be negative
examples, where n is the number of detection categories and
AP is the detection accuracy of various types, where AP can
be expressed as the area of the curve made with recall as the
horizontal axis and precision as the vertical axis, that is, the
area of the PR curve is calculated using the integral formula.

As can be seen from Figure 14, the mAP_0.5 value in-
creased with the increase of training times and the average
accuracy achieved 93.6%. In order to verify the performance
of this paper, this paper also conducted a comparative ex-
periment with YOLOv5, and the results are shown in Table 1.
Compared with the original YOLOv5 model, the overall
accuracy of this paper is improved by 3%, among which the
accuracy of scratches is improved by 5%, with the most
obvious efect.

3.3. Comparison of Average Precision with Diferent Methods.
Tis section shows the comparison among three kinds of
attention mechanism.Tey are Squeeze-and-Excitation (SE)
network, convolutional block attention module (CBAM),
and coordinate attention (CA). According to Table 2, it is
obvious that the steel surface defect detection method
proposed in this paper is better than the SE and the CBAM.
Te fgure shows that the overall mAP and each mAP of the
defects of the proposed model are better than the others by
a 5% diference.

3.4. Defect Detection. In this paper, the trained YOLOv5
model is deployed to the experimental platform. Te de-
tection results of inclusions, scratches, and patches are
shown in Figure 15.

Te fgure reveals that the model has successfully de-
tected all three types of defects and labeled their respective
locations with rectangular boxes, indicating promising re-
sults. Tese outcomes demonstrate that the model can ac-
curately distinguish and identify various defects, even if they
appear simultaneously on the same steel surface. Te de-
tection accuracy of three kinds of defects is more than 90%,
and the detection accuracy of individual defects may be low.
Trough a large number of experiments, we found that the
low accuracy of individual defects may be attributed to the
undersizing of the defects.

It can be seen from the fgure that we can calculate the
actual size of the defect through the external rectangle and
scale conversion of the defect.

3.5.Defect SizeMeasurement. Because the NEU-DETdataset
does not provide data of steel, camera, and other experi-
mental conditions, the defect size measurement experiments
proposed in this paper are all conducted in the self-made
dataset. In order to extract complete defects, the Canny edge
detection algorithm is frst used to obtain the boundary of
defects, then the minimum circumscribed rectangle function
box in openCV image processing library is called to select
the location of defects, and then the actual size of defects is
calculated by using the conversion between the actual size
and pixel size to determine the proportion. Te detection
efect is shown in Figure 16.

It can be seen from the fgure that we can calculate the
actual size of the defect through the external rectangle and
scale conversion of the defect.

4. Conclusion

Tis paper designs and deploys a surface defect detection
and defect size measurement system based on the YOLOv5
model. On the one hand, in order to prove the performance
of the steel surface defect detection algorithm proposed in
this paper, we have verifed it through the NEU-DETdataset
and self-made dataset and obtained the following conclu-
sions: (1) a method of feature fusion is applied, instead of the
original FPN+PANet frame. Due to the large diference in
shape of steel surface defects, this paper uses the BiFPN to
obtain better performance. (2) Te coordinate attention
mechanism is added to the head of YOLOv5. Te detection
speed is not afected while the model parameters are in-
creased. Te accuracy is improved by about 3% compared
with the original YOLOv5. (3) A new prediction head consist
of the transformer encoder is also proposed in this paper; it
can improve the accuracy of the classifcation. On the other
hand, in order to ensure that high-quality pictures can be
collected in the actual production environment, this paper
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compares and analyzes a variety of major image acquisition
devices in detail, comprehensively considers the cost and
performance factors of the devices, and selects relevant
devices scientifcally. In order to make the defect detection
model have better generalization performance, this paper
makes the model reach 93.6% mAP and reasoning speed
reach 133FPS by means of data augmentation, migration
learning, and other methods. Te system designed and
deployed in this paper can achieve the efect of real-time
detection while ensuring high accuracy and provides a fea-
sible scheme for eliminating the products with surface de-
fects on the pipeline.

In the process of improving the model, there are also some
problems. Industrial testing involves a wide range of detection
scenarios, and as such, we aim to develop a detectionmodel that
is less dependent on image resolution. For instance, motion blur
may occur when capturing images of objects in motion on
a conveyor belt. To address this issue, we plan to leverage
generative adversarial networks (GANs) to enhance and refne
the blurred images. In addition, to improve the detection of
small defects, we may need to increase the number of detection
layers, but this could potentially increase the parameter quantity
of the network model. Tus, deciding on the optimal trade-of
between detection accuracy and data volume will be one of the
key challenges that we aim to tackle in our future work.
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