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Tis paper presents an improved whale optimization algorithm (IWOA) for optimizing the model predictive torque control
(MPTC) of brushless DCmotor (BLDCM) to further reduce the problems of strong torque pulsation and high ripple caused by the
special structure of BLDCM. IWOA adds a randomized convergence factor strategy to the original algorithm, enabling the
parameter weights to be adjusted in time. Te relative error between the training set and the predicted values is reduced, and
a suitable interval is selected for the target. Te proposed method takes into account the switching frequency loss factor in the
MPTC system of BLDCM, discarding the traditional trial-and-error method and choosing to control the parameter adjustment by
the degree of deviation. Te IWOA is compared with the popular whale optimization algorithm (WOA), dragonfy algorithm
(DA), ant colony optimization (ACO) algorithm, and grey wolf optimization (GWO) algorithm on the MATLAB SIMULINK
platform to verify the efectiveness of the method in dealing with improved chain tracking, reduced torque pulsation, and reduced
speed error. Te simulation results show that IWOA performs well, with an efciency of 94.32%.

1. Introduction

Te BLDC motor body’s stator winding is typically divided
into multiple phases (three-phase, four-phase, and fve-
phase varies). Te rotor consists of permanent magnets in
a certain number of pole pairs [1–4]. When a phase of the
stator winding is energized, the magnetic feld generated by
the current interacts with the magnetic feld generated by the
poles to drive the rotor, and then the position sensor
converts the rotor position into an electrical signal to control
the inverter so that each phase of the stator winding is
energized in a certain order and the stator phase current
changes phases in a certain order with the rotor position
[5, 6].

It is very meaningful to reduce speed error and torque
pulsation in brushless DC motors. Due to the infuence of
factors such as nonideal counterpotential waveform, tooth
groove structure, and current commutation, leading to more
obvious torque pulsation in BLDCM, which makes the
motor operation noise and vibration increase and reduce the
motor load carrying capacity and cannot be applied in the

feld of high-performance servo control, it is crucial to
improve the torque dynamic response control performance
of BLDCM for the popularization of the use of this motor;
similarly, in the conventional speed control system of
BLDCM, the conventional controller will make the speed
overshoot too much, which will lead to the oscillation
problem. Terefore, eliminating the speed overshoot
problem of the speed controller plays a very crucial role in
realizing the fast response of the motor speed and the
minimization of the steady-state error, both of which are of
great signifcance for the prospect of a simple and easy
engineering application of BLDCM.

Te continuous improvement of the research content
of BLDC motors has prompted the reinvestigation of
electric vehicles in BLDC motors. BLDC motors have
a good response to the static and dynamic responses of the
industry, prompting them to have a long-term impact on
industry production, such as electric crank windows in
cars, inverter washing machines, inverter air conditioners,
small motors in optical drives, and many other BLDC
devices [7–10].
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However, BLDC motors can produce large torque
fuctuations due to their own cogging structure, phase
change currents, nonideal counterelectromotive force
waveforms, and other factors. Te presence of torque pul-
sation has limited the application of BLDC in servo systems,
especially in direct drive applications where torque pulsation
deteriorates the motor speed control characteristics, thus,
suppressing or eliminating torque pulsation has become the
key to improving the performance of servo systems [11, 12].

A common issue with direct torque strategy in motors is
large torque fuctuations at low speeds. Many advanced
controllers have been proposed to solve this problem, with
model torque prediction control (MPTC) strategies being
the most prominent and incorporating advanced algorithms
that are emerging into our vision. MPTC is generally used to
accurately track the magnetic chain by weighing the chain
and using torque weights to reduce torque ripple [13–16].
However, in practical conditions, the overreliance on em-
pirical methods for the target weights does not provide much
certainty about the actual errors that occur [17]. Also, the
majority of MPTC is used in permanent magnet synchro-
nous motor (PMSM), with little research done in BLDC
motors.

Te whale optimization algorithm was proposed by
Mirjalili and Lewis in 2016, and they mentioned in the
literature [18] that the algorithm was developed based on the
unique bubble net foraging behavior of humpback whales. It
has a strong search ability for multiobjective problems in
terms of errors and can deal well with target-weighting
interests. Tis is why it was chosen as the base algorithm
for the optimization of MPTC systems in this paper.

Te intention of this paper is to propose an IWOA to
improve the MPTC of BLDC motor. Te method adjusts the
weighting parameter coefcients in a timely manner and
analyzes the average switching frequency losses of the in-
verter to minimize torque ripple and accurately track fux
performance.

Tis article has the following three main contributions:
(a) IWOA is a modifcation of the WOA, incorporating the
idea of simulated perturbations and using a random ad-
justment of the convergence factor strategy to reduce the
relative error between the predicted and actual values. Te
proposed method is compared and analyzed on the
MATLAB platform with advanced algorithms from recent
years. (b) Te traditional trial-and-error method of
weighting in MPTC has been replaced by the advanced
IWOA, which can quickly and accurately fnd the right
interval for the target weights. Te proposed method also
takes into account the switching frequency losses of BLDC
motor. (c) Considering the special structure of the BLDCM,
the results are analyzed using speed and torque in two
diferent cases, and the proposed method is able to cope with
the diferent situations, combining the target weights to give
a suitable output.

Te remainder of the paper is organized as follows:
Section 2 summarizes research reports from recent years,
and in Section 3 the mathematical model of BLDCM is
analyzed and the DTC and MPTC strategies are elaborated.
In Section 4, the WOA is briefy described, and measures to

improve the WOA are discussed in detail. Te application of
the algorithm to the MPTC of the BLDCM is presented in
Section 5. Simulation results are given in Section 6 and are
discussed and investigated in relation to the simulation
results. Finally, the conclusions are presented.

2. A Brief Summary of Recent Research Reports

In terms of advanced control strategies, a diagonal recurrent
neural network (QRNN) strategy based on the Q-learning
algorithm was proposed in the literature [19], and the Q-
learning algorithm was improved to optimize the weight
momentum factor, which was accurately verifed at diferent
operating conditions and speeds of the BLDCM. Kommula
et al. in the literature [20] show that with the help of
a fractional order PID based on an improved frefy algo-
rithm and a particle swarm algorithm controller based on
a modifed frefy algorithm and a particle swarm algorithm,
the uncertainty due to load variations is reduced and the
torque fuctuations are greatly reduced. Not coincidentally,
in the literature [21], a fuzzy parametric adaptive PI con-
troller was proposed using reference speed and feedback
speed as input and deviation, and the steady-state error,
overshoot, was analyzed under diferent speed reference
responses to demonstrate the strong robustness brought by
the method. Te literature [22] uses the idea of neural
networks on this basis, and in the results, better control can
be achieved. In the literature [23], the Coyote algorithm is
designed for controller parameter rectifcation, and control
precision is improved through low-speed operation exper-
iments. In the literature [24], generalized predictive frac-
tional order PI control was combined with lion swarm
optimization to enable the optimal signal to come into the
system, and an experimental platform was built to verify the
feasibility. A new copper loss minimizing DTC was pro-
posed in the literature [25] to achieve BLDCM in DTC while
achieving high efciency and high torque fne reading, using
a three-phase conduction voltage vector meter to achieve
tracking control of the magnetic chain, cutting out the
torque pulsation caused by the back EMF and nonideal
phase change in the conventional two-phase conduction
voltage vector meter DTC, and improving control accuracy.
Cao et al. [26] produced a refection on the BLDCM braking
case and proposed a smooth torque control strategy for the
BLDCM that corresponds to the direct torque control
performance in diferent speed ranges according to diferent
modulation methods to achieve controllability of the
braking torque and also reduce the phase change torque.Te
literature [27] uses numerical analysis ideas in the optimi-
zation of MPTC systems to linearize the torque function and
current constraints, eliminating gain tuning according to the
characteristics of the control strategy. Choi et al. focuses
attention on the complex weighting factors in MPTC, and
proposes an online adjustment of the weighting factors in
the literature [28] to keep the error within a certain range.
Guazzelli et al. [29] propose the nondominant sorting ge-
netic algorithm (NSGA-II), which lists torque, chain per-
formance, and average switching frequency as the three
target values from which the best value is selected. Tese
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algorithms have some diferences, with diferent conver-
gence and accuracy, in that they all improve on the tradi-
tional DTC, but it is an important challenge to accurately
track the magnetic chain and improve torque ripple using
MPTC on a BLDCM, a motor with a special structure. In the
literature [30], WOA is applied for the frst time to optimize
a hyperparameter problem, comparing it with a neural
network algorithm and a random search method, two tra-
ditional algorithms that demonstrate the high accuracy of
WOA. In the literature [31], the WOA algorithm was
combined with adaptive convergence and Levi’s charac-
teristics to solve the problem of easily falling into local
optima, refecting good global search capabilities. Got et al.
combined the WOA with a multiobjective problem in the
literature [32], introducing the population profle whale
optimization algorithm (GPAWOA), combining GPAWOA
with the multiobjective particle swarm optimization
(MOPSO) algorithm, decomposing the multiobjective
evolutionary algorithm (MOEA/D), and using the multi-
objective grey wolf optimization (MOGWO) algorithm for
comparing results analysis. GPAWOA achieved good per-
formance in convergence and population diversity and lit-
erature [33] proposed to combine WOA with a hybrid grey
wolf optimization algorithm to eliminate the optimization
error in the observer and the uncertainty of external

disturbances in mechanical systems. In dealing with the
inability to generate maximum power in BLDCM-based
battery-free PV systems, the literature [34] combines
WOA with conventional perturbation observation (P&O).
In the literature [35], Nadimi-Shahraki et al. focus their
attention on the problem of improving the WOA search
capability by introducing two diferent motion strategies to
enhance the WOA capability and validated by simulation.

3. BLDCMMathematicalModel andTraditional
Control Strategy

3.1. BLDCM Mathematical Model. BLDCM is so named
because it eliminates the need for a mechanical phase
commutator and brushes and relies on an inverter to convert
the DC current into a square wave motor. Figure 1 shows
what a three-phase full-bridge inverter with a BLDCM looks
like in terms of its circuit.

Here, T1 ∼ T6 are six switches, where uA, uB, and uC are
the stator three-phase winding voltages; eA, eB, and eC are
the three-phase winding induced electromotive forces; and
iA, iB, iC are the stator currents in phases A, B, and C, re-
spectively. Ud is the DC bus voltage, and Cd is the capac-
itance at DC. Te voltage balance equation for the three-
phase stator winding can be written as follows:
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where Rs is the stator winding, Ls is the self-inductance of
each phase winding, M is the phase-to-phase mutual in-
ductance, and p is the diferential operator.

Due to the inherent characteristics of brushless DC
motors, the control frequently takes the form of a two-
by-two conduction, as opposed to the sine wave magnetic
feld of three-phase asynchronous motors and permanent
magnet synchronous motors. On the same bridge arm, the
next two switching elements are 1 for on and 0 for of.
Terefore, the six nonzero voltage vectors are represented in
turn as u1 (100001), u2 (001001), u3 (011000), u4 (010010), u5
(000110), and u6 (100100). Figure 2(a) represents the
switching tube state corresponding to each nonzero voltage
vector in space, and Figure 2(b) represents each nonzero
voltage vector in space schematically.

3.2. Conventional DTC for BLDCM. In a conventional DTC,
a magnetic chain observer is required to calculate the stator
magnetic chain, whereas the conventional method basically
takes the stator terminal voltage and phase current as well as
the stator resistance to calculate it. However, at low-speed
operation, the stator voltage decreases, the stator side re-
sistance is measured incorrectly, and the calculation has to
go through the operation of integration, which can lead to
distortion of the magnetic chain observation. Terefore, the

magnetic chain estimation link is only used to estimate the
current stator magnetic chain position; (2) and (3) are the u-i
model equations, where the amplitude and amplitude angle
of the stator magnetic chain are obtained from (4) and (5),
respectively.

ψsα � 􏽚 usα − Rsisα􏼂 􏼃dt, (2)

ψsβ � 􏽚 usβ − Rsisβ􏽨 􏽩dt, (3)

ψs �

��������

ψ2
sα + ψ2

sβ

􏽱

, (4)

θe � arcsin
ψsβ

ψs
, (5)

where ψsα, ψsβ, isα, isβ, usα, and usβ are the stator magnetic
chain, stator current components, and stator voltage in the
α-β stationary coordinate system, respectively. Rs is the
stator winding resistance.

Since the fux density of the BLDCM is distributed in
a trapezoidal wave, the torque calculation in the DTC of
asynchronous and permanent magnet synchronous motors
are no longer used. Because the BLDCM stator resistance is
very small and the efect of higher harmonics in themagnetic
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chain on the torque can be ignored, the electromagnetic
torque is rewritten as given in the following equation. Te
space can be divided into six sectors according to the value of
θe.

Te �
3
2

p
dφrd

dθe

− φrq􏼠 􏼡isd +
dφrq

dθe

+ φrd􏼠 􏼡isq􏼢 􏼣, (6)

where θe is the rotor position angle, φrdφrqisdisq are the stator
magnetic chain, the component of the stator current on the
two-phase rotating coordinate system (d-q), and p is the
number of pole pairs of the motor.

To produce constant electromagnetic torque, a square
wave stator current input is required, or when the stator
current is square wave, the counterelectromotive force
waveform is required to be a trapezoidal waveform. Te
duration of the square wave current is 120° electrical angles
per half cycle, and either the fat top part of the trapezoidal
counterelectromotive force is also 120° electrical angles, and
the two should be strictly synchronized. At any given mo-
ment, only two phases of the stator are on.

Te voltage equation for the three-phase winding of the
BLDCM stator can be written in the form of an equation of
state, as shown in the following equation:

• • • • •

• • • • •

• • ••
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Figure 1: Equivalent circuit diagram of a three-phase full-bridge inverter with BLDCM.
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Figure 2: Conduction mode. (a) Switching tube state corresponding to nonzero spatial voltage vector. (b) Nonzero voltage vector in space
diagram.

4 Journal of Electrical and Computer Engineering



p

iA

iB

ic

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

1
Ls − M( 􏼁

0 0

0
1

Ls − M( 􏼁
0

0 0
1

Ls − M( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

uA

uB

uc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

Rs 0 0

0 Rs 0

0 0 Rs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

iA

iB

ic

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

eA

eB

ec

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

Te basic idea of DTC is to divide the magnetic chain
rotation space into 6 stages, set the tolerance of the magnetic
chain and torque hysteresis loop according to the torque
control requirements, compare the observed value of the
torque with the given value, combine the stages of the stator
magnetic chain, select the appropriate voltage vector, control
the inverter directly, and output the corresponding space
voltage vector to control the output torque of the motor.
Figure 3 shows the basic schematic of the DTC.

3.3. BLDCM Conventional MPTC. MPTC is often based on
the stator current, electromagnetic torque as the controlled
object, and online rolling to solve for the optimal output
quantity, which often requires a value function to evaluate
the motor’s operating state during this period. Rolling op-
timization is an important core part of MPTC, where the
predicted model state at the kth moment in a control cycle is
used to predict the output state for k+ 1.Te state quantity is
compared with the reference quantity output trajectory, and
the value function is used to determine the optimal voltage
vector. Te above MPTC is not performed ofine; it is an
online prediction of the control quantities of the system.

However, there are external disturbances, and the predicted
value and the actual desired value often have unavoidable
deviations. MPTC can usually be divided into fnite-set
predictive torque control (FCS-MPTC) and continuous-
set predictive torque control (CCS-MPTC); this paper
adopts FCS-MPTC. FCS-MPTC is easier to implement by
substituting the voltage vector into the value function in turn
and selecting the best quality by the value function’s min-
imization constraint, but the degree of freedom of regulation
is underground, which will lead to unstable switching fre-
quency and overreliance on the motor’s fxed parameters,
making accurate control difcult. How to solve the switching
frequency instability in the control strategy, where the
system is overly dependent on parameters, is the focus of this
thesis research.

In conventional FCS-MPTC, the prediction of the next
cycle electromagnetic torque Te(k + 1) and stator magnetic
chain ψs(k + 1) is essential. Te mathematical model of the
stator magnetic chain is shown in the following equation, as
the stator current prediction model is shown in (9) and the
electromagnetic torque prediction model is shown in (10).

ψs,dq(k + 1) � I − DTs( 􏼁ψs,dq(k) + Tsus,dq(k) −
RsTs

Lsd

ψr,dq, (8)

is,dq(k + 1) � E ψs,dq(k + 1) − ψr,dq(k + 1)􏼐 􏼑, (9)

Te(k + 1) �
3
2
pn ψs,dq(k + 1)⊗ is,dq(k + 1)􏼐 􏼑, (10)

where I is the unit matrix, D is
Rs/Lsd −ωr

ωr Rs/Lsq
􏼢 􏼣, and ψs,dq is

the d-q axis stator voltage in the motor. ψr,dq stands for

ψf 0􏽨 􏽩
T
, where ψf 0􏽨 􏽩

T
are the d-q axis stator and rotor

magnetic chains, respectively, us,dq is usd usq􏽨 􏽩
T
, where

usd usq􏽨 􏽩
T
are the d-q axis stator voltages of the motor,

respectively, and Ts is a control cycle, where Lsq is equal to
Lsd because the motor in this paper is a BLDCM, where

E �
1/Lsd 0
0 1/Lsd

􏼢 􏼣, is,dq � isd isq􏽨 􏽩
T
, isd, and isq are the

currents on the stator d-q axis in the motor.

Te above three equations then predict the future states
of the stator magnetic chain, current, and torque of the
FCS-MPTC control system.

Conventional FCS-MPTC tends to select the stator
electromagnetic torque and magnetic chain as evaluation
conditions. Te weight coefcients of the value function
will have a moderating efect on the evaluation results and
play a large part in the system’s choice of the optimum
value. However, in online prediction, errors as well as
errors due to deviations can occur. So the focus of this
paper’s research is on how to deal with the impact of
errors and biases online and how the weight coefcients
should be adjusted.
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Te traditional value function is shown in the following
equation. Te schematic diagram of the traditional MPTC is
shown in Figure 4.

g � λ1 T
∗
e − Te(k + 1)( 􏼁

2
+ λ2 ψ∗s − ψs(k + 1)( 􏼁

2
, (11)

where λ1 and λ2 are the weighting factors for regulating
torque and stator chain errors, respectively.

4. Optimization Algorithm

4.1. WOA. WOA simulates the unique bubble foraging
method of whales. According to the literature [23], the
algorithm is divided into three stages: encirclement for-
aging, spiral updating, and searching for prey. Te al-
gorithm obtains relevant information by searching for
solutions, keeps approaching the solution set through
constant encirclement and a spiral approach, and even-
tually fnds the fnal solution, i.e., the optimal solution.
Te two most important variables of the algorithm are the
optimal solution and the range of approaches to the
optimal set of solutions.

In the encircling feeding phase, whales need to be in-
formed of the specifc location of their prey through group
communication and keep approaching it. In the algorithm,
let the whale population size be N, the search space di-
mension be d and the i-th value whale position be denoted as
Xi � (x1

i , x2
i , · · · , xd

i )(i � 1, 2, · · · , N). Simulating the pre-
dation phase, the mathematical model is as follows:

D � C · Xp(t) − X(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

X(t + 1) � Xp(t) − A∗D,
(12)

where t is the current number of iterations; X(t) is the
individual position vector; Xp(t) is the prey position vector
(the current optimal solution); and A and C are the co-
efcient vectors, respectively, and are related in the following
way:

A � 2a∗ r1 − a,

C � 2∗ r2,
(13)

where r1 and r2 are random numbers of [0, 1], respectively; a
is a control parameter that decreases linearly from 1 to 0 as
the number of iterations increases, i.e.,

a(t) � 2 −
2t

maxiter
, (14)

where maxiter is the maximum number of iterations.
Once the location of the prey is known, the whale will

often adopt a spiral approach in order to ensure a successful
capture, mathematically modelled as follows:

X(t + 1) � D∗ e
bl ∗ cos(2πl) + Xp(t), (15)

where b is a constant used to bound the shape of the log-
arithmic spiral; l is a random number of [−1, 1].

Te traditional WOA frequently introduces probabilities
p to discriminate which location update is performed by an
individual whale, p ranging from 0 to 1, and segments the
mathematical model according to p, as shown in the fol-
lowing equation:

X(t + 1) �
Xp(t) − A∗D, p< 0.5,

D∗ e
bl ∗ cos(2πl) + Xp(t), p⩾ 0.5.

⎧⎪⎨

⎪⎩
(16)

Te algorithm often requires a value to determine which
stage it is at; here, it is necessary to determine whether it is
the prey search stage or the encircling predation stage. Here,
it is proposed that when |A|> 1, the whale is unable to obtain
valid information about the prey, and then it needs to keep
trying to search for cue information through random
methods. Here, it is the equivalent of an insurance measure
for unsuccessful predation. Te mathematical model is as
follows:

D � C · Xrand(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

X(t + 1) � Xrand(t) − A∗D,
(17)

where Xrand(t) is a randomly selected vector of individual
positions from the current population. Figure 5 shows
a three-dimensional plot of the baseline function for the
WOA run.
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4.2. IWOA. For the population iteration of the population
intelligence optimization algorithm, the good or bad quality
of the initial population afects the search efciency of the
algorithm and the diversity of the population, both of which
help a lot to improve the global convergence speed and the
quality of the solution of the algorithm. In traditional WOA
for solving optimization problems, there is no a priori
knowledge system for the global optimal solution of the
problem, which is unevenly distributed and poorly di-
versifed in the solution space and cannot efectively extract
the useful information from the solution space, which afects
the search efciency of the algorithm to some degree. Te
global and local search abilities of the WOA algorithm
depend heavily on the value of the parameter A, which,
according to (13), changes with the Convergence factor a;
equivalently, the global and local search abilities of WOA
depend on adjusting the convergence factor a. In the basic
WOA, the convergence factor a decreases linearly to 0 with
the number of evolutionary iterations from the set pa-
rameter, i.e., ideally the WOA can explore a larger and
broader search area in the initial exploration because the
initial value a is set very large, and as the algorithm advances,

a gradually becomes smaller, which satisfes the local ac-
curate search of the algorithm. However, WOA is non-
linearly changing in the evolutionary search process, and the
linearly decreasing convergence factor a cannot fully refect
the actual optimization of the algorithm’s search process, so
this paper introduces a random convergence factor so that
the convergence factor changes nonlinearly and dynamically
with the increase in the number of iterations in order to
balance the traditional global search and local search ca-
pabilities. Te degree of deviation in (19) is the vector
gradient of the convergence factor a. In this MPTC paper,
the IWOA directly adjusts the weight coefcients of the
objective function and outputs the optimal vector by
equating the predicted value and the reference value of the
objective function as the measured value and the estimated
value, calculating the degree of deviation from its mathe-
matical expectation, and iterating continuously.

WOA often takes a random initialization approach when
dealing with initialized populations, which can lead to a high
degree of randomness in the method, which is not conducive
to reducing search time and does not guarantee population
diversity. In this paper, we propose a backward learning
improvement method to ensure population diversity and
reduce computing time. Te improvement method is to
generate the reverse solution of the feasible solution, eval-
uate the reverse solution, and select a better candidate so-
lution. In general, the opposite number is closer to the
optimal solution than a random number. Te mathematical
model is as follows:

x
o
i � lbi + ubi − xi, (18)

where xi is the individual feasible solution, xo
i is its inverse

solution, and lbi and ubi are the upper and lower bounds of
the solution.

WOA is prone to local optimality as well as premature
convergence during and after local development, and when
perturbed, the algorithm can create the problem of difculty
in reaching an optimal solution. In this paper, we propose
a random adjustment of the convergence factor strategy to
simulate the perturbation operation on the population and
produce more individuals to deal with the impact of sudden
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deviations and errors. Te mathematical model is shown in
the following equation:

a(t) � ainitial − ainitial − afinal( 􏼁rand( ) + σr and n( ), (19)

where ainitial and afinal are the initial and termination values
of the convergence factor, respectively. rand( ) is used to
simulate the perturbation, and σ is used to measure the
deviation of the random variable from its mathematical
expectation. Te IWOA fowchart is shown in Figure 6. Te
pseudocode of IWOA is listed in Table 1.

5. MPTC with IWOA

Te cost function of the conventional MPTC does not take
into account the number of switches and is generally con-
trolled by the relative error rate of the magnetic chain and
the torque error rate, omitting the setting of the weighting
factor, which does not correspond to the actual operating
conditions, expressed as follows:

g �

�������������������������������������

Te(k + 1) − T∗e (k)

T∗e (k)
􏼢 􏼣

2

+
ψs(k + 1) − ψ∗s (k)

ψ∗s (k)
􏼢 􏼣

2

􏽶
􏽴

, (20)

T∗e (k) is the stator magnetic chain at moment k. ψ∗s (k) is the
torque reference at moment k.

However, in actuality, the switching frequency of the
inverter is not constant at low speeds, and the loss increases.
MPTC applies the idea of optimization to solve the value
function in real time, in order to get the ideal voltage vector
for the inverter. In reality, however, the low-speed state will
cause the inverter switching frequency to fuctuate and the
loss to rise, which will also cause the controller settings to be
challenging to modify and the dynamic performance to
sufer. It is crucial to take the average switching frequency
loss into account in order to avoid this circumstance. Similar
to how the inverter increases the harmonic content of the

output and decreases the overall efciency of the entire drive
system due to the numerous switching devices, the difculty
of the midpoint voltage balance, and the high cost of the
system, the switching frequency constraints are added to the
value function to achieve the presentation of the optimal
control efect in the following work simulation.

Torque and fux performance, as well as average
switching frequency minimum losses, are prioritized in this
paper. Te average switching frequency considers the period
diferently from the frst two, so the number of switches is
generally used instead of the average switching frequency,
taking into account the following cost function for the
number of switches.

g �

�����������������������������������������

λ1
Te(k + 1) − T∗e (k)

T∗e (k)
􏼢 􏼣

2

+ λ2
ψs(k + 1) − ψ∗s (k)

ψ∗s (k)
􏼢 􏼣

2

􏽶
􏽴

+ λswns, (21)

where λ1, λ2, and λsw represent the weighting factors of the
three objective functions, respectively; ns is the number of
switching operations caused by the voltage vector applied at
this point.

Te cost function needs to be adjusted to achieve
diferent control efects by setting diferent weighting
factors to adjust the relative importance of each target. In
this paper, the IWOA is used to adjust the parameters in
due course to determine the weighting coefcients
according to the variation of the magnetic chain, torque,
and average switching frequency under diferent weights.
In this paper, the relative importance of the target is seen
by defning the square root error of torque pulsation, the
square root error of chain pulsation, and the average
switching frequency, and they are denoted in the

following, respectively. Also, the evaluation function of
the MPTC modifed by IWOA is as follows:

TRMSE �

�������������

􏽐
n
i�1 Te − T

∗
e( 􏼁

2

n

􏽳

,

ψRMSE �

�������������

􏽐
n
i�1 ψs − ψ∗s( 􏼁

2

n

􏽳

,

favg �
Ns

6t
,

mavg �
􏽐

n
i�1

�����������������������������

λ1 Te − T
∗
e /T
∗
e􏼂 􏼃

2
+ λ2 ψs − ψ∗s /ψ

∗
s􏼂 􏼃

2
􏽱

+ λswns

n
.

(22)
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WOA is essentially the reduction of the relative error
between the training set and the prediction fnger, while
IWOA in this study employs a random adjustment of the
convergence factor strategy to generate simulated per-
turbations and increase the number of predictions, taking
into account a variety of situations to measure the degree
of deviation from the target random variable by σ. Te σ
for the situations that exist for diferent target values is
diferent.

λ1 represents the weighting factor for torque, which is
often the most important in a BLDCM, and because of the
special structure of the BLDCM and the drive method,
factor λ1 is set at 5–25, and its σ1 requirement is also the
lowest, with σ1 being the most important value to con-
sider, set at 0.02–0.05 in this study. λ2 is the weighting
factor for fux and is usually limited to 2–10; σ2 will be
larger than σ1 for torque and is usually set to 0.2–0.6. λsw is
the average switching frequency weighting factor, an
excessive increase will distort the current, usually set to
0.01–0.04 and 1.0–1.6 for σ3. λsw is the least preferred value
in the simulation, a conjecture that will be demonstrated
in the next section.

Because the upper and lower limits are diferent for
each target in the IWOA, the BLDCM requires an upper
limit of 10 N.m. Te upper limit for electromagnetic fux
ripple is 0.05 V.s. Te average switching frequency is set
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Obtaining optimal
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Adaptability assessment

Approaching the optimal
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Find the optimal solution
set range
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Figure 6: Te IWOA fowchart.

Table 1: Pseudocode of IWOA.

(1) Setting the population size to produce an initialized whale
population Xi, i � 1, 2, · · · , N􏼈 􏼉

(2) Calculate the ftness of each individual in the population
f(Xi), i � 1, 2, · · · , N􏼈 􏼉; and record the current optimal individual
and position;
(3) While (t< tmax) do
(4) For i� 1 to N do
(5) Calculate the value of the convergence factor a
(6) Updating the values of other parameters
(7) If (p< 0.5) do

If (|A|< 1) do
(8) Update the position of each individual;
(9) Else if (|A|⩾ 1) do
(10) Randomly select an individual in the group
(11) Update the location of each individual
(12) End
(13) Else if (p⩾ 0.5) do
(14) Update the location of each individual
(15) End
(16) End
(17) For the optimal individual in the current population add
a stochastic convergence factor strategy
(18) Calculating individual ftness in a population
(19) Update the current optimal individual and position
(20) t� t+ 1
(21) End
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between 2 and 7 kHz, depending on the actual inverter
specifcation. Te IWOA development parameters are
shown in Table 2.

6. Results and Discussion

In order to test the efectiveness of the MPTC with the
IWOA control algorithm in BLDCM, the simulation was
carried out in MATLAB on a PC with 16GB of memory and
the simulation software MATLAB 2020b. Te motor pa-
rameters in the simulation are listed in Table 3.

To highlight the superiority of IWOA, IWOA, WOA,
DA, ACO, and GWO were simulated in the same envi-
ronment using the same test functions as in the previous
section, and their fnal ftness values were 1.63∗ 105,
1.78∗ 105, 3.58∗ 105, 2.08∗ 105, 2.26∗ 105, respectively.

Here, we can see from Figure 7 that IWOA converges the
fastest. IWOA is roughly similar to WOA, so the conver-
gence rate is similar. It is observed that the fnal ftness values
of DA, ACO, GWO, and WOA are all larger than IWOA
because the other algorithms tend to fall into local optima
compared to IWOA, resulting in large ftness values. Fig-
ure 8 shows the iteration times of the fve algorithms, which
show the high efciency of IWOA in processing functions.

In previous work, MPTC has often used a trial-and-
error approach by gradually increasing the weights,
identifying the optimum weighting factor based on the
variation of diferent weights. Tis is unrealistic in practical
engineering and can seriously afect the lifetime of the
motor. In this study, IWOA is used to generate simulated
perturbations using a unique random adjustment con-
vergence factor strategy to measure the degree of deviation
from the target by σ, which greatly reduces the time to run
the motor to stability. Figure 9 shows the relationship
between the three targets (root mean square error of torque
pulsation, root mean square error of fux pulsation, and
average switching frequency) and their weighting factors
for the simulation 0–2 s, respectively.

Here, it can be observed that the root mean square error
of torque pulsation and the root mean square error of fux
pulsation both fnd their lowest values in the running time,
verifying the high efciency of IWOA as just described. In
Figure 9(c), we fnd that the average switching frequency
tends to decrease signifcantly as the weighting factor in-
creases, and we cannot see the optimum value through the
relationship. By confrming the optimum position of the
weighting factor for torque and fux, the evaluation function
is put together with the average switching frequency, and by
applying a disturbance and changing the load torque to
simulate light and heavy loads, it is observed whether the
average switching frequency will have a large efect on the
value function and how the weighting factor for the average
switching frequency is taken.

As seen in both cases of Figures 10(a) and 10(b), the
average switching frequency values are diferent for diferent
loads, showing a decrease with increasing load. However, in
both cases, the weighting factors of the average switching
frequency coefcients corresponding to the infection points
of the evaluation function difer very little, so the average

Table 2: IWOA parameters.

Parameters Signifcance Values
Pop_size Population size 500
Iter_max Number of iterations 1000
dim Dimensionality 3

Table 3: Motor parameters in the simulation.

Parameters Symbol Value Unit
Pairs of poles p 2
Moment of inertia J 0.0003 Nms2
Stator resistance Rs 1.5 Ω
Equivalent inductance of phase
windings Ls − M 0.21 mH

Speed N 1000 Rpm
Stator current Is 10 A

DC volage VDC 330 V

Friction coefcient B 0.001 Nms/rad
Back-EMF constant — 0.015 V/rad/s
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switching frequency coefcients are set to [0.02, 0.03] in the
following simulations.

Te σ corresponding to the root mean square error of
torque pulsation and the root mean square error of fux
pulsation are shown in Figures 11(a) and 11(b), respectively.
It can be seen that the deviation of both targets appears to be

the lowest point in the same simulation time, and the de-
viation σ under the optimal weighting factor verifed above is
also the smallest, verifying the feasibility of the IWOA
random adjustment of the convergence factor strategy.

Te current, speed, electromagnetic torque, and coun-
terelectromotive force of the BLDCM are studied and
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simulated to compare the MPTC system under advanced
algorithms. Since BLDCM is nowadays widely used in the
scenario of electric vehicles, the proposed performance is
studied under two conditions, the constant torque condition
and the variable torque condition, to show the superiority of
the algorithm by comparing the popular algorithms today.
Figure 12 shows the fux capability of the proposed MPTC
system under IWOA to control the BLDCM, and when the
simulation reaches stability, the stator fux space vector
trajectory controlled by the optimum switching frequency is
plotted, and it can be clearly seen that IWOA has approx-
imately 40% less high ripple than the original unadded
MPTC system. As the BLDCM is a counterelectromotive
force trapezoidal waveform, the stator fux trajectory posi-
tion is dodecagonal.

Under constant torque conditions, the speed and torque
performance, current waveforms, torque and speed errors,
and rotor angular position are studied. Figures 13 and 14
show the reference speed and torque, respectively.

Figure 15 shows the current analysis of the BLDCM,
which reaches a maximum of 28A at 0.08 s and foats
between −10 A and 10A in the interval from 0.10 s to 0.4 s.
A second maximum of 11A is reached in 0.4s and then
foats steadily in the interval from −6 A to 6 A. Figure 16
shows the speed comparison analysis between the IWOA
proposed in this paper and the advanced algorithm under
the MPTC system. It can be seen that under the IWOA, the
speed reaches the fastest 1006 rpm at 0.635 s and reaches
stability at 0.64 s, while the WOA reaches the fastest
1008 rpm at 0.637 s, and at 0.647 s. Te speeds in the MPTC
system under these advanced algorithms oscillated to
995 rpm, 997 rpm, 998 rpm, and 1006 rpm, respectively,
before gradually converging to the reference speed of 1000
rpm. Figure 17 shows the process from stabilization to
stopping of the motor under each algorithm. It can be seen
that IWOA stabilizes at 0 in 0.64 s, and the error control of
the remaining algorithms is not very efective. Figure 18
shows the comparative analysis of each algorithm for
torque. Te torque reaches a peak of 53N.m in the

proposed IWOA at 0.08 s, drops to −40N.m at 0.4 s, and
then stabilizes at 6 N.m for the remainder of the time. Te
other algorithms are inefective in dealing with the motor
torque problem. Figure 19 shows a graph of the efec-
tiveness of each algorithm in dealing with torque errors.
From start to stable stop, IWOA controls the torque to 0 in
only 0.4 s, verifying that IWOA has excellent performance
in controlling torque with constant torque.

Table 4 shows a comparison of the error analysis of each
technique in dealing with constant torque conditions for
torque versus speed. Te standard deviation refects the
degree of deviation of the results from the mean. A smaller
standard deviation indicates a less discrete and more stable
experimental result. It can be seen from the table that the
standard deviation of torque and speed under IWOA is the
lowest among the fve algorithms, indicating that the ex-
perimental results are concentrated in a smaller range and
the stability is the best compared to the other four algo-
rithms. Te mean value represents the convergence of the
algorithms, and the IWOAmean value is also the smallest in
both areas, indicating that the IWOA convergence accuracy
is the most outstanding. Table 5 shows the motor perfor-
mance of the MPTC system under the optimization of each
algorithm to reach steady state. Te cost analysis is based on
the time required to reach motor steady state under the
MPTC system without any algorithm as the standard value,
and the superiority of IWOA can be seen from the per-
formance indicators.

In the constant torque condition, the above demon-
strates the superiority of the proposed IWOA. In response to
the variable torque condition, the speed as well as the torque
are observed and evaluated. In this case the speed remains
the same as in the case above. Figure 20 shows the reference
torque, which rises from a constant 6N.m to 3 times 18N.m
in 1 s, and grayscales to 10N.m in 1.5 s. Figure 21 shows the
current waveform at IWOA, which reaches 43A at 0.08 s,
drops to −14A at 0.42 s out, stabilizes in the −8A–8A in-
terval from 0.4 s to 1.0 s, rapidly stabilizes to −18A to 18A at
1 s, drops from 18A to 16 at 1.5 s, then stabilizes at −16A to
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16A, verifying that the current increases as torque increases
and decreases as it increases.

Figures 22 and 23 show the comparative speed analysis
of each algorithm for the variable torque condition, re-
spectively, obtaining the same results as for the constant
torque condition. Figure 24 shows the comparative torque
analysis. While the proposed algorithm reaches 10N.m at
0.23 s, rises to 15N.m at 1.00 s, drops to 9N.m at 1.5 s, and
gradually stabilizes, the rest of the algorithms are not very
efective in dealing with variable torque, having a large
amplitude phenomenon and strong jitter in the waveform.
Table 6 shows the number of populations that reach the
optimal solution for the solved model at fve stages under the
processing of variable torque problems. It can be observed
that the IWOA shows a fast rising phase at 20%, 40%, and
60% stages with a continuous increasing number, and the
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Figure 16: Speed comparison for each algorithm at constant
torque.
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IWOA does not lose its equilibrium in stability due to torque
changes, but enters another stable phase very smoothly.
ACO, GWO, and DA in response to torque changes, lost
their original accuracy and did not achieve the desired

stability. WOA also had an increasing number of optimal
solutions in the early period, but the results were not very
impressive in the later period due to the low convergence
accuracy. Table 7 shows a comparison of the efciency of
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Figure 17: Comparison of errors in the speed of each algorithm at constant torque.
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Figure 18: Comparison of the torque obtained by each algorithm at constant torque.
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Figure 19: Comparison of torque errors for each algorithm at constant torque.

Table 4: Comparison of error analysis.

Solving
techniques

Speed Torque
Mean Standard deviation Mean Standard deviation

WOA 8.99E− 108 2.55E− 2 0.00056 5.55E− 8
DA 7.56E− 105 8.99E− 5 0.00189 9.12E− 9
ACO 6.88E− 118 6.59E− 4 0.00285 1.68E− 12
IWOA 9.62E− 180 0 5.62E− 99 6.65E− 16
GWO 0.000056 2.62E-6 0.00089 5.95E− 8

Table 5: Motor performance under optimization of each algorithm.

Solving techniques
Performance indicators

THD% Torque ripple Costs analysis Power factor
WOA 8.66 18.34 0.952 0.952
DA 7.92 16.56 0.881 0.967
ACO 7.88 18.92 0.898 0.961
IWOA 4.33 6.62 0.627 0.992
GWO 7.26 15.89 0.914 0.975

18

16

14

12

10

8

6
0 0.5 1 1.5 2

Time (s)

To
rq

ue
 (N

m
)

Figure 20: Reference torque at variable torque.
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Figure 21: Current waveform at variable torque.
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Figure 22: Speed comparison for each algorithm with variable torque.

Sp
ee

d 
(r

pm
)

1200

1000

800

600

400

200

0

-200
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Time (sec)

WOA
DA
ACO

IWOA
GWO

10

0

-10
0.60 0.62 0.64 0.66

Figure 23: Comparison of speed errors for each algorithm under variable torque.
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each algorithm applied to the MPTC system to deal with the
problem. Te above tables and fgures can fully demonstrate
the high efciency of IWOA in solving the problems of speed
error and torque pulsation, with better dynamic and steady-
state performance and robust performance, to realize the
coordinated and optimized control of electromagnetic
torque and stator magnetic chain.

7. Conclusions

Tis paper presents an improved MPTC system based on
IWOA for BLDCM control. Te algorithm simulation
data has better convergence, higher accuracy, and greater
stability than WOA, DA, ACO, and GWO. Te proposed
method takes into account the BLDCM switching fre-
quency losses, incorporates the idea of simulated

disturbances, explores the corresponding weighting re-
lationships of torque pulsation, magnetic chain pulsation,
and switching frequency in the MPTC system, and fnds
a suitable interval for the target. In order to investigate the
efectiveness of IWOA in MPTC systems, the simulations
are compared with WOA, DA, ACO, and GWO in two
diferent cases, and the simulation results show that the
proposed method can better reduce torque pulsation and
magnetic chain ripple with an efciency of 94.32%. In
future work, we will combine big data to make the pro-
posed method even better and apply it to more complex
industrial production.
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Table 7: Comparison of the efciency of each algorithm.

Solving techniques Efciency (%)
WOA 85.29
DA 87.31
ACO 87.92
IWOA 94.32
GWO 88.78

Table 6: Population size of the optimal solution in the 5-stage model.

Range of population
values (%)

Optimal solution values for advanced algorithms
WOA DA ACO IWOA GWO

20 26.5 29.5 28.4 30.4 36.5
40 29.8 36.8 30.6 42.5 39.4
60 30.8 30.5 27.2 56.5 28.6
80 25.1 29.5 21.5 58.9 19.7
100 24.9 25.8 28.7 58.2 29.5
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