
Research Article
A Dual-Agent Approach for Coordinated Task Offloading and
Resource Allocation in MEC

Jiadong Dong, Kai Pan, Chunxiang Zheng , Lin Chen, ShunfengWu, and Xiaolin Zhang

School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing 246133, China

Correspondence should be addressed to Chunxiang Zheng; zhcx@aqnu.edu.cn

Received 27 August 2023; Revised 10 November 2023; Accepted 8 December 2023; Published 21 December 2023

Academic Editor: B. Rajanarayan Prusty

Copyright © 2023 Jiadong Dong et al.Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Multiaccess edge computing (MEC) is a novel distributed computing paradigm. In this paper, we investigate the challenges of task
ofoading scheduling, communication bandwidth, and edge server computing resource allocation for multiple user equipments
(UEs) in MEC. Our primary objective is to minimize system latency and local energy consumption. We explore the binary
ofoading and partial ofoading methods and introduce the dual agent-TD3 (DA-TD3) algorithm based on the deep re-
inforcement learning (DRL) TD3 algorithm. Te proposed algorithm coordinates task ofoading scheduling and resource al-
location for two intelligent agents. Specifcally, agent 1 overcomes the action space explosion problem caused by the increasing
number of UEs, by utilizing both binary and partial ofoading. Agent 2 dynamically allocates communication bandwidth and
computing resources to adapt to diferent task scenarios and network environments. Our simulation experiments demonstrate
that the binary and partial ofoading schemes of the DA-TD3 algorithm signifcantly reduce system latency and local energy
consumption compared with deep deterministic policy gradient (DDPG) and other ofoading schemes. Furthermore, the partial
ofoading optimization scheme performs the best.

1. Introduction

Nowadays, with the rapid advancements in artifcial in-
telligence (AI) and 5G technology, particularly in computer
vision (CV) and natural language processing (NLP), an
increasing number of diverse application scenarios have
emerged. Tese scenarios include but are not limited to
intelligent driving, smart homes, medical diagnosis, and
intelligent manufacturing [1]. Tis has resulted in an in-
creased demand for computational resources to process task
requests from terminal users, in order to ensure better
quality of experience (QoE) and quality of service (QoS).
However, the computational capabilities and battery ca-
pacity of UEs are limited, andMEC provides an efective way
to solve this problem [2, 3]. By ofoading tasks wholly or
partially to edge servers for execution, it reduces the com-
putation delay and local energy consumption on UEs [4].
Designing and developing a rational ofoading strategy to
minimize system latency and local energy consumption is
a crucial challenge.

DRL has shown promising results in achieving in-
telligent task ofoading and resource allocation by learning
from various data sources, such as terminal user behavior,
network topology, and available computing resources. Its
potential for broad application in computing ofoading has
been widely recognized [5, 6]. For the problem of task
ofoading among multiple UEs in the same time slot in
MEC, it is necessary to frst determine the task ofoading
decision for each UE. Existing research often utilizes cen-
tralized and distributed deep Q-network (DQN) algorithms
to produce binary ofoading decisions for multiple UEs.Te
centralized DQN algorithm generates ofoading decisions
for all UEs using a single agent, with a multiuser ofoading
decision vector serving as its action space [7]. Tis approach
is simple and efcient in decision-making, but as the number
of users increases, the exponential growth of the discrete
action space makes it difcult for the algorithm to converge.
In contrast, in the distributed DQN algorithm, each UE has
an agent, and the action space of each agent is the set of
nodes that can be ofoaded to [8]. Although it can avoid the

Hindawi
Journal of Electrical and Computer Engineering
Volume 2023, Article ID 6134837, 16 pages
https://doi.org/10.1155/2023/6134837

https://orcid.org/0009-0006-1370-1780
mailto:zhcx@aqnu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6134837

problem of large action space caused by the increase of UEs,
it also makes network training more difcult. To overcome
the limitations of the above algorithms, this paper proposes
the DA-TD3 algorithm that supports continuous action
space, in which agent 1 can directly generate the task of-
loading rate for all users, signifcantly reducing the com-
plexity of the problem.

When determining which tasks to ofoad to edge nodes,
it is crucial to consider the allocation of communication
bandwidth and edge node computing resources. In MEC,
resource allocation needs to meet the task requirements
while also taking into account the limitations of computing
capability and network bandwidth of the edge nodes [9–11].
To address these challenges, we have designed agent 2 in the
DA-TD3 algorithm to dynamically allocate communication
bandwidth and edge server computing resources for mul-
tiple UEs. Tis approach allows for the adjustment of re-
source allocation ratios based on actual conditions, thereby
avoiding resource waste and idle time, improving resource
utilization, and better adapting to diferent task scenarios
and network environments, thereby maximizing system
performance.

Te task ofoading and resource allocation is a non-
deterministic polynomial (NP) hard problem [12]. Tis
paper proposes the DA-TD3 algorithm, which, under re-
source constraints, guides the coordination between agent 1
and agent 2 through setting the same reward function, to
achieve the goal of minimizing system latency and local
energy consumption. Te main contribution of this paper
can be summarized as follows:

(1) A binary ofoading strategy for DA-TD3 was
designed, where agent 1 generates continuous ac-
tions for multiple users, mapping continuous values
to binary ofoading decisions of 0 and 1. Tis ap-
proach efectively circumvents the difculties asso-
ciated with training distributed DQN algorithms and
the problem of large action spaces in centralized
DQN algorithms that hinder algorithm convergence.

(2) Te partial ofoading scheme of DA-TD3 was
designed, in which agent 1 generates the ofoading
ratio for multiple users and agent 2 generates the
allocation ratio of communication bandwidth and
computing resources, both collaboratively optimiz-
ing the objective function to achieve satisfactory
performance.

(3) Te “binary and partial schemes of DA-TD3” out-
perform the “random ofoading scheme,” “all-
ofoading scheme,” and “all-local computing
scheme” in reducing system delay and local energy
consumption.

2. Related Work

Both binary ofoading and partial ofoading are common
task ofoading methods [13]. Binary ofoading refers to the
approach of completely ofoading a task to a local or edge
node for processing. Although this implementation is simple
and efcient, it can result in a signifcant network

transmission overhead when multiple UEs simultaneously
ofoad tasks to edge nodes. Partial ofoading includes two
implementation methods. One is to split the task into two
subtasks according to the ofoading rate and process them in
parallel on both local and edge nodes.Te other method is to
divide the entire task into multiple subtasks based on the
directed acyclic graph (DAG) [14] and ofoad them
according to the binary ofoading method. It can simul-
taneously utilize the computing resources of both local and
edge nodes, greatly improving resource utilization and re-
ducing transmission overhead compared to binary of-
loading, thereby improving processing efciency.

2.1. Binary Ofoading. For the scenario of the binary of-
loading approach [15], the authors of [16] proposed
a DTORA algorithm to address the task ofoading and
computing resource allocation issues inMEC.Te algorithm
utilizes the entropy weight method as a weighting method
for computing objective weights and completes the process
of task ofoading and resource allocation, with the goal of
reducing the average response time of tasks and total system
energy consumption. Te authors of [17] have investigated
an MEC system in which each mobile terminal can ofoad
multiple tasks to an edge server. Tey have developed a joint
task ofoading decision-making and bandwidth allocation
optimization method based on the DQN algorithm. Te
proposed method aims to minimize the energy, computa-
tion, and delay costs associated with the ofoading process.
Te authors of [18] proposed a collaborative optimization
scheme for the computation ofoading optimization
problem in vehicular networks involving edge computing
and cloud computing. Te optimization problem was
decomposed into two subproblems. Te computation of-
loading decision problem was handled using game theory,
while resource allocation was achieved using the Lagrange
multiplier method. Experimental results demonstrated that
the proposed scheme improved system utilization and re-
duced task processing delay. Te authors of [19] investigated
a multi-UAV assisted MEC system and proposed the
MATD3 algorithm to address the limited computing and
energy capacity of UAVs. Tis algorithm jointly optimizes
trajectory design, computation task allocation, and com-
munication resource management to minimize execution
delay and energy consumption. Numerical simulation re-
sults demonstrate that the proposed method can adapt to the
mobility of users, changes in communication and com-
puting resources, and the dynamic nature of computation
tasks. Te authors of [20] investigated the joint optimization
problem of computation ofoading and resource allocation
in a dynamic multi-user MEC system, taking into account
the uncertain resource demands and latency constraints of
heterogeneous computing tasks. To avoid the curse of di-
mensionality, they proposed a method based on double deep
Q-networks (DDQNs) to minimize the energy consumption
of the entire MEC system. Simulation results demonstrate
that the proposed method outperforms other baseline
methods in various scenarios. Te authors of [21] in-
vestigated the problem of task ofoading in MEC networks

2 Journal of Electrical and Computer Engineering

with dynamic weighted tasks. Tey proposed a dynamic task
ofoading algorithm for MEC networks based on deep
supervised learning (DSLO) to address the weak adaptability
of traditional deep learning-based ofoading decision al-
gorithms to new environments. Batch normalization was
introduced to accelerate the model’s convergence process
and improve its robustness. Simulation results show that the
proposed algorithm can quickly adapt to newMEC scenarios
with only a small number of training samples.

2.2. Partial Ofoading. For the scenario of the partial of-
loading approach [22], the authors of [23] investigated
a UAV-assisted mobile edge computing (MEC) system,
which utilized the DDPG algorithm to jointly optimize user
scheduling, task ofoading rate, UAV fight angle, and fight
speed, in order to minimize processing latency. Te results
showed a signifcant improvement in processing latency
achieved by the proposed system. Te authors of [24]
proposed a framework for a multistatic and vehicle-assisted
MEC server, which utilizes a partially ofoading method
based on DRL to learn the optimal ofoading decision
according to randomly arrived loads, changing channel
states, and dynamic distances between users and edge
servers. Te results showed that the DRL-based algorithm
can autonomously learn the optimal computing ofoading
strategy without prior knowledge and efectively reduce
system costs and delays. Te authors of [25] proposed
a DRL-based algorithm to address the problem of maxi-
mizing the sum computation rate (SCR) in wireless-powered
edge computing networks under partial ofoading strategies.
Specifcally, the algorithm learns near-optimal wireless
power transfer (WPT) durations from previous ofoading
experiences and optimizes the time allocation for ofoading
among nodes as well as the energy allocation for each node
given a fxed WPT duration. Te authors of [26] proposed
partial computation ofoading strategies based on the Q-
learning algorithm and the DDPG algorithm to address the
problem of partial computation ofoading in multiuser
MEC systems in industrial scenarios. Compared to the bi-
nary computation ofoading strategy, both proposed
strategies efectively reduced system latency, with the DDPG
algorithm performing the best. Te authors of [27] proposed
a DRL framework based on the actor-critic structure for the
task of ofoading decision-making and resource allocation
in DAGs.Te framework utilizes the policy network actor to
generate binary ofoading decisions for each task based on
wireless channel gains and the computing frequency status
of edge servers as inputs, with the aim of minimizing energy
consumption and time cost.Te authors of [28] proposed an
ACED algorithm based on DRL for DAG-based multitask
ofoading strategies in MEC systems. By jointly considering
the application structure and wireless interference of user
transmission, ACED aims to reduce the average ETC of all
users. Experimental results show that the ACED algorithm
outperforms existing works in terms of reducing the average
ETC of users. Te authors of [29] proposed a hierarchical
computing ofoading strategy based on multiagent

reinforcement learning (MARL) to address the computation
ofoading problem in multiuser multiserver energy-
harvesting MEC systems. Tis strategy optimizes task of-
loading location selection and task ofoading rates to
minimize system delay and energy consumption. Simulation
results demonstrate that the proposed strategy outperforms
other baseline algorithms in terms of average task delay,
energy consumption, and dropout rates.

3. System Model

In this paper, we consider an MEC network, which consists
of a single edge server, small-cell base stations (SBS), and N
UEs, as shown in Figure 1. Te edge server and UEs are key
components of the MEC network and can serve as com-
puting nodes to collaborate in task ofoading and resource
allocation, improving the overall computational perfor-
mance and efciency of the network and meeting the de-
mand of UEs for low latency and low energy consumption.

We discretize the continuous communication period T

into equally spaced time slots t ∈ (0, 1, 2..., T), where ∇t
denotes the length of each time slot and each UE
i ∈ (1, 2..., N) has a computationally intensive task arriving
in each time slot t. We defne a task as a triple
Ai(t) � di(t), ci(t), si(t) , where di(t) and ci(t), re-
spectively, denote the data size and the required CPU cycles
of the task i at time slot t and si(t) denotes the ofoading rate
of the task Ai(t) to the edge node. In the same time slot, the
task Ai(t) can be divided into two subtasks based on the
ofoading rate si(t) and processed in parallel at the local or
edge node, ignoring any dependencies between the subtasks.

To fully utilize communication resources, the uplink
communication between UEs and MEC servers employs
orthogonal frequency division multiple access (OFDMA)
technology. Te 10MHz bandwidth channel is divided into
N subchannels using OFDMA technology, and mutual in-
terference between subchannels can be ignored. To simulate
a more realistic ofoading process and consider the mobility
of UEs, we assume that the SBS coordinates are defned as
(0.0) in a two-dimensional Cartesian coordinate system and
that UE i is uniformly distributed around the SBS with
coordinates (xi(t), yi(t)). Tus, the straight-line distance
between UE i and SBS is

li(t) �

������������

xi(t)
2

+ yi(t)
2

. (1)

Te communication transmission rate between UE i and
the edge server in time slot t is

ri(t) � ai(t)Blog2 1 +
pigli(t)

− τ

σ2
 , (2)

where αi(t) represents the proportion of communication
bandwidth allocated to UE i in time slot t, B is the total
bandwidth between UE and SBS, pi represents the trans-
mission power of UE i, g is the channel gain at a reference
distance of 1meter, τ represents the path loss factor, and σ2
represents the noise power.

Journal of Electrical and Computer Engineering 3

3.1. Local Computing Model. Te local computing model is
a common computing model in MEC. In this model, when
the task Ai(t) is ofoaded to a local device for processing
either entirely or partially, local computing latency can be
calculated based on the required number of CPU cycles for
completing the task and the processing capability of the local
device. Its local computing latency is given by

Tlocal(i, t) �
1 − si(t)(∗ ci(t)

fi

. (3)

In addition, the energy consumption of local computing
can be calculated based on the power consumption of the UE
and the task execution time, as shown in the following
formula:

Elocal(i, t) � δ fi(
2 1 − si(t)(ci(t). (4)

In this equation, fi represents the CPU frequency of UE
i, which varies among diferent devices, and δ is the energy
consumption coefcient. When ofoading rate si(t) � 0, it
indicates that the task Ai(t) is completely processed locally,
and when si(t) � 1, it indicates that the task Ai(t) is com-
pletely ofoaded to the edge node.

3.2. Computing Ofoading Model. At time slot t, the MEC
server at the SBS can provide computing services to multiple
UEs simultaneously. When the task Ai(t) is scheduled to be
partially or completely ofoaded to the MEC server through
the ofoading rate si(t), UE i frst uploads the task data to the
MEC server through the assigned communication channel
N, and then, theMEC server computes and returns the result

to UE. Te time delay of the computation ofoading process
mainly includes the task uploading delay Tup(i, t), the MEC
server computing delay Tcalc(i, t), and the result trans-
mission delay (which is ignored in this paper), expressed as
follows:

Tup(i, t) �
si(t)di(t)

ri(t)
,

Tcalc(i, t) �
si(t)ci(t)

βi(t)F
.

(5)

Here, F represents the CPU frequency of the edge server
and βi(t) represents the proportion of computing resources
allocated to UE i at time slot t. Te total delay of the of-
loading process is given by

Toffload(i, t) � Tup(i, t) + Tcalc(i, t). (6)

Similarly, the energy consumption of the ofoading
process includes the transmission energy consumption
Etran(i, t) of the UE and the idle energy consumption
Ewait(i, t) as

Etran(i, t) � Tup(i, t)pi,

Ewait(i, t) � Tcalc(i, t)pw,
(7)

where pw is the idle power consumption of the UE during
the transmission process. Te total local energy consump-
tion of the ofoading process is given by

Eoffload(i, t) � Etran(i, t) + Ewait(i, t). (8)

UE 1

SBS

Edge server

...

...

UE 2 UE N

Offloading

Local

... ...

slot 1 slot 2 slot 3 slot T slot 1 slot 2 slot 3 slot T slot 1 slot 2 slot 3 slot T

Wired
transmission

Wireless
transmission

1

0

Agent1:
Offload decision

Agent2:
Resource allocation

Figure 1: System network model.

4 Journal of Electrical and Computer Engineering

3.3. Problem Formulation. We aim to jointly optimize the
ofoading rate si(t) for each UE, as well as the optimal
allocation of communication bandwidth proportion αi(t)

and MEC server computing resource proportion βi(t) for
the partitioned ofoading subtasks, with the goal of mini-
mizing the computation maximum delay and corresponding
energy consumption for all UEs. Based on previous mod-
eling, the calculation methods for the maximum delay
Tall(i, t) and total energy consumption Eall(i, t) for all UEs
within a time slot are as follows:

Tall(i, t) � max Tlocal(i, t), Toffload(i, t) ,

Eall(i, t) �

N

i�1
Elocal(i, t) + Eoffload(i, t).

(9)

Te total delay and energy consumption of the system
over T time slots are represented as

Cost �
T

t�0

N

i�1
ρ0Tall(i, t) + ρ1Eall(i, t). (10)

Terefore, the joint optimization problem of task of-
loading scheduling and resource allocation can be modeled
as the following equation:

O: min(Cost)

s.t.

C1: 0≤ si(t)≤ 1, ∀i, t,

C2:
N

i�1
αi(t) � 1, 0≤ αi(t)≤ 1, ∀i, t,

C3:
N

i�1
βi(t) � 1, 0≤ βi(t)≤ 1, ∀i, t,

C4: 0≤ ρ0 ≤ 1, 0≤ ρ1 ≤ 1.

(11)

Te constraint C1 represents diferent ofoading strat-
egies based on the diferent ofoading rates. Specifcally, in
binary ofoading, the ofoading rate si(t) of each UE i

consists of discrete values of 0 or 1, while partial ofoading
consists of continuous values between 0 and 1. Constraints
C2 and C3, respectively, ensure that the allocated commu-
nication bandwidth resource ratio αi(t) and the MEC
computing resource ratio βi(t) of all UEs in the same time
slot add up to 1. In the constraint C4, ρ0 and ρ1 represent the
weight coefcients of time and energy consumption. Tese
constraints ensure the feasibility and correctness of the
optimization problem.

Te problem at hand has been proven to be an NP-hard
problem. Previous studies on ofoading decision-making
mostly employed binary ofoading methods. In this paper,
we introduce ofoading rates si(t) to extend the ofoading
decision-making from the discrete domain to the contin-
uous domain. In addition, to handle more realistic scenarios,
where prior information about the task request pattern
within a time slot is unknown, and the complexity of the
problem grows exponentially with an increase in the number
of UEs, traditional model-based approaches may not be

suitable to adapt to the dynamic nature and make intelligent
decisions. To address these challenges, we propose a dual-
agent collaborative computation ofoading strategy called
DA-TD3 based on reinforcement learning, aiming to
minimize the maximum computation delay of all UEs tasks
and the corresponding energy consumption.

4. Reinforcement Learning
Optimization Algorithm

In this section, we frst introduce the relevant theory and
background knowledge of the TD3 algorithm based on DRL.
Second, building on the TD3 algorithm, we propose the
DA-TD3 computation ofoading algorithm for dual agents,
construct MDP, and defne the states, actions, and rewards
for the dual agents. Finally, we describe the design details of
the algorithm.

4.1. TD3 Algorithm Framework. DRL is a technology that
combines deep learning and reinforcement learning to solve
complex tasks with high-dimensional state and action
spaces. TD3 is a DRL algorithm based on the actor-critic
framework and an improvement over the DDPG algorithm
[30, 31]. Te algorithm consists of six neural networks: one
actor policy network, two critic value networks, and their
corresponding target actor and target critic networks, as
shown in Figure 2.

4.1.1. Te Experience Generation Process. Te actor network
is a key network in DRL, which takes the current envi-
ronment state as input s(t) and calculates the output action
μϕ1(s(t)). In the TD3 algorithm, in order to encourage the
agent to explore the action space in a more diverse way,
a random noise is added to the original action, as shown in
the following equation:

a(t) � μϕ(s(t)) + ε, ε ∼ N(0, σ), (12)

where ϕ represents the parameters of the actor network. Te
agent interacts with the environment by taking noisy actions
a(t) and receiving rewards r(t) and the next state s′(t),
forming a transition sample (s(t), a(t), r(t), s′(t)) that is
stored in the experience replay bufer as a dataset for training
the online network.

4.1.2. Training and Updating the Network. When the
number of state transition samples stored in the experience
replay bufer exceeds the set capacity, a batch of state
transition samples (bs, ba, br, bs′) is randomly selected from
the bufer for training the online network. Unlike the DDPG
algorithm, the TD3 algorithm introduces a regularization
strategy by adding truncated normal distribution noise to
the output action μθ′(bs′) of the target actor network, as
shown in the following equation:

ba′ � μϕ′ bs′(+ ε′, ε′ ∼ clip N 0, σ2 , −c, c . (13)

Journal of Electrical and Computer Engineering 5

In the equation, ϕ′ represents the parameters of the
target actor network. Adding noise can make the two target
critic networks output smoother Q-values and reduce
overftting. In addition, to alleviate the overestimation of
Q-values, the minimum Q-value among the outputs of the
two target critic networks is selected, and the TD target is
calculated based on the Bellman expectation equation of the
state-action value function, which is written as

Qtar � br + cmin Qθ1′ bs′, ba′(, Qθ2′ bs′, ba′(, (14)

where br represents the batch reward, c is the discount
factor, and θ1′, θ2′ are the parameters of the two target critic
networks. To estimate Q-values closer to the target Q-values,
twoMSE loss functions are established by computing the TD
error, and then, the gradients are calculated by derivation to
update the parameters of the critic networks. Te update
equations are as follows:

L θi(�
1
b

 Qθi
(bs, ba) − Qtar

2
; i � 1, 2, (15)

θi⟵ θi − lc∇θi
L θi(; i � 1, 2, (16)

where Qθ1,2
(bs, ba) refers to the estimated Q-values output

by the two critic networks with parameters θ1 and θ2, re-
spectively, while lc represents the learning rate of the value
network.

In RL, the goal of an agent is to maximize cumulative
rewards, and Q-values can measure the long-term cumulative
rewards of taking a certain action in a current state. During
training, the actor network is expected to output actions that
maximize the Q-values, in order to maximize cumulative
rewards. Terefore, the loss function and the parameter
update equation for the actor network are as follows:

J(ϕ) � −
1
b

 Qθ1 bs, μϕ(bs) , (17)

ϕ⟵ ϕ − la∇ϕJ(ϕ). (18)

Finally, the parameters ϕ of the actor network and the
parameters θ1 and θ2 of the two critic networks are updated
to their corresponding target network parameters using
a soft update approach, as shown in the following equation:

θi
′ ⟵ τθi +(1 − τ)θi

′, i � 1, 2, (19)

ϕ′⟵ τϕ +(1 − τ)ϕ′, (20)

where τ represents the soft update coefcient and ϕ′ rep-
resents the parameters of target actor network.

4.2. DA-TD3 Ofoading Algorithm. In MEC, the binary
ofoading decisions for multiple users are typically made using
the DQN algorithm to output Q-values for all actions and then
indirectly selecting the action with the highest Q-value as the
output. However, with the increasing number of UEs, the range
of action space also increases, which leads to difculties in
algorithm convergence and training. To address this challenge,
this paper proposes a DA-TD3 algorithm for collaborative
ofoading scheduling and resource allocation based on the TD3
algorithm with a continuous action space for two agents.
Specifcally, agent 1 generates ofoading decisions for multiple
users directly, while agent 2 allocates communication and
computing resources based on the ofoading decisions, and
both agents collaboratively optimize the objective function.Te
advantage of this algorithm is that it greatly alleviates the
problem of large action dimensionality, thereby improving the
training efciency and convergence speed of the algorithm, as
shown in Figure 3.

Actor_net
μϕ

Target
Actor_net

μϕ'

Experience pool

ENV
State s (t)

(s (t),a (t),r (t),s' (t))
ę

Random

sampling

bs'

bs

Action joining
Truncate noise

Critic_net2
QθCombine ba and bs

as input

(bs,ba,br,bs')

Set up
loss

function

Back
propagation

Set up
loss

function
Soft

update

Qtar = Qθ' (bs',ba')2

Qtar = Qθ' (bs',ba')1

Action addition noise

Combine ba and bs
as input

Back

mes{Qθ (bs, ba), Qtar}

mes{Qθ (bs, ba), Qtar}

propagation

ba = μϕ (bs)
bs

loss = –Qθ (bs, ba)

a (t) = μϕ (s (t)) + ε

ba' = μϕ' (bs')+ε'
bs'

Critic_net1
Qθ

Target
Critic_net2

Qθ'

Target
Critic_net1

Qθ'

1Qtar = br + γ min (Qtar,Qtar)
2

1

1

2

1

1

1

2

2

2

Figure 2: TD3 network architecture and algorithm fow.

6 Journal of Electrical and Computer Engineering

4.2.1. State Space. It is critical to defne the state that
matches the characteristics of the problem. In this paper, the
amount of data and the distance between the UEs and the
SBS determine the transmission time, while the computing
resources required determine the execution time and energy
consumption of the task on the computing node. Terefore,
using these factors as state inputs can help the agent better
understand the relationship between diferent tasks and
ofoading scheduling and make more efective ofoading
decisions. Tus, the state input of agent 1 is defned as
follows:

ob1(t) �

d1(t) c1(t) x1(t) y1(t)

. . . .

dN(t) cN(t) yN(t) yN(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (21)

Agent 2 focuses on the status information of tasks of-
loaded to edge nodes and allocates resources accordingly.

When a task is scheduled to be executed locally, this part of
the status information is not relevant. Specifcally, when the
ofoading rate si(t) � 0, the state vector of UE i is all 0. Te
state input of agent 2 is as follows:

ob2(t) �

s1(t)d1(t) s1(t)c1(t) x1(t) y1(t)

. . . .

sN(t)dN(t) sN(t)cN(t) xN(t) yN(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(22)

4.2.2. Action Space. Agent 1 is responsible for the ofoading
decisions of all UEs tasks. A sigmoid activation function is
added to the output layer of its policy network to limit the
N-dimensional action vector between 0 and 1. When using
binary ofoading, the sigmoid function output is binary
classifed. Te output value greater than or equal to 0.5 is
mapped to an ofoading rate of 1, and the output value less
than 0.5 is mapped to an ofoading rate of 0. When using
partial ofoading, the output action directly represents the
ofoading rate.Tus, at time slot t, the action vector of agent
1 is

ac1(t) � s1(t), s2(t), ..., s(N−1)(t), sN(t) . (23)

Agent 2 adopts a softmax activation function for the
policy network output, ensuring that the ratio of commu-
nication and computation resource allocation to all UEs in
the same time slot is equal to 1. Te action vector is as
follows:

ac2(t) � α1(t), α1(t), ..., αN−1(t), αN(t), β1(t), β1(t), ..., βN−1(t), βN(t) . (24)

Te dimension of the action vector is 2N, with the frstN

values representing the communication bandwidth resource
allocation ratio and the last N values representing the
computation resource allocation ratio.

4.2.3. Reward. Te reward design has a signifcant impact on
the decisions of the agents and the optimal solution to the
task. Using the negative of the optimization objective as the
reward function can easily be converted into the minimi-
zation of a cost function. Since agents 1 and 2 need to
cooperatively optimize the ofoading policy to minimize the
cost function, the same reward function is set for agents 1
and 2 at time slot t, as follows:

re1,2
(t) � −

N

i�1
ρ0Tall(i, t) + ρ1Eall(i, t)⎛⎝ ⎞⎠. (25)

Te detailed process of DA-TD3 is shown in
Algorithm 1.

5. Simulation Experiment

In this section, we frst introduce the experimental simu-
lation environment and parameter settings. Ten, we de-
sign multiple diferent ofoading schemes. Finally, we
compare and analyze the various ofoading schemes in
diferent experimental environments. Trough experi-
mental validation, we demonstrate the efectiveness of the
binary and partial ofoading schemes based on the
DA-TD3 algorithm.

5.1. Experimental Settings. We utilized the Python 3.8 de-
velopment environment and the PyTorch deep learning
framework as the simulation software platform for our
experiments, with the hardware platform consisting of an
Intel Xeon Gold 6148 processor and a 3090 graphics card.
Te experiment parameters and hyperparameter settings for
the DA-TD3 algorithm were established based on experi-
mental requirements, as illustrated in Tables 1 and 2.

ob1 (t) ac1 (t) ob2 (t) ac2 (t)

agent 1 agent 2

ENV

...
...
...

...

...

...
...

...

...

...

...
...

re1,2 (t)

Figure 3: Cooperative optimization mechanism for dual agents.

Journal of Electrical and Computer Engineering 7

In the DA-TD3 algorithm, two agents are employed to
solve the task ofoading decision and resource allocation,
respectively. Each agent consists of 2 actor networks and 4
critic networks. Te structural parameters of these actor and
critic networks are shown in Table 3.

Figure 4 illustrates the changes in the reward function
throughout training episodes with varying learning rates in
the DA-TD3 algorithm. Typically, the critic network’s
learning rate is set higher than that of the actor network to
enhance sensitivity to value function approximation. We
conducted four sets of experiments to assess the impact of
learning rates on convergence performance. Te results
indicate that the optimal convergence efect occurs when the
actor learning rate is 0.00001 and the critic learning rate is
0.0001. Learning rates that are excessively large or small can
compromise stability. Extremely high rates induce dynamic
instability during training, while excessively low rates
prolong convergence time.

Figure 5 shows the reward function changes over
training episodes under diferent memory sizes and batch
sizes of the DA-TD3 algorithm. We set up 4 groups of
experiments with positively correlated values for the two

Input: UE task information ob1(t).
Output: Ofoading decision vector ac1(t) and resource allocation vector ac2(t).
(1) Initialize the network parameters for agents 1 and 2.
(2) Set the capacity of experience bufer and specify the batch size for training.
(3) for episode� 1, 2, . . ., Max_Episode do
(4) Resetting the environment to obtain the initial state ob1(t).
(5) for t � 1, 2, . . ., T do
(6) Input state ob1(t) to the actor network μ1ϕ of agent 1 to obtain the action ac1(t).
(7) Calculate the state input ob2(t) for the actor μ2ϕ of agent 2 based on the ac1(t).
(8) Input state ob2(t) to the actor μ2ϕ of agent 2 to obtain the action ac2(t).
(9) Calculate the reward re1,2(t) by jointly considering the ac1(t) and ac2(t).
(10) Store the (ob1(t), ac1(t), re1,2(t), ob1(t + 1)) in the replay bufer of agent 1.
(11) Store the (ob2(t), ac2(t), re1,2(t), ob2(t + 1)) in the replay bufer of agent 2.
(12) if batch size < the current capacity of bufer Ten
(13) for agent i � 1, 2 do
(14) Sample a batch of experiences randomly.
(15) Calculate the loss of critic net Qi

θ1,2
according to equation (15).

(16) Update parameters θ1, θ2 of the critic net according to equation (16).
(17) Calculate the loss of actor net μi

ϕ according to the equation (17).
(18) Update parameter ϕ of the critic according to equation (18).
(19) Update parameters of the target nets according to (19) and (20).

ALGORITHM 1: DA-TD3.

Table 1: Experiment parameter settings.

Notation Defnition Value
F CPU frequency of the MEC server 8Ghz
fi CPU frequency of UE Unif (2, 2.5) Ghz
B Bandwidth of the channel 10Mhz
di Task data size Unif (4, 8)Mbits
ci CPU cycles for task calculation Unif (0.8, 1.6) Gigacycles
li Te distance between UEs and SBS Unif (100, 300)m
pi Te transmission power of UE Unif (400, 500)mw
pw Te standby power of UE Unif (80, 100)mw
τ Te path loss factor 2
σ2 Te noise power −100 dBm
δ Energy consumption coefcient 10− 28

T Total time slots 30
ρ0 Weight coefcient of time 0.7
ρ1 Weight coefcient of energy consumption 0.3

Table 2: Hyperparameter settings for DA-TD3.

Defnition Hyperparameter
Max_episode 1000
Te learning rate of actor la 0.00001
Te learning rate of critic lc 0.0001
Memory size 10000
Batch size 256
Discount factor c 0.99
Soft update coefcient τ 0.05
Action noise ε N(0, 0.1)

8 Journal of Electrical and Computer Engineering

hyperparameters. Tis is because the memory bufer needs
sufcient samples for batch training. Ultimately, we de-
termined the combination of memory size� 10,000 and
batch size� 256, which demonstrated the best convergence
performance in experiments. In practical tuning, we noticed
that excessively small memory and batch sizes can cause the
algorithm to get stuck in local optima, while excessively large
values may lead to unstable training.

To assess the efcacy of deep neural network models in
managing high-dimensional state spaces, we varied the
number of fully connected layers in the algorithm, specif-
cally setting them to 3, 4, and 5 layers. Te subsequent
comparison included their infuence on training time,
convergence performance, and other factors, as illustrated in
Figure 6. Te fndings reveal that an increase in layers
correlates with accelerated convergence, yet the ultimate
reward improvement upon convergence remains marginal,
as outlined in Table 4. Acknowledging the elevated com-
putational cost associated with additional network layers, we
opted for the 3-layer network architecture after a compre-
hensive consideration of various factors.

A heterogeneous objective function was constructed to
achieve fexible multiobjective optimization, which in-
troduces the adjustable time weight ρ0 and energy weight ρ1.
By tuning these two weights, the relative importance of
latency and energy consumption in the objective function
can be dynamically balanced to optimize diferent perfor-
mance metrics. Here, ρ0 is set to 0.7 and ρ1 is set to 0.3, with
the larger ρ0 refecting the priority of reducing latency and ρ1
considering energy consumption when balancing the two
metrics. Tis setting can be adjusted based on specifc
scenarios and requirements to meet diferent
optimization goals.

5.2. Comparison Scheme. To verify the superiority of both
the “DA-TD3 binary ofoading scheme” and “DA-TD3
partial ofoading scheme,” we designed 6 comparison
schemes as follows:

(i) All_Local: all tasks are ofoaded to local
computing.

(ii) All_Edge: All tasks are ofoaded to the edge nodes,
and the bandwidth and computing resources are
evenly distributed.

(iii) Random_Ofoad: tasks are randomly ofoaded and
scheduled with evenly distributed bandwidth and
computing resources.

(iv) DDPG_All: Te network architecture of the
DA-TD3 algorithm is replaced with the DDPG
algorithm, and the binary ofoading scheme with
dual agent outputs for ofoading decisions and
resource allocation ratios is adopted.

(v) DDPG_Part: Te network architecture of the
DA-TD3 algorithm is replaced with the DDPG
algorithm, and the partial ofoading scheme with
dual agent outputs for ofoading decisions and
resource allocation ratios is adopted.

Table 3: Network structure for DA-TD3.

Networks Number Network structure

Actor of agent 1 2
fc1 (state_dim, 256), relu

fc2 (256, 128), relu
fc3 (128, action_dim), sigmoid

Critic of agent 1 4
fc1 (state_action_dim, 256), relu

fc2 (256, 128), relu
fc3 (128, 1)

Actor of agent 2 2
fc1 (state_dim, 256), relu

fc2 (256, 128), relu
fc3 (128, action_dim), softmax

Critic of agent 2 4
fc1 (state_action_dim, 256), relu

fc2 (256, 128), relu
fc3 (128, 1)

–26

–28

–30

–32

–34

–36

Re
w

ar
d

0 200 400 600
Episode

800 1000

memory_size=100,batch_size=64
memory_size=1000,batch_size=128
memory_size=10000,batch_size=256
memory_size=100000,batch_size=512

Figure 5: Reward under diferent memory_size and batch_size.

–26

–28

–30

–32

–34

–36

–38

Re
w

ar
d

0 200 400 600
Episode

800 1000

act_1r=0.000001
act_1r=0.00001

act_1r=0.0001
act_1r=0.001

Figure 4: Reward under diferent learning rate.

Journal of Electrical and Computer Engineering 9

(vi) DQN_All: Te DQN algorithm is used to generate
binary ofoading decisions for multiple users, with
evenly distributed bandwidth and computing re-
sources. Since the DQN algorithm can only gen-
erate discrete actions, this paper did not consider
the partial ofoading scheme of DQN.

(vii) HDMAPPO: Following the framework design idea
of the HDMAPPO algorithm in [29], this paper
proposes a dual-agent framework HDMAPPO al-
gorithm based on PPO (proximal policy optimi-
zation) for joint optimization of ofoading decision
and resource allocation.

5.3. Experimental Results and Analysis. Figure 7 compares
the changes in rewards and training episodes for fve of-
loading schemes. With the same batch of random seeds,
30 time slots and fve UEs are involved. As shown in the
fgure, the ofoading scheme based on the actor-critic
framework gradually smooths its curve as the training
progresses. Tis is because the policy network’s output
action is added with a normal distribution noise that de-
creases over time, enabling more exploration in the initial
phase and more exploitation in the later phase. Te “DQN
binary ofoading scheme” shows poor convergence and high
noise, indicating that the DQN algorithm is not suitable for
high-dimensional action spaces. Te HDMAPPO algorithm
exhibits large convergence oscillations during training. Tis
is because HDMAPPO is based on the PPO algorithm, which
is prone to high variance itself, resulting in unstable training.
In addition, the convergence curves of “DA-TD3 algorithm

binary and partial ofoading schemes” are better than those
of “DDPG binary and partial ofoading schemes,” since
TD3’s action search is superior to DDPG. TD3 employs
double Q learning to reduce the bias of action search and
improve the algorithm’s efciency. Furthermore, partial
ofoading outperforms binary ofoading, as it provides
more fexibility in scheduling tasks and makes full use of
limited communication bandwidth and computing

–26

–28

–30

–32

–34

–36

–38

Re
w

ar
d

0 200 400 600
Episode

800 1000

3 Layers
4 Layers
5 Layers

Figure 6: Reward under diferent net structure.

Table 4: Performance of DA-TD3 with diferent number of layers.

Number of layers Training duration (s) Average reward Maximum reward
3 362 −24.96 −27.71
4 392 −24.99 −27.36
5 435 −24.94 −27.27

–26

–28

–30

–32

–34

–36

–38

Re
w

ar
d

0 200 400 600
Episode

800 1000

DA-TD3_Part
DA-TD3_All
DQN_All

DDPG_Part
DDPG_All

Figure 7: Convergence performance comparison of diferent
schemes.

10 Journal of Electrical and Computer Engineering

resources, enabling efcient parallel computing of ofoading
tasks at local and edge nodes.

Figure 8 shows the system cost changes within one
episode under diferent ofoading schemes. Compared with
other schemes, the partial and binary ofoading schemes of
DA-TD3 achieved lower system costs at each time slot.
Specifcally, the average system costs of the 30 time slots
under the DA-TD3 partial and binary ofoading schemes
are 34.43% and 31.48% lower than those of the local-only
scheme, 23.35% and 19.9% lower than those of the full
ofoading scheme, and 18.01% and 14.32% lower than those
of the random ofoading scheme, respectively. In addition,
the performance of partial ofoading outperforms binary
ofoading at each time slot, with 4.3% lower average system
cost. By dynamically adjusting ofoading decisions and
optimizing resource allocation according to the time-
varying environment and task characteristics, DA-TD3
achieves adaptive minimization of system latency and en-
ergy consumption. Its online learning capability enables
efcient adaptation to dynamic MEC environment changes,
thereby signifcantly reducing the cost at each control
time slot.

Figures 9 and 10, respectively, present the performance
of the “DA-TD3 binary ofoading scheme” and the
“DA-TD3 partial ofoading scheme” in terms of time delay
under the conditions of the time weight coefcient ρ0 � 1 and
the energy weight coefcient ρ1 � 0. In the binary ofoading
scheme, three UEs are ofoaded to the edge nodes for
computation, resulting in a maximum time delay of
0.79 seconds. In contrast, in the partial ofoading scheme,
local and edge nodes are parallelly computed based on the
ofoading rate si(t), resulting in a reduced maximum time
delay to 0.52 seconds. In the binary ofoading scheme, when
the ofoading rate si(t) � 1, local computing resources will
be idle, causing resource waste. Terefore, the partial of-
loading scheme is more adaptable to the network envi-
ronment and task scenarios, with higher resource utilization,
and can signifcantly shorten the overall computation
time delay.

Figure 11 compares the successful ofoading quantities
at each time slot between the DA-TD3 scheme, where all
tasks are ofoaded, and the all-edge scheme with equally
distributed resources. Tis is done to validate the load
balancing efectiveness of DA-TD3 under the settings of
latency weight� 1 and energy weight� 0. Te results show
that the amount of successful ofoading of DA-TD3 is
higher than that of all-edge at each time slot. Overall, the
ofoading success rate of DA-TD3 (60.67%) is also superior
to that of all-edge (54.67%). Here, the max delay threshold
for successful ofoading is set as 1.2s.Tis demonstrates that
DA-TD3 can optimize ofoading decisions and resource
scheduling according to latency requirements, utilize
computing resources more fully, and thus achieve load
balancing to some extent.

Figure 12 illustrates the changes in system cost under
diferent schemes and varying numbers of UEs. Te time
weight coefcient ρ0 is set to 0.7, and the energy weight
coefcient ρ1 is set to 0.3, with UE numbers of 5, 10, 15, 20,

and 25. It can be observed from the fgure that the system
cost of all schemes increases as the number of UEs increases,
with the “DA-TD3 partial ofoading scheme” achieving the
lowest system cost. Although the “all-ofoading scheme” can
signifcantly reduce system energy consumption, in limited
resource conditions, an increasing number of UEs result in
less communication bandwidth and edge server computing
resources allocated to each user in the same time slot, leading
to an increase in transmission and computing latency. On
the other hand, the “all-local computing scheme” signif-
cantly increases system energy consumption. Te “DA-TD3
binary and partial ofoading schemes” can simultaneously
consider time delay and local energy consumption according
to the reward function, fully utilizing resources to achieve
the goal of reducing system cost. Among them, the of-
loading decision of the “DA-TD3 partial ofoading scheme”
is more fexible, leading to lower system cost and demon-
strating performance advantages.

Figure 13 compares the changes in system latency and
the number of UEs, with a time weight coefcient ρ0 � 1 and
an energy consumption weight coefcient ρ1 � 0. As the
number of UEs increases, the system latency of diferent
ofoading schemes also increases. From the fgure, it can be
seen that the performance of both the binary ofoading and
partial ofoading schemes gradually decreases when the
number of UEs exceeds 20. Tis is due to limited com-
munication bandwidth and computing resources, resulting
in limited optimization efect of the algorithm. Agent 1 tends
to schedule tasks locally to reduce system latency and ap-
proach the “all-local computation scheme.”

Figure 14 presents the variations of system energy
consumption with respect to the number of UEs, where the
weight coefcient for energy consumption ρ1 is set to 1 and
the weight coefcient for time ρ0 is set to 0. As the energy
consumption is calculated by accumulating the energy
consumption of all UEs in the same time slot, an increase in
the number of UEs will inevitably lead to an overall increase

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

Sy
ste

m
 co

st

0 5 10 15 20 25 30
Time slot

DA-TD3_All
DA-TD3_Part

All_Local
All_Edge
Random_Offlaod

Figure 8: System cost for a single time slot.

Journal of Electrical and Computer Engineering 11

in the system energy consumption.Te “DA-TD3 global and
partial ofoading schemes” outperform other schemes in the
fgure, because the ofoading decision of agent 1 is solely
guided by the system energy consumption as a reward.
Agent 1 tends to ofoad tasks to the edge node as a whole,
resulting in similar optimization performance between the
“DA-TD3 global ofoading scheme” and the “DA-TD3
partial ofoading scheme.”

To investigate the relationship between CPU fre-
quency of the MEC server and system cost, Figure 15
compares the system cost of diferent ofoading schemes
under diferent CPU frequencies of the MEC server. Te
weight coefcients for energy consumption ρ1 and time ρ0

are set to 0.3 and 0.7, respectively. Simulation results show
that, except for the “all-local computing scheme,” the
system cost of other schemes decreases with the increase
of the server computation frequency. Under the condition
of fxed server computation frequency, the “DA-TD3 joint
optimization scheme for binary and partial ofoading”
outperforms the other three schemes. As the CPU fre-
quency of the MEC server increases, agent 1 tends to
ofoad tasks to the edge node. Terefore, from the fgure,
we can observe that the performance gap between the joint
optimization schemes for binary and partial ofoading
gradually decreases when the server computation fre-
quency is greater than 10 GHz.

0. 00 0. 50

0. 76 0. 00

0 1

0. 1 0. 2 0. 3 0. 4

0. 5
0. 45

0. 49

0. 45 0. 00 0. 49

0. 00 0. 29 0. 33 0. 00 0. 28

0. 00 0. 52 0. 00

0 1 1 0 1

2 3 4

0. 5 0. 6 0. 7 0. 8 0. 9 1 s

0. 76
0. 52

0. 29
0. 33

0. 28

second

i

Si

Tlocal

Tup

Tcalc

Tlocal

Tup

Tcalc

Figure 9: Binary ofoading scheme latency of DA-TD3.

second

Tcalc

Tup

Tlocal

i

Si
Tlocal

Tup

Tcalc 0. 32 0. 28

0. 51 0. 30

0 1

0. 1 0. 2 0. 3 0. 4

0. 30 0. 31 0. 29

0. 13 0. 14 0. 22 0. 17 0. 17

0. 39 0. 31 0. 47

0. 33 0. 45 0. 38 0. 40 0. 36

2 3 4

0. 6 0. 7 0. 8 0. 9 1 s0. 5

0. 32
0. 28

0. 3
0. 31

0. 29

0. 13
0. 14

0. 22
0. 17
0. 17

0. 51
0. 3

0. 39
0. 31

0. 47

Figure 10: Partial ofoading scheme latency of DA-TD3.

12 Journal of Electrical and Computer Engineering

5

4

3

2

1

0

N
um

s o
f S

uc
ce

ss
fu

l O
ffl

oa
ds

1 2 3 4 5 6 7
Time Slot

5

4

3

2

1

0

Sy
ste

m
 d

el
ay

DA-TD3
All_Edge

DA-TD3
All_Edge
Max_delay

Figure 11: Number of ofoading successes per time slot.

6

5

4

3

2

1

Sy
ste

m
 co

st

5 10 15 20 25
Number of UEs

DA-TD3_Part
DA-TD3_All
Random_Offload

All_Local
All_Edge

Figure 12: Total system cost for diferent numbers of UEs.

Journal of Electrical and Computer Engineering 13

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Sy
ste

m
 d

el
ay

5 10 15 20 25
Number of UEs

DA-TD3_Part
DA-TD3_All

Random_Offload
All_Local

Figure 13: System latency for diferent numbers of UEs.

12

10

8

6

4

2

0

Sy
ste

m
 en

er
gy

 co
ns

um
pt

io
n

5 10 15 20 25
Number of UEs

DA-TD3_Part
DA-TD3_All

Random_Offload
All_Local

Figure 14: System energy consumption for diferent numbers of UEs.

1.1

1.0

0.9

0.8

0.7

Sy
ste

m
 co

st

8 9 10 11 12
MEC frequency

DA-TD3_Part
DA-TD3_All
Random_Offload

All_Local
All_Edge

Figure 15: Total system cost for diferent server computing frequencies.

14 Journal of Electrical and Computer Engineering

6. Conclusions

Tis paper studied an MEC system with multiple terminal
users concurrently executing multiple tasks and compared
two task ofoading strategies: binary ofoading and partial
ofoading. To realize the collaborative optimization of
ofoading decision and resource allocation, a dual-agent
DA-TD3 reinforcement learning algorithm was designed.
DA-TD3 adopts a continuous action space representation,
which is easier for learning and convergence compared to
the discrete action space in DQN. Te experimental results
show that both the binary and partial ofoading schemes
based on DA-TD3 can signifcantly reduce system latency
and local computation energy consumption, with partial
ofoading being more efective. Looking forward, future
research could consider expanding to large-scale MEC
systems with multiple servers and users, exploring collab-
oration and competition mechanisms between diferent user
tasks and servers, and designing efcient joint ofoading
decision and resource allocation optimization algorithms for
such complex environments. For the algorithm framework,
deep neural networks such as CNN and RNN could be
attempted to extract sophisticated features from the high-
dimensional state space, replacing the simply fully connected
network with limited representation capability, so as to
handle large-scale system state spaces and make better
decisions.

Data Availability

Te data used to support the fndings of this study are in-
cluded within the article.

Conflicts of Interest

Te authors declare that there are no conficts of interest
regarding the publication of this paper.

Acknowledgments

Tis research was funded by the National Natural Science
Foundation of China (Grant no. 62205005) and 2021 China
Universities Industry-University-Research Innovation
Fund—New Generation Information Technology In-
novation Project (Grant no. 2021ITA01022).

References

[1] C. Zhang and Y. Lu, “Study on artifcial intelligence: the state
of the art and future prospects,” Journal of Industrial In-
formation Integration, vol. 23, no. 1, Article ID 100224, 2021.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A
survey on mobile edge computing: the communication per-
spective,” IEEE Communications Surveys and Tutorials,
vol. 19, no. 4, pp. 2322–2358, 2017.

[3] P. Mach and Z. Becvar, “Mobile edge computing: a survey on
architecture and computation ofoading,” IEEE Communi-
cations Surveys and Tutorials, vol. 19, pp. 1628–1656, 2017.

[4] E. Mustafa, J. Shuja, S. K. uz Zaman et al., “Joint wireless
power transfer and task ofoading in mobile edge computing:

a survey,” Cluster Computing, vol. 25, no. 1, pp. 2429–2448,
2022.

[5] Y. Qian, J. Wu, R. Wang, F. Zhu, and W. Zhang, “Survey on
reinforcement learning applications in communication net-
works,” Journal of Communications and Information Net-
works, vol. 4, no. 2, pp. 30–39, 2019.

[6] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource al-
location for mobile edge computing: a deep reinforcement
learning approach,” IEEE Transactions on Emerging Topics in
Computing, vol. 9, no. 3, pp. 1529–1541, 2021.

[7] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning
based computation ofoading and resource allocation for
MEC,” in Proceedings of the 2018 IEEE Wireless Communi-
cations and Networking Conference (WCNC), pp. 1–6, Bar-
celona, Spain, April 2018.

[8] M. Tang and V. W. Wong, “Deep reinforcement learning for
task ofoading in mobile edge computing systems,” IEEE
Transactions on Mobile Computing, vol. 21, no. 6, pp. 1985–
1997, 2022.

[9] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian,
“Distributed deep learning-based ofoading for mobile edge
computing networks,” Mobile Networks and Applications,
vol. 23, no. 1, pp. 1–8, 2018.

[10] H. Xu, W. Huang, Y. Zhou, D. Yang, M. Li, and Z. Han, “Edge
computing resource allocation for unmanned aerial vehicle
assisted mobile network with blockchain applications,” IEEE
Transactions on Wireless Communications, vol. 20, no. 5,
pp. 3107–3121, 2021.

[11] Y. Wang, J. Liu, Y. Yin, Y. Tong, and J. Liu, “Space in-
formation network resource scheduling for cloud computing:
a deep reinforcement learning approach,” Wireless Commu-
nications and Mobile Computing, vol. 2022, Article ID
1927937, 16 pages, 2022.

[12] X. Chen, L. Jiao, W. Li, and X. Fu, “Efcient multi-user
computation ofoading for mobile-edge cloud computing,”
IEEE/ACM Transactions on Networking, vol. 24, no. 5,
pp. 2795–2808, 2015.

[13] R. Chen and X. Wang, “Maximization of value of service for
mobile collaborative computing through situation-aware task
ofoading,” IEEE Transactions on Mobile Computing, vol. 22,
no. 2, pp. 1049–1065, 2023.

[14] Y. Y. Cui, D. G. Zhang, T. Zhang, J. Zhang, and M. Piao, “A
novel ofoading scheduling method for mobile application in
mobile edge computing,” Wireless Networks, vol. 28, no. 6,
pp. 2345–2363, 2022.

[15] K. Sadatdiynov, L. Cui, L. Zhang, J. Z. Huang, S. Salloum, and
M. S. Mahmud, “A review of optimization methods for
computation ofoading in edge computing networks,” Digital
Communications and Networks, vol. 8, no. 1, pp. 1–13, 2022.

[16] Z. Tong, X. Deng, F. Ye, S. Basodi, X. Xiao, and Y. Pan,
“Adaptive computation ofoading and resource allocation
strategy in a mobile edge computing environment,” In-
formation Sciences, vol. 537, pp. 116–131, 2020.

[17] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu, “Deep
reinforcement learning-based joint task ofoading and
bandwidth allocation for multi-user mobile edge computing,”
Digital Communications and Networks, vol. 5, no. 1, pp. 10–17,
2019.

[18] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation of-
loading and resource allocation for cloud assisted mobile edge
computing in vehicular networks,” IEEE Transactions on
Vehicular Technology, vol. 68, no. 8, pp. 7944–7956, 2019.

[19] N. Zhao, Z. Ye, Y. Pei, Y. C. Liang, and D. Niyato, “Multi-
agent deep reinforcement learning for task ofoading in

Journal of Electrical and Computer Engineering 15

UAV-assisted mobile edge computing,” IEEE Transactions on
Wireless Communications, vol. 21, no. 9, pp. 6949–6960, 2022.

[20] H. Zhou, K. Jiang, X. Liu, X. Li, and V. C. Leung, “Deep
reinforcement learning for energy-efcient computation
ofoading in mobile-edge computing,” IEEE Internet of
Tings Journal, vol. 9, no. 2, pp. 1517–1530, 2021.

[21] S. Yang, G. Lee, and L. Huang, “Deep learning-based dynamic
computation task ofoading for mobile edge computing
networks,” Sensors, vol. 22, no. 11, p. 4088, 2022.

[22] T. P. Truong, T. V. Nguyen, W. Noh, and S. Cho, “Partial
computation ofoading in NOMA-assisted mobile-edge
computing systems using deep reinforcement learning,”
IEEE Internet of Tings Journal, vol. 8, no. 17, pp. 13196–
13208, 2021.

[23] Y. Wang, W. Fang, Y. Ding, and N. Xiong, “Computation
ofoading optimization for UAV-assisted mobile edge
computing: a deep deterministic policy gradient approach,”
Wireless Networks, vol. 27, no. 4, pp. 2991–3006, 2021.

[24] J. Wang, H. Ke, X. Liu, and H. Wang, “Optimization for
computational ofoading in multi-access edge computing:
a deep reinforcement learning scheme,” Computer Networks,
vol. 204, Article ID 108690, 2022.

[25] S. Zhang, H. Gu, K. Chi, L. Huang, K. Yu, and S. Mumtaz,
“DRL-based partial ofoading for maximizing sum compu-
tation rate of wireless powered mobile edge computing net-
work,” IEEE Transactions on Wireless Communications,
vol. 21, no. 12, pp. 10934–10948, 2022.

[26] X. Deng, J. Yin, P. Guan, N. N. Xiong, L. Zhang, and
S. Mumtaz, “Intelligent delay-aware partial computing task
ofoading for multiuser industrial internet of things through
edge computing,” IEEE Internet of Tings Journal, vol. 10,
no. 4, pp. 2954–2966, 2023.

[27] J. Yan, S. Bi, and Y. J. A. Zhang, “Ofoading and resource
allocation with general task Graph in mobile edge computing:
a deep reinforcement learning approach,” IEEE Transactions
on Wireless Communications, vol. 19, no. 8, pp. 5404–5419,
2020.

[28] J. Chen, Y. Yang, C. Wang, H. Zhang, C. Qiu, and X. Wang,
“Multitask ofoading strategy optimization based on directed
acyclic graphs for edge computing,” IEEE Internet of Tings
Journal, vol. 9, no. 12, pp. 9367–9378, 2021.

[29] Y. Sun and Q. He, “Computational ofoading for MEC
networks with energy harvesting: a hierarchical multi-agent
reinforcement learning approach,” Electronics, vol. 12, no. 6,
p. 1304, 2023.

[30] S. Fujimoto, H. Van Hoof, and D. Meger, “Addressing
function approximation error in actor-critic methods,” Pro-
ceedings of Machine Learning Research, vol. 80, pp. 1587–1596,
2018.

[31] T. P. Lillicrap, J. J. Hunt, A. Pritzel et al., “Continuous control
with deep reinforcement learning,” Computer Science, vol. 8,
no. 6, p. A187, 2015.

16 Journal of Electrical and Computer Engineering

