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Power quality disturbances (PQDs) can lead to signifcant operational and fnancial losses in power systems. Accurate detection
and classifcation of PQDs are essential for maintaining power quality and preventing power system failures. Tis research article
introduces an innovative approach for the precise detection and classifcation of single- and multiple-state power quality
disturbances (PQDs) using the Stockwell transform (ST) and a random forest classifer. To create realistic PQD signals, seventeen
distinct classes are generated in accordance with IEEE Standard 1159, employing mathematical equations implemented in
MATLAB software.Te ST is employed to extract relevant features from the PQD signals, which are subsequently utilized as input
for the random forest classifer. Te classifer employs bootstrapping sampling to generate multiple training sets from the original
dataset. Each training set is used to construct a decision tree by recursively partitioning the data based on signifcant features. To
mitigate overftting and enhance robustness, a random subset of features is selected at each node of the decision tree, thereby
reducing tree correlation.Te performance of the random forest classifer is compared with other widely utilizedmachine learning
classifers. Te results exhibit the efcacy of the proposed approach in accurately detecting and classifying PQ events, highlighting
its superiority over alternative methods.

1. Introduction

In the last few years, power quality (PQ) problems have
come up because smart grid technology and irregular loads
have been added to power systems. Tese problems are
caused by nonlinear loads such as electronic converters and
variable-speed drives, which cause voltage drops, harmonics,
interruptions, and other problems. Generations residing in
diferent places have added to the problem. To deal with
these problems successfully, disruptions need to be found
and put into the right classifcations. Researchers have used
signal processing and machine learning to look at PQ data
and extract features that can be used to classify it [1, 2].
Accurately detecting and classifying power quality problems
is important for keeping power systems reliable, fguring out

what causes them to be unreliable, and coming up with ways
to fx them. Also, it helps build more advanced tracking and
control systems that can adapt to changes in the grid. As
power systems change and incorporate new control tech-
nology and green energy sources, it will become more
important to deal with power quality issues. Modern power
systems need to keep researching PQ analysis methods in
order to work well and last for a long time [3].

Te precise detection and classifcation of power quality
disturbances (PQDs) are essential for maintaining a reliable
power supply, protecting electronic equipment, and en-
hancing power system performance. By identifying and
classifying these disturbances, suitable measures can be
taken to mitigate their negative efects. Understanding the
causes and sources of PQDs enables targeted solutions to
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minimise their occurrence and improve power system
resilience [4]. Tis is especially important in modern power
systems that integrate sensitive electronic equipment and
renewable energy. A continued focus should be placed on
the development of advanced techniques for detecting,
classifying, and mitigating PQDs to ensure a high-quality
power supply and efcient operation of the power system.
Correctly categorizing the signals of PQDs, especially
complex signals, becomes extremely difcult in tough and
noisy conditions. Many researchers have studied how to best
categorize PQDs during the past few decades. Feature ex-
traction and classifcation are the two key components of
these strategies. Te frst stage is to use signal processing
methods to glean useful information from the PQ noise [5].
Tis step is crucial because it helps distinguish between
diferent kinds of disruptions, which is necessary for later
classifcation. For the successful implementation of classi-
fcation, improved recognition at the feature extraction stage
is crucial [6].

Power quality disturbances encompass various issues
such as sag, swell, interruptions, voltage fuctuations, har-
monics, notching, and transients. Accurately detecting and
classifying PQDs in power systems is crucial for identifying
their causes and implementing appropriate solutions. Tis
research aimed to address this challenge by leveraging ad-
vanced machine learning techniques to efectively identify
and classify PQDs based on their specifc characteristics. Te
detection and classifcation of PQDs are particularly chal-
lenging due to the complex and overlapping nature of the
signals involved. Successful identifcation and classifcation
of PQDs require both robust feature extraction techniques
and efcient classifers. By developing suitable methods for
feature extraction and implementing efective classifcation
algorithms, this research contributes to the feld of power
quality analysis and facilitates the identifcation and miti-
gation of PQDs [7]. Once PQD signals are generated, signal
processing techniques are employed to extract relevant
features from signals belonging to diferent classes. Tese
extracted features are utilized to train a machine learning
classifer, enabling the identifcation of various PQDs.
Subsequently, the features of the test signal data are fed into
the trained classifer, allowing the classifcation of each PQD
using machine learning methods [8].

1.1. Literature Review. A robust detection technique is re-
quired to identify power quality issues across a wide fre-
quency range, spanning from high-frequency sharp changes
up to 1 kHz to low frequencies of 50Hz. Tis technique
should possess the ability to extract features and classify
power quality events with robustness while maintaining low
space and time complexity in its implementation. However,
signal processing techniques face limitations due to Hei-
senberg’s uncertainty principle, which hinders the simul-
taneous enhancement of time and frequency resolution. Te
Fourier transform (FT) ofers excellent frequency resolution
but lacks time resolution, rendering it inadequate for real-
time power signal analysis. Te short-time Fourier trans-
form (STFT) divides nonstationary signals into windows, yet

it sufers from improper window size selection. Wavelet
transform (WT) overcomes some limitations but exhibits
higher technical complexity and performance degradation in
noisy environments. To address these challenges, the S-
transform (ST) combines the advantages of WT and
STFT, enabling robust noise resistance and accurate de-
tection of both low- and high-frequency events. ST con-
structs a feature matrix utilizing frequency-dependent
resolution, which can be efectively employed for the clas-
sifcation of power quality events using machine learning
classifers [9].

As mentioned earlier, power quality interruptions have
a negative impact on system efciency. Te literature sug-
gests various smart approaches for automatic recognition of
PQDs [10]. Tese approaches typically involve two main
steps: (i) signal analysis and feature extraction and (ii) PQD
classifcation. Signal analysis techniques such as Fourier
transform (FT) [11], short-time Fourier transform (STFT)
[12, 13], wavelet transform (WT) [14, 15], and S-transform
(ST) [16] have been successfully employed to analyse signals
in the time and frequency domains. Tese methods extract
relevant features for further analysis. Considering the lim-
itations of signal processing-based fault event approaches,
this study proposes a PQD identifcation method utilizing
the S-transform. Te selection of appropriate features re-
mains difcult, necessitating developments in statistical
evaluation and machine learning techniques [17]. Following
the feature engineering (FE) phase, the feature selection (FS)
procedure is used to select a reduced number of the best
features that have a strong relationship with the output
classes. Because of how features work and how they relate to
each other, FS is seen as an extra step that comes before
classifcation. It requires putting together a feature vector
with the most important features based on how they relate to
the output classes.

Trough the use of the Hilbert–Huang transform (HHT)
and the weighted bidirectional-extreme learning machine
(WBELM), Sahani and Dash presented a real-time method
for detecting and classifying PQDs. Online power quality
monitoring systems benefted greatly from their method,
which beats competing classifers [25]. Using sparse signal
decomposition (SSD) on an overcomplete hybrid dictionary
(HD) matrix, Manikandan et al. suggested a new method for
detecting and classifying PQDs. Te method is well suited
for PQ monitoring networks as it captures morphological
details and extracts PQ features for categorization [26].
Another approach [27] utilizes a quick time-time transform
and a residual-extreme learning machine to detect and
classify power quality issues in wind-grid integrated systems.
Tis method optimizes computational speed and demon-
strates accuracy even in the presence of noisy signals.
Tirumala et al. suggested an automatic recognition tech-
nique that combines adaptive fltering with a multiclass
support vector machine. When dealing with PQDs singly or
in tandem, their strategy proved efective, resilient, and
accurate [21]. Hole and Naik analysed PQ signals based on
IEEE 1159-2009 standards, employing mathematical para-
metric models and the discrete wavelet transform (DWT).
Machine learning algorithms such as k-nearest neighbors
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(KNN) and Naive Bayes (NB) were used for signal classi-
fcation [28]. Markovska et al. implemented a real-time PQ
event classifer that could classify 21 types of single and
combination PQDs, even when they occurred simulta-
neously. Implementing a zero-crossing detector, an efcient
feature extraction algorithm, and an optimized, noise-
resistant classifcation were the research goals. Te paper
also described a LabVIEW-based RF classifcation technique
and a zero-crossing detection software solution. Tey found
that the classifer was accurate even with considerable white
Gaussian noise. Classifer processing satisfed real-time
needs. It was validated through experiments generating
disturbed voltage signals and comparing them to actual
power grid measurements. Tis real-time classifer has po-
tential applications in developing distributed systems for
acquiring, transferring, monitoring, and analysing PQ data
in power grids [29]. Saxena et al. utilized support vector
machines (SVMs) for feature extraction in power quality
event classifcation. Tey achieved high accuracy by tuning
SVM parameters using the augmented crowd search algo-
rithm (ACSA) and constructing three SVM models after
selecting relevant characteristics using the principal com-
ponent analysis (PCA). Statistical analysis allows for
a comparison of the results with those of other methods.
Combining SVM with both signal-processing methods
yields promising outcomes [30]. Most research on PQD
classifcation relies on machine learning models with
manually extracted features from real or simulated signals.
Turovic et al. introduced a deep learning approach for di-
rectly classifying voltage sag types from three-phase voltage
data. Two datasets are generated for model training and
validation. Tis [31] model employs a recurrent neural
network, specifcally the LSTM architecture, featuring three
LSTM layers, two 1D convolutional layers between LSTM
pairs, two fully connected layers, and a fnal softmax layer.
Temodel demonstrates an impressive accuracy of over 92%
on the validation dataset. However, when applied to real-
world data, it exhibits slightly reduced performance due to
various factors, including the presence of harmonics,
complex voltage sag combinations, and diferences in
sampling frequencies between real and artifcial datasets. In
[32], the authors introduce an innovative end-to-end ap-
proach that eliminates manual feature extraction. Instead, it
generates synthetic voltage signals using mathematical
formulas for voltage sags. A confgurable voltage sag gen-
erator creates training and validation datasets from these
signals. Multiple end-to-end LSTM classifers are trained
using this synthetic data to classify voltage sags based on
ABC classifcation. Te top-performing model achieved an
impressive accuracy rate of over 90% on real-world data.
Tis approach streamlines research by automating feature
extraction and could beneft from standardised synthetic
datasets. Table 1 provides an overview of recent publications
focusing on the detection and classifcation of PQDs.

1.2. Contribution and Organization. Tis research in-
troduces an algorithm for accurately classifying power
quality disturbances based on the parameters defned in

IEEE Standard 1159-2019. Te algorithm successfully clas-
sifes both single and multiple PQDs. Te PQD signals were
generated and exported using MATLAB, while the sub-
sequent analysis was conducted in Python.

Te key contributions of this study are as follows:

(1) MATLAB was used to simulate and generate PQD
signals, including the corresponding disturbances,
providing essential samples for the research.

(2) Te S-transform was employed to extract features
from the PQ signals, utilizing the Stockwell Library
in Python to perform the Stockwell transform.

(3) After extracting the feature vector, it was employed
in conjunction with various classifers such as KNN,
SVM, DT, and RF to classify seventeen distinct
PQDs. Te sklearn library, which ofers a range of
machine learning tools in Python, was utilized for
this purpose.

Te remaining sections of this work are organized as
follows: Section 2 presents the details of the PQDs con-
sidered in this study, providing a comprehensive un-
derstanding of their characteristics. Section 3 describes the
principle of S-transform (ST) feature extraction and outlines
the approach for classifying PQDs using the extracted fea-
tures. In Section 4, the results are presented and a com-
parative performance analysis is conducted to evaluate the
efectiveness of the proposed method. Section 5 concludes
the work by discussing the signifcant fndings obtained
from the study and highlighting potential future directions
for further research and development in the feld of PQD
detection and classifcation.

2. Power Quality Disturbances

Tere are a total of 17 distinct types of PQD signals taken
into account in this investigation. All PQDs for which
synthetic equation data are available are included in Table 2.

3. Proposed Methodology

Power quality disturbance signals are known for their
nonstationary nature, as their spectral characteristics change
over time. Te ability to accurately describe and classify the
type of PQD present in a given nonstationary signal relies on
the extraction of suitable features. In the proposed meth-
odology, the detection of PQDs within nonstationary signals
is accomplished through the utilization of the S-transform.
Subsequently, classifcation of the detected disturbances is
performed using a random forest (RF) classifer. Te S-
transform is a powerful tool that captures the time-
frequency information of signals and overcomes the limi-
tations of fxed-width windows and complex window
function selection encountered by other methods. By ap-
plying the ST to the nonstationary PQ signals, important
features that characterize the diferent types of disturbances
can be extracted. Tese features provide valuable insights
into the underlying characteristics of the PQDs and serve as
discriminative factors for subsequent classifcation. To
classify the detected disturbances, a random forest classifer
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is employed.Te RF classifer is a popular ensemble learning
algorithm that combines multiple decision trees to achieve
robust and accurate classifcation. It leverages the collective
decision-making capabilities of individual trees to make
predictions based on the extracted features from the PQD
signals. Te RF classifer excels at handling complex and
high-dimensional datasets, making it well suited for the
classifcation of PQDs. By combining the ST for detection
and the RF classifer for classifcation, the proposed
framework ofers a comprehensive approach for PQD
analysis. It enables the identifcation and characterization of
diferent types of PQDs in nonstationary signals, providing
valuable insights for further analysis and mitigation strat-
egies in power systems.

3.1.Teory of Stockwell Transform. In 1996, Stockwell came
up with the Stockwell transform (ST) method, which lets
signs that change over time be looked at in more than one
way. Unlike other methods, ST’s output does not change
when the input data are noisy [14]. Because of this, ST is
the best way to get local phase information and a reso-
lution in the time-frequency domain that changes with
frequency. ST uses a set relative bandwidth for multi-
resolution analysis to flter signals. Continuous wavelet

transform (CWT) uses a mother wavelet that stays the
same, while ST uses a mother wavelet that changes to
fgure out the local phase.

Te CWT for a signal x (t) is defned by the following
equation:

ω(τ, d) � 
∞

− ∞
x(t)w(t − τ, d)dt, (1)

where τ is the wavelet position and d is the scale parameter.
Te S-transform of x (t) is a CWT multiplied by the phase
factor.

S(τ, d) � 
∞

− ∞
x(t)g(t − τ, d)e

− j2πfτdt. (2)

In the ST, the mother wavelet (window function) is
picked based on the frequency content of the signal instead
of scale d, which is how it is done in the CWT. Tis is stated
to be

g(τ, d) �
1

σ(f).
���
2π

√ e
− t2/2σ2( )e

j2πft
, (3)

where σ(f) � 1/a + b|f| represents Gaussian windowwidth.
From equations (2) and (3) for a � 0, the ST can be

rewritten as

Table 2: PQD signals.

PQD class Synthetic equations

Normal (C1) A sin(ωt)

whereA � 1(P.U) andω � 100π rad/sec

Sag (C2) A[1 − α(u(t − t1) − u(t − t2))]sin(ωt)

where, 0.1≤ α≤ 0.8, T≤ (t2 − t1)≤ 9T

Swell (C3) A[1 + β(u(t − t1) − u(t − t2))]sin(ωt)

where, 0.1≤ β≤ 0.8, T≤ (t2 − t1)≤ 9T

Interruption (C4) A[1 − ρ(u(t − t1) − u(t − t2))]sin(ωt)

where, 0.9≤ ρ≤ 1, T≤ (t2 − t1)≤ 9T

Harmonics (C5) sin(ωt) + 
7
n�3αn sin(nωt)

where, 0.05≤ α3, α5, α7 ≤ 0.15 and α2n � 1

Flicker (C6) [1 + λ sin(kωt)]sin(ωt)

where, 0.1≤ λ≤ 0.2,5≤ k≤ 50Hz

Oscillatory transient (C7)
sin(ωt) + βe− ((t− t1)/τ) ∗ sin(ωn(t − t1))∗ [u(t − t2) − u(t − t1)]

where, 0.8≤ β≤ 0.8,0.5T≤ (t2 − t1)≤ 3T,

8ms≤ τ30ms and 300Hz≤fn ≤ 900Hz

Notch (C8)
sin(ωt) − sign(sig(ωt))sin(ωt)∗

[
9
n�0K × u(t − (t1 + 0.2n)) − u(t − (t2 + 0.2n)) ]

where, 0.1≤K≤ 0.4, 0.01T≤ (t2 − t1)≤ 0.05T and 0≤ t2, t1 ≤ 0.5T

Harmonics + sag (C9) A[1 − α(u(t − t1) − u(t − t2))]sin(ωt)∗ [sin(ωt) + 
7
n�3αn sin(nωt)]

Harmonics + swell (C10) A[1 + β(u(t − t1) − u(t − t2))]sin(ωt)∗ [sin(ωt) + 
7
n�3αn sin(nωt)]

Harmonics + interruption (C11) A[1 − ρ(u(t − t1) − u(t − t2))]sin(ωt)∗ [sin(ωt) + 
7
n�3αn sin(nωt)]

Harmonics + ficker (C12) [1 + λ sin(kωt)]sin(ωt)∗ [sin(ωt) + 
7
n�3αn sin(nωt)]

Harmonics + oscillatory transients (C13) sin(ωt) + βe− ((t− t1)/τ) ∗ sin(ωn(t − t1))∗ [u(t − t2) − u(t − t1)]∗ [sin(ωt) +


7
n�3αn sin(nωt)]

Harmonics + notch (C14) sin(ωt) − sign(sig(ωt))sin(ωt)∗
[

9
n�0K × u(t − (t1 + 0.2n)) − u(t − (t2 + 0.2n)) ] × [sin(ωt) + 

7
n�3αn sin(nωt)]

Flicker + sag (C15) A[1 − α(u(t − t1) − u(t − t2))]sin(ωt)∗ [1 + λ sin(kωt)]sin(ωt)

Flicker + swell (C16) A[1 + β(u(t − t1) − u(t − t2))]sin(ωt)∗ [1 + λ sin(kωt)]sin(ωt)

Flicker + interruption (C17) A[1 − ρ(u(t − t1) − u(t − t2))]sin(ωt)∗ [1 + λ sin(kωt)]sin(ωt)
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S(τ, d) � 
∞

− ∞
x(t)

b|f|
���
2π

√ e
− (τ− t)2f2b2/2( )e

− j2πftdt. (4)

Using the Fourier transform, we can mathematically
defne the s-transform as

S(τ, d) � 
∞

− ∞
X(α + f)e

− t2f2/2( )e
− j2πft

. (5)

Te discrete form of the S-transform can be obtained by
combining the fast Fourier transform (FFT) with the con-
volution theorem.

Discrete S-transform: Setting T as the sample interval
results in the discrete PQ signal x(KT) rather than the
continuous x(t). Te discrete Fourier transform (DFT) of
the sampled signals, for K� 0 to N − 1, is shown in the
following equation:

X
n

NT
  � 

N− 1

K�0

1
N

x(KT)e
j2π(nk/N)

, (6)

where n� 1, 2, . . .. . ., N − 1. By using DFTand the IDFT, the
ST of a discrete-time series x[n] for τ � jT andf � n/NT
can be written as

S jT,
n

NT
  � 

N− 1

K�0
X

m + n

NT
 G(m, n)e

(j2πmk/N)
, (7)

where G(m, n) � e− jπ2m2/n2 .
Te amplitude of the S-transform can be expressed as

equation (8) and the phase as equation (9):

amplitude � A(τ, f) � s jT,
n

NT
 




, (8)

phase � ϕ(τ, f) � tan− 1imag(S[jT, (n/NT)])

real(S[jT, (n/NT)])
. (9)

3.2. Feature Extraction. Te outcome of ST is a 2D complex
matrix, which gave valuable time-frequency data fromwhich
PQD features were retrieved by calculating several statistics.
Te features used and the number of features are important
parts of making the classifer more accurate and faster. Te
nine features (k1–k9) extracted in this work included the
newly developed disturbance energy ratio (DER) index and
other basic statistical measures such as maximum, mini-
mum, average value, standard deviation, variance, skewness,
and kurtosis and more specifc ones such as RMS value and
DER (disturbance energy ratio). Te equations shown in
Table 3 were used to derive these features. From the matrix
created by performing the S-transform, all values were
determined and expressed as absolute values. M and N
specifed the rows and columns, respectively, of the matrix.
In this work, by utilizing ST, a total of nine features are
extracted from the PQDs depicted in Table 3.

3.3. Random Forest Classifer. Random forest can be applied
to classifcation and regression. It employs numerous de-
cision trees to form a “forest” of trees. To make more

accurate predictions than any single tree, this approach
combines the knowledge of several weak learners (decision
trees). In a random forest method, every decision tree
employs an arbitrary subset of training data and an arbitrary
combination of characteristics at each node. Random forest
most signifcant characteristics are bootstrap resampling,
random feature selection, and out-of-bag error estimation.
Many trees are grown by repeating this technique. Each tree
in the forest makes a guess during the prediction phase, and
the ultimate prediction is reached by averaging all of the
trees’ predictions, sometimes through some sort of voting
procedure [33]. Assume there are X input data points with
X � x1, x2, x3, . . . . . . xm being an m-dimensional vector.
Tis information is sent to a group of C trees, whose names
are denoted by T1(X), T2(X), T3(X), . . . . . . .TC(X). Te
group of trees then predicts that the output will be a value Y.
After all the trees have made their predictions, an average is
calculated to be used as the fnal forecast.

Here are the hyperparameters for a random forest
classifer:

(i) n_estimators: the forest contains 100 trees
(ii) criterion: “gini” is the function used to measure the

quality of a split
(iii) min_samples_split: an internal node can only be

split if it has at least 2 samples
(iv) min_samples_leaf: a leaf node must have at least 1

sample
(v) min_weight_fraction_leaf: a leaf node must have

a minimum weighted fraction of the sum total of
weights, which is set to 0 by default

3.4. Performance Analysis. Various performance metrics are
essential for evaluating classifcation models and assessing
the efectiveness of their predictions. One commonly used
metric is the confusion matrix, which provides a correlation
between the true labels and the model’s predictions. In the
confusion matrix, each row represents the projected in-
stances of a particular class, while each column represents
the actual instances of that class. It serves as a foundation for
deriving other performance statistics. While the confusion
matrix itself is not a performance statistic, it serves as
a crucial starting point for calculating various metrics. In
Table 4, an example of a confusion matrix for a binary
classifcation problem is presented. Tese metrics enable us
to assess the classifcation model’s performance from dif-
ferent angles and determine its accuracy, precision, recall,
and other relevant measures. By utilizing these performance
metrics, we gain valuable insights into the model’s classi-
fcation capabilities and its ability to correctly predict the
classes of interest.

Te confusion matrix used in this evaluation provides
valuable insights into the performance of the classifer. It
comprises four evaluation factors: true positive (TP), true
negative (TN), false positive (FP), and false negative (FN).
Tese factors are depicted in each cell of the confusion
matrix. Te accuracy of the classifer, which serves as an
overall measure of its performance, is calculated using the
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following equation and is presented as a result of this
evaluation:

accuracy �
TP + TN

TP + FP + TN + FN
. (10)

3.4.1. Precision. Precision is the ratio of true positives to the
total number of positives that were predicted:

precision �
TP

TP + FP
. (11)

3.4.2. Recall. Te percentage of true positives to all positives
in the ground truth is called the recall:

recall �
TP

TP + FN
. (12)

3.4.3. F1-Score. Te F1-score metric takes both precision
and recall into account. Te F1-score is calculated using the
harmonic mean of equations (11) and (12).Te equation is as
follows:

F1 �
2 × precision × recall
precision + recall

. (13)

4. Results and Discussion

4.1. Dataset Preparation. Te authors synthetically generate
PQDs using MATLAB 2017 and IEEE 1159. Tis study
examines sampling frequencies of 3.2 kHz and a signal-to-
noise ratio (SNR) of 40DB. Table 5 presents the seventeen
diferent types of PQDs (C1–C17) considered in the re-
search. Te authors produce a total of 20,000 instances of

these classes. To perform PQD classifcation, a dataset
containing disturbance details is necessary. Te authors
generated this dataset by randomly simulating and gener-
ating signals with abnormalities. Figure 1 depicts the ST
contour of PQD signals, demonstrating that distortion in the
ST contour occurs whenever a disturbance happens.

4.2. Results of Classifer. Te results of the classifcation are
shown as a confusion matrix with 17×17 cells. Elements on
the diagonal indicate correctly classifed PQDs, while those
of the diagonal indicate incorrectly categorized PQDs. Te
KNN confusion matrix in Table 6 clearly illustrates the
signifcant number of misclassifcations that have occurred.
It is concerning that 27 sag signals have been incorrectly
classifed, with 12 being identifed as interruptions, 3 as
fickers, 1 as interruptions with harmonics, and 11 as sags
with fickers. Similarly, 7 swell signals have been mistakenly
categorized as 6 fickers and 1 as swell with ficker, while 23
interruption signals have been misidentifed as 11 sags, 2
fickers, 1 interruption with harmonics, and 9 fickers with
interruptions. Te misclassifcation of 44 harmonic signals
as 5 sags with harmonics, 9 fickers with harmonics, and 30
notches with harmonics is also a cause for concern. In
addition, 14 ficker signals have been mistakenly categorized
as 1 sag, 1 swell, 11 sags with fickers, and 1 swell with ficker,
while 35 oscillatory transient signals have been misidentifed
as 4 harmonics, 7 swells with harmonics, and 14 oscillatory
transients with harmonics. Te misclassifcation of 29 notch
signals as 16 interruptions with harmonics and 13 sags with
fickers is also alarming. Furthermore, 19 sags with har-
monic signals have been misclassifed as 3 sags, 1 in-
terruption, and 15 interruptions with harmonics, while 32
swell with harmonic signals have been mistakenly catego-
rized as 6 swells and 26 oscillatory transients. Te mis-
classifcation of 14 interruptions with harmonics signals as 1

Table 4: Confusion matrix for binary classifcation problem#.

Prediction

Truth TP FN
FP TN

#Table 4 is reproduced from the study by Ravi and Kumar 2023 [16].

Table 3: Features extracted from PQDs.

Sl. no Features Formula

1 Maximum value M � max Ajn 

2 Minimum value m � min Ajn 

3 Mean value μ � (
M
j�1

N
n�1Ajn/M.N)

4 RMS value RMS �
�����������������
(

M
j�1

N
n�1A

2
jn/M.N)



5 Disturbance energy ratio DER � (
freq�3200
freq�50 RMSj/

freq�49
freq�0 RMSj)

6 Standard deviation σ �
�������������������������������


M
j�1

N
n�1(Ajn − μj)

2/(M − 1)(N − 1)


7 Variance σ2 � 
M
j�1

N
n�1(Ajn − μj)2/(M − 1)(N − 1)

8 Skewness SKEWϕ � 
M
j�1

N
n�1(|ϕjn| − μ(ϕ)j)

3/(M.N.σ3ϕ)

9 Kurtosis KURT � 
M
j�1

N
n�1(|Ajn| − μj)

4/(M.N.σ4)
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sag, 1 interruption, 10 sags with harmonics, and 2 fickers
with harmonics is also a cause of concern. Moreover, 36
fickers with harmonics signals have been mistakenly cate-
gorized as 36 notches, and 18 oscillatory transients with
harmonics have been incorrectly categorized as 1 ficker, 5
oscillatory transients, and 12 fickers with harmonics. Tere
is a misclassifcation of 22 notches with harmonics as 11
harmonics and 11 notches.

Finally, 42 sags with fickers have been misclassifed as 3
sags, 8 harmonics, 3 swells with harmonics, 10 interruptions
with harmonics, 9 swells with fickers, and 9 interruptions
with fickers. In addition, 10 swells with fickers have been
misidentifed as swell with harmonics, and 17 interruptions
with fickers have been incorrectly categorized as 5 sags, 6
interruptions, and 6 fickers.

Table 7 presents the confusion matrix produced by the
SVM; from this, it can be inferred that a total of 16 sag
signals, including 6 interruptions, 1 sag with harmonics,
and 9 sags with fickers, have been incorrectly categorized.
13 interruptions have been misidentifed as 10 sags and 3
interruptions with harmonics. 24 harmonics are mistakenly
categorized as 2 sags with harmonics and 22 fickers with
harmonics. 7 fickers are incorrectly categorized as 2 sags
and 5 sags with fickers. 15 oscillatory transients have been
misidentifed as 10 swells with harmonics and 5 oscillatory
transients with harmonics. 30 sags with harmonics are
incorrectly categorized as 4 harmonics, 23 interruptions
with harmonics, and 3 fickers with harmonics. 10 swells
with harmonics signals are misidentifed as notches with
harmonics. 34 interruptions with harmonics are incorrectly
categorized as 31 sags, 1 interruption, 1 ficker with har-
monics, and 1 interruption with fickers. 28 fickers with
harmonics are mistakenly categorized as 5 sags, 6 har-
monics, 4 oscillatory transients, and 13 oscillatory tran-
sients with harmonics. 22 oscillatory transients with
harmonics are misclassifed as 7 sags with harmonics and
15 notches with harmonics. 56 notches with harmonics
signals are mistakenly categorized as 35 sags with har-
monics and 21 sags with fickers. 45 sags with fickers have

been misidentifed as 19 swells with harmonics and 26
interruptions with harmonics. 8 interruptions with ficker
have been misidentifed as 1 ficker and 7 interruptions
with harmonics.

Table 8 presents the confusion matrix for DT, which
reveals that 7 sags are incorrectly categorized as 3 in-
terruptions and 4 sags with fickers.Tere is misclassifcation
of 24 harmonics as 13 fickers with harmonics and 10
notches with harmonics. 11 fickers are incorrectly catego-
rized as 4 sags, 1 swell, and 6 sags with fickers. Tere is

Table 5: Single-state and multiple-state PQDs.

Class Type of PQDs
C1 Normal sinusoidal
C2 Sag
C3 Swell
C4 Interruption
C5 Harmonics
C6 Flicker
C7 Oscillatory transient
C8 Notch
C9 Harmonics + sag
C10 Harmonics + swell
C11 Harmonics + interruption
C12 Harmonics + ficker
C13 Harmonics + oscillatory transient
C14 Harmonics + notch
C15 Flicker + sag
C16 Flicker + swell
C17 Flicker + interruption
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Figure 1: ST contour of PQD signals.
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a misclassifcation of 15 sags with harmonics as 7 in-
terruptions with harmonics and 8 fickers with harmonics. 4
swells with harmonics are mistakenly categorized as 4
fickers. 7 interruptions with harmonics are incorrectly
categorized as 7 sags with harmonics. 10 fickers with har-
monics are wrongly categorized as 2 fickers and 8 in-
terruptions with harmonics. 4 oscillatory transients with
harmonics are wrongly categorized as 4 sags with fickers.
Tere has been a misidentifcation of 7 notches with har-
monics as 7 sags with harmonics. 7 sags with fickers are
incorrectly categorized as 7 harmonics. 2 interruptions with
fickers are wrongly categorized as 1 ficker and 1 notch with
harmonics.

Te RF confusion matrix is represented in Table 9; from
this, we observe that 7 of the harmonic signals are incorrectly
categorized as fickers with harmonics. 15 sags with har-
monic signals are misclassifed as 1 harmonics, 11 in-
terruptions with harmonics, and 3 fickers with harmonics.
Tere are 8 cases of incorrect classifcation of interruption
with harmonic signals as sags with harmonics. 17 fickers
with harmonic signals are misclassifed as 7 harmonics and
10 interruptions with fickers. 7 sags with ficker signals are
misclassifed as 5 harmonics and 2 interruptions with
harmonics. Figures 2(a)–2(c) depict the performance met-
rics of RF, including precision, recall, and F-score,
respectively.

Table 6: Confusion matrix of KNN.

True
PQDs

Predicted PQDs by KNN
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

C1 353
C2 312 12 3 1 11
C3 368 60 1
C4 11 307 2 1 9
C5 291 5 9 30
C6 1 1 0 338 11 1
C7 14 351 7 14
C8 332 16 13
C9 3 1 359 15
C10 6 26 291
C11 1 1 10 336 2
C12 36 292
C13 1 5 12 342
C14 11 11 350
C15 3 8 3 10 304 9 9
C16 10 345
C17 5 6 6 340

Overall accuracy� 93.41%

Table 7: Confusion matrix of SVM.

True
PQDs

Predicted PQDs by SVM
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

C1 353
C2 323 6 1 9
C3 375
C4 10 317 3
C5 311 2 22
C6 2 345 5
C7 371 10 5
C8 361
C9 4 348 23 3
C10 313 10
C11 31 1 317 1 1
C12 5 6 4 298 13
C13 7 338 15
C14 35 316 21
C15 19 26 301
C16 355
C17 1 7 349

Overall accuracy� 94.83%
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4.3. Overall Comparison (RF vs. DT vs. SVM vs. KNN).
Table 10 summarises the performance of all the algorithms
employed in this work. In order to validate the efectiveness
of the RF algorithm compared to other ML algorithms,
a comparison has been done through a line graph, as shown
in Figures 3(a)–3(c). When there is no disturbance, the
precision, recall, and F-score values are almost as close to
1.00 as all the algorithms allow.

During swell, we can observe all performance metrics
values as 0.98 with the KNN algorithm, whereas the rest
retains the same value of 1.00. Te RF algorithm gives
performance metrics a value of 1.00 during sag, but other
algorithms give a value between 0.86 and 0.99. RF algo-
rithm achieves a precision value of 1.00 during in-
terruption, whereas KNN, SVM, and DT have precision

values of 0.94, 0.98, and 0.99, respectively. However, the
recall and F-score values for all algorithms ranged from
0.89 to 0.98, with none of them achieving a value of 1.00.
During harmonics, we observed varying performance
metrics with all four algorithms. Te precision values
ranged from 0.90 to 0.97, and none of them reached 1.00.
Te RF algorithm performed better in terms of recall and F-
score, with values of 0.98 and 0.99, respectively. KNN,
SVM, and DT gave recall values of 0.87, 0.93, and 0.93,
respectively. Te F-score of KNN and SVM was 0.89,
whereas DT had F-scores of 0.95. In the case of ficker, RF
showed high performance with an F-score of 1.0, while
KNN and SVM had lower F-scores of 0.95 and 0.99, re-
spectively. Te recall values for DT, KNN, and SVM were
0.97, 0.96, and 0.98, respectively.

Table 8: Confusion matrix of DT.

True
PQDs

Predicted PQDs by decision tree
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

C1 353
C2 332 3 4
C3 375
C4 3 327
C5 311 13 10 1
C6 4 1 341 6
C7 386
C8 361
C9 363 7 8
C10 4 319
C11 7 343
C12 2 8 318 1
C13 356 4
C14 7 365
C15 7 329
C16 355
C17 1 1 355

Overall accuracy� 98.09%

Table 9: Confusion matrix of random forest.

True
PQDs

Predicted PQDs by random forest
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

C1 353
C2 339
C3 375
C4 330
C5 328 7
C6 352
C7 386
C8 361
C9 1 363 11 3
C10 323
C11 8 339
C12 7 311 10
C13 360
C14 372
C15 5 2 339
C16 355
C17 1 356

Overall accuracy� 99.01%
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Figure 2: (a) Precision of diferent PQD classes with RF. (b) Recall with RF for diferent PQD classes. (c) F-score with RF for diferent PQD classes.
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During the oscillatory transient, RF and DT achieved
a perfect F-score of 1.0, while KNN and SVM had lower
values. In the case of a notch with harmonics, KNN had the
lowest performance metric values compared to the other
algorithms, while RF, DT, and SVMhad perfect values of 1.0.
For sag with harmonics, RF had the highest precision value
of 0.98, while SVM, KNN, and DT had values of 0.88, 0.96,
and 0.96, respectively. Te recall values for the same algo-
rithms were 0.95, 0.92, 0.96, and 0.98, respectively. Te F-
score values were 0.9, 0.95, 0.96, and 1.0, respectively. Except
for KNN and SVM, all other algorithms achieved a precision
of 1.00 during swell with harmonics, with KNN and SVM
obtaining 0.90 and 0.91, respectively. In terms of recall, RF
achieved a value of 1.00, while KNN, SVM, and DTobtained
0.9, 0.97, and 0.99, respectively. Te RF algorithm had an F-
score of 1.00, but KNN, SVM, and DT had F-scores of 0.89,
0.94, and 0.99, respectively. During ficker with harmonic
performance of all the ML algorithms with precision of 0.99,
where RF produces 0.97. Te RF, DT, and KNN all have 0.96
and 0.95, respectively, and the SVM gives 0.9. During os-
cillatory transients with harmonics, RF performed similarly,
with a performance metric value of 1. DT, KNN, and SVM
had precision values of 1.0, 0.96, and 0.95, respectively; recall
values of 0.99, 0.95, and 0.94, respectively; and F-score values
of 0.99, 0.95, and 0.94, respectively. During the notch with
harmonics, precision, and recall, the F-score value with the
SVM algorithm is noted as 0.94, 0.85, and 0.89, whereas
KNN gives 0.92, 0.94, and 0.93. At the same time, RF gives
1.00, while DT moderately performs with precision, recall,
and an F-score value of 0.97, 0.98, and 0.97. During sag with
ficker, RF achieved a precision value of 1.0, while KNN,
SVM, and DT had values of 0.9, 0.91, and 0.96, respectively.
Te recall values were 0.98, 0.95, 0.87, and 0.88 for RF, DT,
SVM, and KNN, respectively. Te F-score values were 0.99,
0.95, 0.89, and 0.89 for RF, DT, SVM, and KNN, respectively.
All algorithms achieved a performance value of 1.00 during
swell with ficker. However, KNN had a precision value of
0.94, a recall value of 0.98, and an F-score value of 0.96.

During the interruption with ficker, RF algorithms achieved
a higher recall value of 1.00, while KNN, SVM, and DT had
recalls of 0.96, 0.98, and 0.99, respectively. Te KNN and DT
had F-scores of 0.95 and 0.99, respectively, whereas SVM
and RF had the same F-score value of 0.98.

Table 11 shows that the random forest (RF) method is
better than k-nearest neighbor (KNN), support vector
machine (SVM), and decision tree (DT). Te RF method
improves accuracy, precision, recall, and F-score, which are
important measures of a model’s ability to classify data and
make accurate predictions. In summary, these results sug-
gest that the RF technique is a more successful classifcation
algorithm than the KNN, SVM, and DT methods. Te RF
approach may be utilized by researchers and practitioners to
develop accurate and dependable classifcation models.

4.4. Comparison with Other Methods. In this study, the
proposed approach is evaluated and compared with recent
studies and methods for determining and classifying power
quality disturbances. Te evaluation takes into account
factors such as the number of signals analysed, sample rates,
and accuracy achieved. Te results clearly demonstrate that
the proposed ST+DT method outperforms other contem-
porary approaches, achieving a classifcation accuracy of
98.02 percent. By utilizing the S-transform for feature ex-
traction, the proposed method overcomes limitations as-
sociated with fxed-width windows and challenging window
function selection thanks to the extended capabilities of the
S-transform which combine wavelet and Fourier transforms.
Table 12 presents a comparative analysis of the efectiveness
of the proposed ST+DT method against the fndings of
several recent studies conducted between 2015 and 2022.Te
accuracy of the sparse signal decomposition (SSD) with
a hybrid dictionary (HD) approach is reported as 95.4
percent for classifying seven PQD classes. In 2018, Saini and
Beniwal proposed an FFT+ELM classifer with 95.38 per-
cent accuracy for classifying 12 PQDs. Sahani and Dash

Table 10: Complete performance indices of all algorithms.

PQD class
Precision Recall F-score Accuracy Best

algorithmKNN SVM DT RF KNN SVM DT RF KNN SVM DT RF KNN SVM DT RF
C1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 100 100 100 100 All
C2 0.93 0.86 0.98 1.00 0.92 0.95 0.98 1.00 0.92 0.90 0.98 1.00 92.0 95.3 97.9 100 RF
C3 0.98 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.98 1.00 1.00 1.00 98.1 100 100 100 DT and RF
C4 0.94 0.98 0.99 1.00 0.93 0.96 0.99 1.00 0.93 0.97 0.99 1.00 93.0 96.0 99.1 100 RF
C5 0.90 0.97 0.95 0.96 0.87 0.93 0.93 0.98 0.88 0.95 0.94 0.97 86.8 92.8 92.8 97.9 RF
C6 0.95 1.00 0.98 1.00 0.96 0.98 0.97 1.00 0.95 0.99 0.97 1.00 96.0 98.0 96.8 100 RF
C7 0.92 0.99 1.00 1.00 0.91 0.96 1.00 1.00 0.91 0.97 1.00 1.00 90.9 96.1 100 100 DT and RF
C8 0.87 1.00 1.00 1.00 0.92 1.00 1.00 1.00 0.89 1.00 1.00 1.00 91.9 100 100 100 SVM, DT, and RF
C9 0.96 0.88 0.96 0.98 0.95 0.92 0.96 0.96 0.95 0.90 0.96 0.97 94.9 92.0 96.0 96.0 DT and RF
C10 0.89 0.91 1.00 1.00 0.90 0.97 0.99 1.00 0.89 0.94 0.99 1.00 90.0 96.9 98.7 100 RF
C11 0.92 0.83 0.96 0.96 0.96 0.91 0.98 0.97 0.94 0.87 0.97 0.96 96.0 90.5 98.0 96.8 DT
C12 0.93 0.92 0.93 0.97 0.89 0.90 0.97 0.95 0.90 0.90 0.95 0.96 89.0 90.9 96.9 94.8 DT
C13 0.96 0.95 1.00 1.00 0.95 0.94 0.99 1.00 0.95 0.94 0.99 1.00 95.0 94.2 98.9 100 RF
C14 0.92 0.94 0.97 1.00 0.94 0.85 0.98 1.00 0.93 0.89 0.97 1.00 94.1 84.9 98.1 100 RF
C15 0.90 0.91 0.96 1.00 0.88 0.87 0.95 0.98 0.89 0.89 0.95 0.99 87.9 86.9 95.0 98.0 RF
C16 0.94 1.00 1.00 1.00 0.98 1.00 100 1.00 0.96 1.00 1.00 1.00 97.2 100 100 100 SVM, DT, and RF
C17 0.95 1.00 1.00 0.97 0.96 0.98 0.99 1.00 0.95 0.98 0.99 0.98 95.2 97.7 99.4 99.7 RF
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Figure 3: Continued.
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introduced a classifer based on HHT and WBELM,
achieving 95.6 percent accuracy for 16 PQD classes. Tir-
umala et al. presented a PQD classifer based on EWT and
SVM, achieving a classifcation accuracy of 95.56 percent for
16 distinct PQD classes. Hole, S.D., and Naik employed
mathematical parametric models and the discrete wavelet

transform (DWT) in 2020, achieving a precision of 95.83
percent using k-nearest neighbors (KNN) and Naive Bayes
(NB) classifcation algorithms for six PQD classes. Te
WT+PCA+ SVM classifer proposed by Saxena et al.
demonstrated an accuracy rate of 96.2 percent for identi-
fying fve distinct forms of PQDs. In 2020, Markovska et al.
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Figure 3: (a) Precision comparison of RF with other algorithms. (b) Recall comparison of RF with other algorithms. (c) F-score comparison
of RF with other algorithms.

Table 11: Overall performance indices of all algorithms.

Sl. no Classifcation
algorithm Accuracy Precision Recall F-score

1 KNN 93.41 0.9329 0.9323 0.2325
2 SVM 94.83 0.9482 0.9459 0.9470
3 Decision tree 98.09 0.9817 0.9810 0.9813
4 Random forest 99.01 0.9911 0.9905 0.9908

Table 12: Comparing the efectiveness of the proposed method in view of other recently published articles.

Type of classifcation Number of classes Number of features Sampling frequency Overall classifcation accuracy
(%) with noise

SSD+HD [26] 7 5 20 kHz 95.4
FFT+ELM [27] 12 7 6.4 kHz 95.38
HHT+WBELM [25] 16 4 3.2 kHz 95.6
EWT+ SVM [21] 16 6 6.4 kHz 95.56
DWT+ML [28] 6 10 25 kHz 95.83
RF+DWT [29] 21 9 3.2 kHz 96.48
WT+PCA+ SVM [30] 5 5 — 96.2
Proposed ST+RF 17 9 3.2 kHz 99.01
Note. SSD: sparse signal decomposition; HD: hybrid dictionary; HHT: Hilbert–Huang transform; WBELM: weighted bidirectional-based extreme learning
machine; ELM: extreme learning machine; PCA: principal component analysis; SVM: support vector machine; FFT: fast Fourier transform; ST: S-transform;
RF: random forest.
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implemented the PQD classifer based on random forest
(RF) and DWT, achieving a classifcation accuracy of 96.48%
for 21 PQD classes. Te comparative results unequivocally
indicate the superior performance of the proposed method.

Overall, the results demonstrate the high efciency and
superiority of the suggested method compared to existing
approaches for power quality disturbance detection and
classifcation.

5. Conclusion

Tis research provides a novel approach based on the
Stockwell transform (ST) and a random forest classifer for
efcient recognition of PQD signals. Firstly, the S-transform
technique is used to extract the feature dataset from the
produced PQD signals. Sampling frequencies of 3.2 kHz and
a signal-to-noise ratio (SNR) of 40 dB are investigated.
Seventeen (C1–C17) varieties of distinct PQDs are con-
sidered. Te extracted dataset is then trained and evaluated
using the suggested random forest method. Te following is
a summary of the most important outcome of the output
classifcation: (i) it is determined that the overall detection
accuracy is 99.01% and (ii) the proposed ST+RF classif-
cation method outperforms various recent PQD classifca-
tionmethods, including KNN, SVM, andDT, with an overall
accuracy of 93.41% for KNN, 94.83% for SVM, and 98.09%
for DT. Te current work can be expanded in the accom-
panying directions: (i) evaluating the suggested strategy with
regard to real-time PQDs’ information, (ii) incorporating
additional disorders into the methodology in an attempt to
classify more types of disorders, and (iii) implementing and
examining deep learning techniques for PQDs’ identifcation
in a more complicated scenario.

Nomenclature

AI: Artifcial intelligence
DAG: Directed acyclic graph
DG: Distributed generation
DRST: Double resolution S-transform
DT: Decision tree
EEMD: Ensemble empirical mode decomposition
EMD: Empirical mode decomposition
EWT: Empirical wavelet transform
FFT: Fast Fourier transform
FRFT: Fractional Fourier transform
FST: Fast S-transform
FT: Fourier transform
GT: Gabor transform
HHT: Hilbert–Huang transform
HMM: Hidden Markov model
HT: Hilbert transform
IEWT: Improved empirical wavelet transform
IGWO: Improved grey wolf optimization
IMFs: Intrinsic mode functions
KELM: Kernel extreme learning machine
KF: Kalman flter
KNN: K-nearest neighbor
MM: Mathematical morphology

PQ: Power quality
PQDs: Power quality disturbances
RES: Renewable energy sources
RF: Random forest
RKELM: Reduced kernel extreme learning machine
SD: Standard deviation
SGBT: Sparse group-based tree
SOFC: Solid oxide fuel cell
ST: S-transform
STF: Strong tracking flter
STFT: Short-time Fourier transform
SVM: Support vector machine
THD: Total harmonic distortion
VMD: Variational mode decomposition
WBELM: Weighted bidirectional-extreme learning

machine
WGO: Wild goat optimization
WPT: Wavelet packet transform
WT: Wavelet transform.
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