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The fundamental challenge in video generation is not only generating high-quality image sequences but also generating consistent
frames with no abrupt shifts. With the development of generative adversarial networks (GANS), great progress has been made in
image generation tasks which can be used for facial expression synthesis. Most previous works focused on synthesizing frontal and
near frontal faces and manual annotation. However, considering only the frontal and near frontal area is not sufficient for many
real-world applications, and manual annotation fails when the video is incomplete. AffineGAN, a recent study, uses affine
transformation in latent space to automatically infer the expression intensity value; however, this work requires extraction of the
feature of the target ground truth image, and the generated sequence of images is also not sufficient. To address these issues, this
study is proposed to infer the expression of intensity value automatically without the need to extract the feature of the ground truth
images. The local dataset is prepared with frontal and with two different face positions (the left and right sides). Average content
distance metrics of the proposed solution along with different experiments have been measured, and the proposed solution has
shown improvements. The proposed method has improved the ACD-I of affine GAN from 1.606 + 0.018 to 1.584 + 0.00, ACD-C of
affine GAN from 1.452 + 0.008 to 1.430 £ 0.009, and ACD-G of affine GAN from 1.769 + 0.007 to 1.744 + 0.01, which is far better
than AffineGAN. This work concludes that integrating self-attention into the generator network improves a quality of the
generated images sequences. In addition, evenly distributing values based on frame size to assign expression intensity value
improves the consistency of image sequences being generated. It also enables the generator to generate different frame size videos
while remaining within the range [0, 1].

1. Introduction

Computer vision seeks to enable machines to perceive the
world in the same manner that humans do and apply that
knowledge to a variety of tasks and processes (such as image
analysis, image recognition, and classification). Following
the advancement of deep generative networks in computer
vision, photo-realistic image generation [1-4], which focuses
on generating realistic-looking images from random vector,
and image-to-image translation [5, 6] which is concerned
with translating images from one domain to another, are the
two well-known examples that have been achieved. This

study focuses on image-to-video translation specifically on
generating image sequences of facial expression from
a single neutral image.

Humans can imagine various scenes of what would be
the next move based on a given still image, therefore
allowing machines to learn such activity would be advan-
tageous in a range of application sectors such as cinema-
tography [7-10], movie production, photograph technology,
and e-commerce. Image-to-video translation seeks to gen-
erate video sequences from the single static image; unlike
image-to-image translation, it adds another temporal di-
mension to deep models; and, unlike video prediction, its
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input is a static image with no temporal clues [6, 11-13].
Facial expression is defined as the movement of facial
muscles on the skin that can convey an individual’s emo-
tional state. Facial expression synthesis focuses on creating
new face shapes from the given input face without changing
the particular characteristics of the given face; if imple-
mented as an add-on, it can improve facial recognition
accuracy and gender classification. Facial expression syn-
thesis has several applications, including robot and avatars
animation, video game development, and graphics in-
terchange format (GIF) generation. Earlier methods syn-
thesize facial expression using traditional approaches
including 2D/3D image warping [14], image reordering [15],
or flow mapping methods [16], the majority of which are
example-based or morph-based. Recent methods rely on
generative models to deal with facial expression synthesis.
One of the most notable is GAN (generative adversarial
network) [1], which has made significant advances in image
generation. [3, 10, 17-21] have addressed the issue of facial
expression but limited to static facial expression generation.
Producing a facial expression video from one image is a one-
to-many mapping problem in which the output has many
more unknowns to solve than the input, which lacks tem-
poral information. Recently, researchers addressed the
challenge of image-to-video translation for generating facial
emotions from a single picture, including facial geometry-
based [22], face parsing-based [23], action unit-based [24],
and 3D blend shape model-based [25]. The authors in
[22, 23, 26] produce facial expressions images without
background face (ear, hair, and half of the forehead). Other
works [11] proposed a user-controllable framework to
synthesize facial expressions, and this approach assigns
expression intensity value manually to make the generated
image sequences consistent; however, the manual annota-
tion fails when the video is incomplete. To solve the manual
annotation problem AffineGAN, the authors in [15]
employed an affine transformation to give an expression
intensity to each facial image in the latent space, assuming
that the ground truth (real) image features are equal to the
produced image features; if they are not equal, inconsistency
occurs. This effort also necessitates extracting features from
the target ground truth images to compute the expression
intensity value. In addition to the abovestated problems, the
majority of existing works only focus on synthesizing frontal
and near-frontal face expressions. But the nonfrontal face
images also need to be synthesized to apply the model for
most real-world applications. Some works [20, 27] syn-
thesize face expression and pose simultaneously, but they
disregard expression intensity variations.

This work aims to generate good-quality and consistent
image sequences of facial expression and varying frame size
videos inspired by the AffineGAN [15, 28] network. In this
regard, this study proposes to infer expression intensity
value by evenly distributing values in the range [0, 1]
according to the number of frames in a given video to
produce consistent image sequences and varying frame size
videos, as well as adding attention mechanisms, i.e., self-
attention mechanism and constraints to the network ar-
chitecture for better results.
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2. Methodology

2.1. Model Architecture. The proposed model has been
adapted from facial image-to-video translation by a hidden
affine transformation called AffineGAN, for learning image-to-
video translation which was introduced by the authors in [15].
In this work instead of three discriminators such as Affine-
GAN, the proposed model uses one discriminator network. In
addition, attention mechanisms were also introduced to the
generator network and express intensity value inferred by
evenly distributing values according to the frame size in a given
video. Hence, unlike that of the AffineGAN, the proposed
model is built with one generator and one discriminator. The
generator network was built as U-Net [7] architecture. The
discriminator network is a patchGAN discriminator following
the work [5] that penalizes structure only at the scale of nearby
image patches.

The generator, as illustrated in Figure 1, is made up of two
encoders, basic encoder Enc_b, and residual encoder Enc._r, as
well as a decoder Dec. Both encoders are similar in structure
and take the neutral image Io as input. The basic encoder is
used to retain the feature of the neutral picture, while the
residual encoder is utilized to capture the expression shift from
neutral to peak expression. fb and fr are the features from the
basic and residual encoder, respectively, as shown in equations
(1) and (2), respectively.

The expression intensity e is used to control expression
change and is calculated by equally distributing values within
the range [0, 1] based on the number of frames in the training
dataset. In essence, you provide the beginning and endpoints of
an interval, as well as the number of total breakpoints you want
inside that interval. The interval is the number of frames in
a specific video, and the starting and finishing points are set to
0 and 1, respectively. For example, if the frame size (interval) is
five, the intensity value will be [0, 0.25, 0.5, 0.75, 1], and the
expression intensity helps the network learn that the expression
should go from neutral to the peak. The target feature (ft) is
obtained from basic features (fb), residual features (fr), and
expression intensity (e) as shown in equation (3).

Enc_b(Io) = fb, (D
Enc_r (Io) = fr, (2)
ft=1fb+frxe. (3)

Finally, the target image It is generated by feeding target
feature ft to the decoder Dec as shown in Figure 2.

It = Dec(ft), (4)

When e = 0, ft = fb, and it means that the generator has to
generate a neutral face image, and when e = 1, the generated
face image should be at the peak expression state. The dis-
criminator network is utilized to contrast the produced ex-
pression image from that of the real expression image.

2.2. Generator Architecture. The generator network is uti-
lized to create realistic-looking facial expressions with
varying intensities. Both the encoders and the decoder are
constructed as seven-layer neural networks with skip
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connections based on U-Net architecture [7] as shown in
Figure 3. U-Net, whose architecture is shaped like the letter
“U,” was originally designed for medical image segmenta-
tion. It produced such good results that it was later used in
other applications. In U-Net architecture, there are two
pathways. The first path is the contraction path called en-
coder, which is utilized to record the context of the image
and the path is an expanding path also called decoder is
utilized to achieve exact localization via transposed con-
volutions. To extend a feature to a target picture as revealed
in Figure 3, U-Net employs the same feature maps that were
utilized for contraction. This would preserve the image’s
structural integrity while drastically reducing distortion.
Both the encoders contain convolution, leaky ReLu acti-
vation function, and instance normalization except for the
first and the last layers, and it contains only the convolution
at the first layer and convolution and leaky ReLu activation
function at the last layer. The decoder contains transposed
convolution, ReLu activation function, and instance nor-
malization except for the last layer, and it only contains
transposed convolution and ReLu activation function. The
self-attention layer is incorporated at the first layer of the
decoder to aid the generator to create images with fine details
in every location that are precisely coordinated with fine
features in distant parts of the image. Except on the first and
last layer of the decoder, channel attention was planned to be
added to help the network focus on crucial features while

filtering out irrelevant features. However, for the sake of
reducing experiment complexity, we have included self-
attention and disregarded channel attention in the pro-
posed method. We can consider the attention mechanism in
Figure 3 as an empty set and will be considered in our
future work.

2.3. Self-Attention Mechanism. SAGAN [29] presents a self-
attention method into convolutional GANs. With the self-
attention method, the generator can produce images with
fine details in every location that are precisely coordinated
with fine features in distant parts of the image.

The initial step toward self-attention is to break down
each input feature into three separate vectors, f (x), g(x),
and h(x) as shown in Figure 4. To limit the number of
channels, 1x1 convolution is employed. Instead of
inspecting every pixel, the self-attention component is
concerned with the input activation’s local regions. So, h (x)
is a representation of input features with a smaller number of
channels and activation maps. The significance of the fea-
tures of the self-attention map is determined using f (x) and
g(x). The vector g(x) at location x is calculated and
compared with the vector f (x) at all locations to compute
an output feature at location x. The attention map is cal-
culated with matrix multiplication between f (x) and g(x).
Finally, the matrix multiplication between h(x) and the
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attention map gives a self-attention feature map. The self-
attention layer enables the generator to generate images with
fine details in every location that are accurately coordinated
with fine characteristics in distant regions of the image. To
solve the challenge of limited convolution kernel size, the
authors in [30] added a self-attention mechanism into the
generator’s upsampling block to generate long-range de-
pendence of the picture. As a result of this discovery, in this
work, we have incorporated self-attention mechanism in the
generator’s decoder block to construct the image’s long-term
dependency, as shown in Figure 3.

2.4. Channel-Attention Mechanism. Since each filter in the
Conv layer works with a nearby receptive field, the output
after convolution cannot leverage contextual information
outside of the adjacent region. To make the generator
network focus on crucial features, the authors in [2] pro-
posed channel attention (CA) mechanism that makes use of
feature channel interdependence. Global average pooling is
utilized to convert channel-wise global location information
into a channel descriptor.

Let Img= [imgl,...,imgc,...,imgC] be an input
containing C feature maps of size HXW.

It has C feature maps with the size of HXW. Img can be
shrunk through spatial dimensions HXW to acquire the
channel-wise statistics z&R°.

Then, the ¢ element of z is determined by the following
expression:

1
HXW 4

1

M=
M=

]
—_
~
Il
—

z.=Hep (x.) = x. (6 ), (5)

where x, (i, j) is the value at position (i, j) of " feature x..
The global pooling function is denoted by Hgp (.). Such
channel statistics can be considered as a collection of the
neighborhood descriptors, and it contributed to expressing
the entire image as shown in Figure 2.

A gating technique was also implemented to properly
capture channel-wise dependencies from aggregated in-
formation via global average pooling. The gating mechanism
should fulfill two conditions, as mentioned in [31]: first and
foremost, it should be capable of learning nonlinear in-
teractions between channels. Second, because several
channel-wise properties might be stressed rather than
a solitary one-hot activation, it must learn a nonmutually
exclusive connection. A basic gating system with a sigmoid
function is used here following the work of [31] as in the
following equation:

s= f(WUS(WDz)), (6)

where sigmoid gating and the ReLu activation function are
denoted by f(.) and §(.), respectively. WD, is the weight of
a Conv layer, that is used as a channel-downscaling with
a reduction r ratio. The low-aspect signal is then expanded
with ratio » by the channel-upscaling layer after ReLU ac-
tivated it, whose weight is WU. The last channel statistics s
are then obtained and employed to rescale the input x, as
follows:

X, = 8. % (7)
where s, and x, are the scaling factors and feature map in the
¢ channel.

The authors in [32] utilized channel-wise attention at the
decoder part in an MRI reconstruction problem to focus on
crucial features related to the ultimate objective while
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filtering out irrelevant and noisy features and achieves very
promising outcomes in terms of common MRI re-
construction metrics which are SSIM, PSNR, and NMSE. As
a result of this discovery, in our future work, channel at-
tention will be employed in the generator’s second, third,
fourth, fifth, and sixth decoder layers to focus on significant
features while filtering out irrelevant features. In this work,
channel attention in Figure 3 is empty and no any com-
putation is available in this structure.

2.5. Discriminator Network. The discriminator network
depicted in Figure 5 is a patchGAN discriminator following
the work [5] that penalizes structure only at the scale of
nearby image patches. It uses deep CNN to classify images as
real or produced. Rather than learning to penalize structure
across the entire image, as the traditional GAN does, the
patchGAN penalizes structure only at the scale of nearby
image patches. It decreases the discriminator load greatly
since distinguishing local patches requires far less model
capacity than discriminating complete images. The dis-
criminator network, as seen in Figure 5, includes con-
volutional layers, instance normalization, and leaky ReLU
except for the first and last layers, the discriminator’s first
layer comprises convolution and instance normalization,
while the last layer simply contains convolution. It contrasts
the generated video frames to the ground truth frames.

2.6. Model Learning Functions. The main aim of this work is
to generate good-quality image sequences that are consistent
in time. To achieve this objective, different learning func-
tions such as loss functions and attention mechanisms were
introduced to the network. The loss functions used in this
work include adversarial loss £, and reconstruction error
&, between the produced and real images, as shown in the
following equation:

Z, =Z,+Z. (8)

2.6.1. Adversarial Loss. In this study, mean absolute error is
utilized to train the generator and the discriminator rather

than vanilla GAN. It is determined by averaging the absolute
difference between the actual and produced images, as it is
formulated in the following equation:

Z, = % |D (G (lo,e)) - D(1,)), 9)

where D is the discriminator network that contrasts the
generated image by the generator G and the ground truth
image I,.

2.6.2. Reconstruction Loss. L, is a typical loss function that
minimizes the absolute disparities between the estimated
values and the existing target values. The L, loss function is
more resilient and, in general, is unaffected by outliers. As
shown in equation (10), L, loss was utilized between the
produced and the real images following the work of [5].

7, =|1,-T) (10)

where I, the ground truth is (real) image and It is the
generated image

3. Experiments

3.1. Datasets and Implementation Details. The proposed
model was trained and tested using the MUG (multimedia
understanding group) facial expression dataset and a local
dataset that was collected by the researchers. The MUG
dataset is appropriate for this study because it contains high-
quality, well-organized video frames from neutral to peak
expression. Also, the local dataset was created using the
MUG dataset as a reference. The dataset is organized with
different expressions. These are expressions that are happy,
anger, surprise, and disgust. The number of frames varies
from person to person. To increase the size of the dataset, the
following image augmentation techniques were used: hor-
izontal flip, random brightness, random saturation, adjusted
brightness, and random contrast to train the model with
more data. Random brightness and adjusted brightness
techniques were used to change the image’s brightness based
on the brightness factor, brightness factor 32/255, and 0.3
utilized, respectively. Random saturation and random
contrast are used to randomly change the saturation and
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contrast of the image based on the saturation and contrast
range, respectively. Both the saturation and contrast ranges
are set to the range of [0.5, 1.5]. In addition to the MUG
dataset, we have collected few datasets for testing purpose.
The implementation of our work is mainly based on the
AffineGAN using PyTorch deep learning framework. Adam
optimizer with learning-rate=0.002, beta_1=0.5, and
beta_2=0.999 was utilized to update the network weight.
Adam is described as integrating the benefits of two other
extensions of stochastic gradient descent, specifically,
AdaGrad and RMSProp [33], and it is straightforward to
implement, computationally efficient, and requires little
memory. The step size, often known as the “learning rate,” is
the amount by which the weights are changed during
training. The learning rate and the weight loss for L, used for
this work are similar to [15]. This work is implemented on
Windows desktop with processor Intel®Intel™ i7-8700 CPU
@ 20GHz 3.19GHz and graphics NVIDIA Corporation
TU104 (GeForce RTX 2070 SUPER)/GeForce RTX 2070
SUPER/PClIe/SSE2 with a RAM capacity of 8 GB.

3.2. Experimental Classes. The propose method that is aimed
to improve image-to-video translation for synthesizing facial
expressions should be experimentally proved. To this end,
we have conducted different experiments as shown in Ta-
ble 1. The first experiment is the implementation of the
baseline work, Affine GAN. AffineGAN inferred expression
intensity value by applying affine transformation in the
latent space, and it used alpha discriminator to control the
value from deviating away from the range [0, 1]. BCE loss is
used to train the generator and the discriminators.

The second experiment is the initial work of the pro-
posed model. The expression intensity value is inferred as
stated in the above section. Since the NumPy linespace
function bound the values to the range [0, 1], the alpha
discriminator is not necessary like AffineGAN. For the local
discriminator, the boundary image is used as an informative

region to calculate the loss between the multiplication of the
informative region and the ground truth image with the
multiplication of the informative region with a generated
image. Instead of using the mouth region only as an in-
formative region like [11, 15], the boundary image is used as
an informative region since the boundary image can hold the
structure of the face image and is also better at describing the
facial pose than only the mouth area. Mean absolute error
(MAE) loss is used to train the generator and the dis-
criminators. The boundary is detected using an open-source
face alignment library [34]. Lastly, in the third experiment,
the self-attention mechanism was added at the first decoder
layer of the generator for good-quality image generation.
The result of each experiment is depicted in Section 4.

4. Experimental Results

In this study, three experiments were carried out. All the
experiments were carried out on the same dataset, hardware,
and software configuration for comparison purposes. The
results are shown for the two datasets that are the MUG
dataset and the local dataset.

4.1. AffineGAN. AffineGAN contains one generator and
three discriminators. The first discriminator is used to
contrast the generated image with the ground truth (real)
image. The second discriminator is used to contrast the
multiplication of the informative region (mouth region) and
the produced image with the multiplication of the in-
formative region and ground truth image. Mouth region
mask is used as the informative region for the local dis-
criminator. The third discriminator is used to keep the
expression intensity value within the range [0, 1]. BCE loss is
used to train the generator and the discriminators.

The first row is the expression intensity value of eight
frames (i.e., the e values depicted above the facial image), and
the second and the third rows show the results of AflineGAN



Journal of Electrical and Computer Engineering

jasejep uolssaidxo [eroe] [e20] pue HON
jasejep uolssaidxa [eoe] [edo] pue HON

jasejep uolssaidxo [eroe] e20] pue HNON

JOYRUTWLIOSIP [820] )M pUe J3AR] UOIIUL))E-J[3S 3} JO UOHIPPE Y} I
SIOJRUTWILIOSTP
oY} pue 10jeI2Ud3 oy} UTeI} 0} PIsn sSO[ FYIAl PUE JOJRUTWILIOSIP [D0] 3y} 10J Uor3ax
SAT)BULIOJUT Uk St pasn afewl ATepunoq ‘paje)s se paIIdjur AIsuajur uorssardxyg
JIom aurseq

VS +NVOIVIN

NVOIVIN

NVOURy

pasn jaseje(q

juowrradxy

UOTIBION

Paonpuod sassed —NHQOEMHQQNU JO ISTT T 9714V],



on the MUG dataset and local dataset, respectively. As
shown in Figure 6, in the second row (i.e., the MUG dataset),
there is a sudden change at expression intensity value of
0.142 which might affect the consistency of the video. This
shows that there is a probability that inconsistency might
occur in the AffineGAN network. There is also a quality
problem at expression intensity values 0.857 and 1 on the
MUG dataset. On the local dataset, (i.e., as shown in the
third row) there is an issue with the mouth and teeth part.

4.2. MAEGAN. To tackle the problem with AffineGAN, the
experiment called MAEGAN was carried out. MAEGAN is
a mean absolute error loss function introduced in the gen-
erator network. The MAEGAN experiment bases expression
intensity inferred as stated earlier, employee’s boundary
image used as an informative region for the local discrimi-
nator and mean absolute error (MAE) loss was used to train
the generator and the discriminators. In this experiment, the
expression intensity value is inferred as stated in the model
architecture section, to make the generator generate con-
sistent image sequences as well as different size videos while
remaining in the range [0, 1]. Unlike the AffineGAN, the
alpha discriminator is not necessary for this case since the
NumPy linesapce function bound the value to the range [0, 1].
For the local discriminator, the boundary image is used as an
informative region to calculate the loss between the multi-
plication of the informative region and the real image with the
multiplication of the informative region with a produced
image. Instead of using the mouth region only as an in-
formative region like [11, 15], the boundary image is used as
an informative region since the boundary image can hold the
structure of the face image and is also better at describing the
facial pose than only the mouth area. Mean absolute error loss
is utilized to train the generator and the discriminators. With
this experiment as shown in Figure 7, we have noticed some
blurry noise which we believe it is as a result of detail abstract
features were missed in the intermediate layers. To this end,
we have introduced attention mechanism called, MAE-
GAN + SA, as described in Section 4.3. Each three rows are as
described as in the previous section.

4.3. MAEGAN + SA. To solve the blurry problem in the
previous experiment, a self-attention layer (SA) was added at
the decoder of the generator. The first row is the expression
intensity value of eight frames, and the second and the third
rows show the results of MAEGAN on the MUG dataset and
local dataset, respectively. As shown in Figure 8, there are no
sudden changes in performing the expression, and the
quality of the image sequence also gets better compared to
the previous one. But generated images are somehow blurry,
especially at peak expression intensity value in which further
intervention is required. However, the generated images are
far better than those of the images generated by AffineGAN
(e.g., see the image generated at e = 0.142), as shown in
Figure 8. In general, compared to the previously introduced
AffineGAN and MAEGAN, MAEGAN + SA has better vi-
sual quality as shown in Figure 8 and Table 2, as shown in
Table 2.

Journal of Electrical and Computer Engineering

The experiment conducted with AfineGAN, MAEGAN,
and MAEGAN +SA on one expression, i.e., only on the
happy expression. In addition to those experiments con-
ducted happy expression, we have conducted an experiment
with both MUG and LOCAL dataset with the four facial
expressions presented earlier in the dataset section. Figure 9
shows an experiment conducted on the MUG dataset with
the four expressions. The first row is the expression intensity
value of eight frames, the second row is the produced frames
with happy expression, the third row shows the produced
frames with anger expression, the fourth row shows the
produced frames with surprise expression, and the last row
shows the produced frames with disgust expression with
MAEGAN + SA.

Similarly, the two figures shown in Figures 10 and 11
show the result of MAEGAN + SA on the local dataset with
the four expressions presented earlier. The first row is the
expression intensity value of eight frames, the second row is
the produced frames with happy expression with near 45-
degree left position, the third row shows the produced
frames with anger expression with near 90-degree left po-
sition, the fourth row shows the produced frames with
surprise expression with near 45-degree right position, and
the last row shows the produced frames with disgust ex-
pression with near 90-degree right position with the
MAEGAN + SA model on the local dataset. Figures 10 and
11 show the generated image sequences for the anger ex-
pression with frontal and two sides of the left and right side
on the local dataset.

To further visualize our experiment, we have experi-
mented with only three and five frames which are different
from the eight-frame experimented as shown in Figures 12
and 13. In Figure 12, the first row is the expression intensity
value of five frames and the second row is the produced
frames of the MAEGAN + SA model with a happy expres-
sion on the local facial expression dataset. Similarly, in
Figure 13, the first row is the expression intensity value of
three frames and the second row is the produced frames of
the MAEGAN + SA model with a happy expression on the
local facial expression dataset.

Apart from the subjective evaluation, we have eval-
uated the proposed model objectively. To this end, we
have used the metrics called average content distance
(ACD), ACD-I, ACD-C, and ACD-G. ACD-I is utilized to
evaluate the quality of face identities, and it computes the
average distance between the original image and the
output frames. ACD-C is used to assess content consis-
tency, and it computes the average distance between all
possible pairs of frames in a video. ACD-G is used to
evaluate expression changes it computes the average
frame-to-frame distance between the generated frames
and the corresponding ground-truth ones. Accordingly,
MAEGAN achieved 1.58+£0.016 ACD-I,
1.414+0.007 ACD-C, and 1.738+0.011 ACD-G, and
MAEGAN +SA has achieved 1.584+0.001 ACD-I,
1.430£0.009 ACD-C, and 1.744 + 0.01 ACD-G. If we see
these results, it is far better than the base line AffineGAN.
The bold value indicates the best result in the experiments
shown in Table 2.
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FIGURE 6: Facial image generated as a result of AffineGAN experimentation.
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FIGURE 7: Facial image generated as a result of MAEGAN experimentation.
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FI1GURE 8: Facial image generated as a result of MAEGAN + SA experimentation.

TABLE 2: Average content distance, ACD (ACD-I, ACD-C, and ACD-G) scores result of the AffineGAN, MAEGAN, MAEGAN + SA, and
the ground truth.

Numbers Experiment ACD-1 ACD-C ACD-G

1 AffineGAN 1.606 +0.018 1.452 +0.008 1.769 +£0.007
2 MAEGAN 1.58 +0.016 1.414 £ 0.007 1.738 £0.011
3 MAEGAN + SA 1.584 +0.001 1.430 £ 0.009 1.744 +0.01
4 Ground truth 1.38 +£0.02 1.400 £ 0.01 0

All the ACD scores were also computed for the real (ground truth) for reference, and the last row indicates the result of the ACD scores for the ground truth.
The ACD scores are lower, the better the model performance is.
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F1GUre 9: The generated frames with MAEGAN + SA for the four categories of expression on the MUG dataset.
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F1GURE 10: The generated frames with MAEGAN + SA for the four categories of expression on the local dataset (sample 1).
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FIGURE 11: The generated frames with MAEGAN + SA for the four categories of expression on the local dataset (sample 2).
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FIGURE 12: Generated image sequences with five frames with MAEGAN (local dataset).
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FIGURE 13: Generated image sequences with three frames with
MAEGAN (local dataset).

5. Conclusion

Generally, this study introduced a method to infer the ex-
pression intensity value to make the generator able to
generate consistent and varying frame size videos. This work
also introduced self-attention disregarding the channel at-
tention mechanisms to the network architecture and trains
the model with mean absolute error loss. The local dataset
was also prepared with frontal and with two different face
positions on the left and right sides.

Finally, this work concludes that adding self-attention to
the generator network, and utilizing MAE loss as adversarial
loss improved the quality of the image sequences being
generated. Evenly distributing values according to the frame
number to assign expression intensity value improves the
consistency of image sequences being generated and also
enables the generator to generate different frame size videos
while remaining in the range [0, 1].
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