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In wireless communication, the channel function estimated commonly has errors due to the infuence of noise, so traditional
channel estimation methods cannot accurately estimate the real channel function. Aiming at this problem, we propose a channel
estimation method that combines sounding reference signal (SRS) remapping with the deep-learning network BRD_ESRNet.
BRD_ESRNet consists of image denoising using a deep convolutional neural network with batch renormalization (BRDNet) and
an expanded superresolution convolutional neural network (ESRCNN). At the transmitter side, we frst map the SRS into four-
box structures, and then, the four-box structures are scattered distribution throughout the time-frequency resource block. At the
receiver side, we frst perform the modifed least squares (LS) estimation based on the four-box structure and place the result into
the top-left resource unit of the four box. Ten, we perform linear interpolation for the whole resource block. Finally, we equate
the estimated channel matrix to a low-resolution image containing noise and input it to BRD_ESRNet. Tus, we obtain data with
high resolution and achieve the purpose of reducing the estimation error of the channel function. Te experimental results show
that the proposed method in this paper has a signifcant improvement in performance compared to the methods of Soltani et al.
and Nithya et al. In this paper, the methods of Soltani et al. and Nithya et al. are referred to as methods 1 and 2, respectively.

1. Introduction

Mobile communication technology is one of the fastest-
developing technologies in recent decades [1–4]. In order
to meet the high demand for communication quality, the
channel estimation is necessary at the receiver. In 3rd
Generation Partnership Project (3GPP) LTE-Advanced
(LTE-A), known SRS [5] is sent to the receiver coming
with the information data, and at the receiving end, the
channel estimation method, such as least squares (LS) and
minimum mean-square error (MMSE), is performed on
the basis of SRS, and then, the channel coefcients at the
SRS location are estimated. After that, the channel co-
efcients of the whole LTE-A uplink resource block are
obtained by time-frequency interpolation. Also, the sig-
nal-to-noise ratio (SNR) estimation can be made on the
basis of SRS. Te condition of the channel is judged
according to the SNR. When the channel condition is
good, the transmitter will use higher modulation such as
16QAM modulation or 64QAM modulation. When the
channel condition is bad, the estimated channel function

is not very accurate and the transmitter uses BPSK
modulation.

With the booming development of deep learning, deep
learning-based communication techniques have attracted
great attention and are widely used in each module of the
receiver, including channel estimation [6–9], channel state
information feedback [10], signal detection [11], and
channel equalization [12].

Compared with traditional channel estimation methods,
the deep learning method can make use of the learned
nonlinear features of the channel function to obtain better
estimation performance [13–16]. In [14], the joint model and
data-driven receiver scheme for data-dependent super-
imposed training (DDST) in the condition of imperfect
hardware are proposed. In [15], the extreme learning ma-
chine (ELM) method is used to channel estimation for RIS-
assisted OFDM systems with insufcient CP. In [16], a new
idea for channel estimation based on deep learning is
provided. In this idea, the whole time-frequency grid of the
channel coefcients estimated by traditional channel esti-
mation method such as LS or MMSE is considered as a two-
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dimensional image, and then, we use the denoising network
and image optimization network for further channel
estimation.

From the literature research, we know that the LS
method has been widely used because of its low complexity,
but the performance of LS channel estimation is afected by
the noise. Tis is due to the fact that the channel function
estimated by the LS method contains the noise item. So the
motivation of our study is to eliminate the noise from the
estimated channel function as much as possible and improve
the performance. To address this problem, this paper pro-
poses a modifed LS method based on remapping SRS on the
four-box structure in the time-frequency grid. Trough this
process, the noise can be reduced from the estimated
channel function.

Lately, in [17], a novel deep convolutional neural net-
work (CNN) named BRDNet is proposed for image
denoising, and image-denoising performance has been en-
hanced. In [18], an ESRCNN is presented for single image
superresolution. If the estimated channel function matrix is
regarded as a 2D image, we can use concatenated BRDNet
and ESRCNN to denoise and enhance its resolution. We call
this network model as BRD ESRNet.

Te contributions of this paper are summarized as
follows:

(1) Remapping the SRS by four-box structure in the
time-frequency resource block

(2) Use modifed LS method to reduce the noise from
estimated channel function

(3) Model the estimated channel function as a 2D image
and put it into the denoising network

(4) Use the concatenated BRDNet and ESRCNN named
BRD ESRNet to denoise and enhance the resolution
for channel function

Te rest of this paper is organized as follows. In Section
2, we provide the related work of the proposed method. In
Section 3, the system model, the SRS remapping structure,
and the modifed LS method are briefy described, and the
proposed BRD ESRNet is presented. In Section 4, we present
the experimental results of the proposed scheme. In Section
5, we give the conclusions.

2. Related Work

2.1. SRS Design in LTE-A. In the LTE-A [19] uplink, each
wireless frame consists of 10 subframes in the time domain;
each subframe contains two time slots; that is, one wireless
frame of the LTE-A system contains 20 time slots. Each time
slot contains seven SC-FDMA symbols (normal cyclic
prefx) or six SC-FDMA symbols (extended cyclic prefx).
Te subframe structure of the LTE-A uplink and SRS po-
sition are shown in Figure 1 [20].

Te SRS is obtained by the cyclic shifting of the ZC
sequence, defned as

r
SRS

(n) � r
α
u,v(n) � e

jαn
ru,v(n) 0≤ n≤M

RS
SC, (1)

where rαu,v(n) denotes the base sequence, u denotes the
sequence-group number, v denotes the base sequence
number within the base sequence group, j denotes the
imaginary part unit, MRS

SC denotes the length of the SRS, and
α is a circular shift defned as

α � 2π
n
CS
SRS
8

n
CS
SRS � 0, 1, 2, 3, 4, 5, 6, 7, (2)

where nCS
SRS is provided by the upper level.

When a user sends an SRS in the LTE-A uplink, the SRS
needs to be mapped to a resource block before it can be
transmitted. An SRS sequence is mapped on every other
subcarrier and on the last symbol per subframes. Te entire
SRS sequence consumes twice the bandwidth of the se-
quence length. Since there is no sufcient reference signal in
the time domain, the channel estimation based on SRS is
unsuitable for fast-fading channels.

2.2. Channel Estimation. As shown in Figure 2, it is assumed
that in the mobile communication system, the base station
has d antennas and the user side has 1 antenna, and the
channel is a multipath fading channel in the system model.
For simplicity, we only consider one of the d links, in other
words, the single-input single-output (SISO) OFDM system.
At the user side, let τ is a vector of SRS sequence in frequency
domain, with length K and |τk|2 � 1, k � 1, . . . , K. At the
base station, after N-point FFT, the received vector can also
be represented in the frequency domain by [21]

x � τh + n, (3)

where the length of the received vector x is K and h denotes
the channel function matrix of K∗K between the user and
the base station. We consider the transmitter and receiver is
perfect synchronization, and there is no intercarrier in-
terference (ICI), so h is a diagonal matrix. n is a white
Gaussian noise vector with the zero mean and element-wise
variance σ2n.

Estimation of the channel function at the SRS position is
performed using the LS algorithm, and the LS estimate of the
channel function is expressed as [22]

hLS �
1
τ

x � h +
1
τ

n. (4)

Correspondingly, the mean-square error (MSE) of the LS
estimate is expressed as

JLS � E h − hLS
����

����
2

􏼚 􏼛 � σ2n. (5)

Note that the MSE is proportional to σ2n, which implies
that the performance of LS depends on the noise intensity.

CP

data symbols

DMRS
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Figure 1: Subframe structure and SRS position.
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Better than the LS estimation is the MMSE estimation,
which is obtained by multiplying the LS estimate at the SRS
location with the flter matrix [23]:

hMMSE � R
h􏽢h

Rhh + σ2n xx
H

􏼐 􏼑
−1

􏼒 􏼓
−1

hLS. (6)

In the same way, the mean-square error of the MMSE
estimate is expressed as

JMMSE � h − R
h􏽢h

Rhh + σ2n xx
H

􏼐 􏼑
−1

􏼒 􏼓
−1

hLS

�������

�������

2

􏼨 􏼩, (7)

where the channel matrix h has zero means, R
h􏽢h

denotes the
mutual correlation matrix of the real channel matrix and the
real channel matrix, and Rhh denotes the autocorrelation
matrix of the real channel matrix.

2.3. Image Denoising and Superresolution. Deep learning
neural networks, such as the denoising convolutional neural
network (DnCNN) [24] and the image restoration con-
volutional neural network (IRCNN) [25], are very popular
for image denoising. Tese networks utilize convolutional
neural network (CNN) techniques as a noise prediction
method. Te recently proposed BRDNet is to achieve the
denoising efect by performing the corresponding convo-
lution, batch renormalization, and residual learning on the
image. Image superresolution (SR) [18, 26, 27] is a class of
algorithms for image resolution enhancement. Deep
learning-based algorithms have made great progress in the
problem of enhancing low-resolution images to high-
resolution images, and ESRCNN provides a completely
new idea for stable resolution enhancement, which leads to
low-noise and high-resolution channel functions.

3. Proposed Channel Estimation Denoising
Method Based on Remapping SRS and
Then BRD_ESRNet

3.1. System Model. As shown in Figure 3, when the SRS
sequence is mapped to physical resources, we use a new
mapping method diferent from the SRS in the LTE-A. We
map the SRS into a four-box structure, and the four-box
structure is scattered throughout the resource block. We call
this new mapping method as SRS remapping, it will be

introduced in the next section. Te transmitted SRS was
transmitted through the channel and added with AWGN
noise. At the receiver side, we proposed a modifed LS
channel estimation method based on SRS remapping, in-
troduced in Section 3. Time-frequency interpolation is used
to gain the whole estimated channel matrix, which is then
put into BRD_ESRNet composed of BRDNet and ESRCNN
to denoise and enhance resolution. Finally, the accurate
estimated channel matrix can be obtained.

3.2. Remapping SRS. In order to eliminate the infuence of
noise in channel estimation, the remapping SRS is adopted
in this paper, as shown in Figure 4. First, the four-box
structure is consisted of four resource units that are adja-
cent OFDM symbols and subcarriers, then, the SRS signal is
placed at the diagonal position of the four-box structure,
represented by blue squares, and the remaining two resource
units do not hold any data. Second, the four-box structures
are scattered throughout the resource block, as shown in
Figure 4(a), this is similar to the scattering distribution of
pilot symbols in [28].

3.3. Modifed LS Algorithm. In Figure 4, we represent the
four adjacent channel coefcients as hi,i, hi,i+1, hi+1,i, and
hi+1,i+1, respectively. Where hi,i denote the channel co-
efcients at the i th subcarrier and the i th OFDM symbol.
τi∗2+1 and τi∗2+2 denote SRS symbols that are placed at the
top left and bottom right, respectively. According to (3), the
received signal is represented as

xi,i � τi∗2+1hi,i + ni,i,

xi,i+1 � 0 · hi,i+1 + ni,i+1,

xi+1,i � 0 · hi,i+1 + ni+1,i,

xi+1,i+1 � τi∗2+2hi+1,i+1 + ni+1,i+1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

Since these ni,i, ni,i+1, ni+1,i, and ni+1,i+1 are samples of
white Gaussian noise random variable, we can assume that
the noises on adjacent subcarriers are equal ni,i ≈ ni+1,i;
ni,i+1 ≈ ni+1,i+1 . So, we can calculate the following expression:

xi,i + xi+1,i+1 − xi,i+1 − xi+1,i ≈ τi∗2+1hi,i + τi∗2+2hi+1,i+1.

(9)
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Figure 2: Resource block in uplink transmission.
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If the channel is not varying very fast in the frequency
domain, we can assume that the channel coefcients
on adjacent subcarriers are approximately equal
hi,i ≈ hi+1,i+1. Terefore, using (7), the estimated channel
coefcients on the top left of the four-box structure can
be expressed as

􏽢hi,i �
xi,i + xi+1,i+1 − xi,i+1 − xi+1,i􏼐 􏼑

τi∗2+1 + τi∗2+2
,

􏽢hMLS � 􏽢hi,i|i � 0, 1, . . .􏽮 􏽯,

(10)

􏽢hMLS is much more accurate than hLS in (4) because of no
noise item. But because the noise on adjacent subcarriers is
not exactly equal, the noise cannot be completely eliminated
in the estimated channel coefcients.

As shown in Figure 4(b), after the modifed LS channel
estimation is performed for each four-box structure, the
estimated channel coefcient is placed at the top-left resource
unit in each four-box structure. In Figure 4(c), frequency
domain interpolation is performed for the resource block. In
Figure 4(d), the resource blocks are interpolated in the time
domain. Finally, the channel function of the whole resource
block has been obtained. Although the efect of MMSE is still
better than that of our modifed LS algorithm, but its com-
plexity is higher. So our modifed LS algorithm is chosen as
the input for the deep learning network in this paper.

3.4. Network Structure. Te network model BRD ESRNet in
this paper is proposed based on deep learning, which
consists of two network models, BRDNet and ESRCNN, to
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further improve the accuracy of our modifed LS estimation.
BRD_ESRNet processes the guide frequency information in
two ways, which are denoising and resolution improvement.
Te network structure diagram of BRD_ESRNet is shown in
Figure 5.

BRDNet is divided into two networks, mainly composed
of convolution (Conv), batch renormalization (BRN), and
rectifed linear units (ReLU). In the upper network, layers
116 are Conv +BRN+ReLU and layer 17 is Conv. In the
lower network, layers 1, 9, and 16 are Conv + BRN+ReLU,
layers 2–8, and 10–15 are dilated convolution, and layer 17
is Conv.

ESRCNN is a more common network model for en-
hancing image resolution, which mainly consists of Conv
and ReLU. After feeding low-resolution images to ESRCNN,
it uses a three-layer convolutional network to improve the
image resolution. Te frst convolutional layer uses 64 flters
of size 9× 9. Te second layer consists of 3 convolutions,
each using 32 flters of size 1× 1, 3× 3, and 5× 5. Te second
layer is activated with ReLU, and fnally, the outputs of the 3
convolutions of the second layer are averaged. Te third
layer uses a flter of size 5× 5 to reconstruct the image.

As shown in Figure 5, the channel function estimated by
modifed LS is the frst input to BRDNet for the denoising
process. Te denoised data are then fed into ESRCNN for
resolution enhancement, and amore accurate estimate of the
channel function is obtained. In particular, BRDNet and
ESRCNN are connected using a cascade structure.

3.5. Datasets and Loss Function. In this paper, we focus on
LTE-A uplink communication, where the channel function
between the transmitter and receiver is a complex matrix of
size 72×14, denoted as 72 subcarriers in the frequency
domain and 14 symbols in a subframe, respectively. It can be
represented as two 2D images, one 2D image of the real part
of the channel function and the other 2D image of the
imaginary part of the channel function, respectively.

We use the Rayleigh multipath channel model and
pseudorandom Gaussian noise generator to produce the real
channel function h, and it is efcient to simulate the real
wireless communication scenarios. Te noisy channel
function 􏽢hMLS is produced by a modifed LS estimation
algorithm. We can easily generate a lot of the experimental
sample, which can act as training data, for example, 4,000
channel matrices of size 72×14, which are complex
matrices.

Te input of BRD ESRNet is the modifed LS-estimated
channel function 􏽢hMLS, and the output is the denoised
channel function 􏽢h, defned as

􏽢h � fE ΞE; fB ΞB; 􏽢hMLS􏼐 􏼑􏼐 􏼑, (11)

where fB and fE denote the BRDNet and ESRCNN
functions, respectively, and ΞB and ΞE denote the set of
parameter values for BRDNet and ESRCNN, respectively.

As shown in Figure 5, BRD ESRNet consists of two
network structures, and for the loss function of the frst
training algorithm, i.e., the loss function of BRDNet, we can
express it as follows:

l1 �
1

‖N‖
􏽘
h∈N

fB ΞB; 􏽢hMLS􏼐 􏼑 − h
�����

�����. (12)

Te best modifed LS estimates are predicted by the best
weights of BRDNet, and fnally, by inputting into ESRCNN,
the overall minimum loss function l2 can be obtained:

l2 �
1

‖N‖
􏽘
h∈N

fE ΞE; fB ΞB; 􏽢hLS􏼐 􏼑􏼐 􏼑 − h
�����

�����. (13)

Summarizing the abovementioned equation, the loss
function between the channel function estimated by
BRD_ESRNet and the actual channel function can be de-
fned as

l �
1

‖N‖
􏽘
h∈N

‖􏽢h − h‖, (14)

where N denotes all the datasets, h denotes the real channel
function, and 􏽢h denotes the estimated channel function.

4. Experimental Results

In this experiment, we apply the Keras package and the
TensorFlow package to train the proposed BRD_ESRNet
model; all experiments were performed in a Python 3.6
environment. For BRDNet, the learning rate is set to
1× 10−3, the minimum batch size is 50, and the maximum
number of iterations is 50. For ESRCNN, we set the learning
rate to 1× 10−3, the minimum batch size to 128, and the
maximum number of iterations to 100.

Te total number of samples for BRD_ESRNet is 4000,
and the size of each uplink channel matrix is 72×14. Te
total number of samples for BRDNet is 4,000, consisted of
2,000 training samples and 2,000 testing samples. Te test
output of BRDNet is used as the input of ESRCNN, so the
total number of samples of ESRCNN is 2,000, consisted of
1,950 training samples and 50 test samples.

We input the noisy channel functions with diferent
signal-to-noise ratios (SNR) into BRD_ESRNet and then
compare the noisy channel function, the denoised channel
function, and the real channel function, which is clean and
without noise. As shown in Figure 6, the error between the
modifed LS estimated channel function and the real channel
function is large when the SNR is between 0 dB and 8 dB,
respectively; however, the error between the output denoised
channel function and the real channel function is signif-
cantly reduced.

Te conventional channel estimation is shown in Fig-
ure 7. When conventional SRS mapping is used, the channel
function error of LS estimation is the largest and the channel
estimation error of MMSE estimation is the smallest. Te
channel function error of modifed LS estimation and the
channel estimation error of MMSE estimation are signif-
cantly reduced when using SRS remapping (four box), and
the ideal MMSE estimation has the smallest channel func-
tion error and gives a lower bound on the achievable average
error, which is impossible in engineering practice due to the
fact that the whole of the channel statistical characteristic are
unlikely to be obtained in practice. When the SNR is 0 dB ∼
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16 dB, the estimation performance of MMSE is signifcantly
better than that of LS. At the SNR of 0 dB, the average error is
reduced by 0.1572 dB using the four-box mapping approach
compared with the SRS traditional mapping approach in the
LS estimation method. When the SNR is 16 dB ∼ 25 dB, the
estimation performance of MMSE is almost the same as that
of LS, regardless of how the SRS is mapped.Tis is because of
the efect of noise has been reduced.

Te channel function estimated by modifed LS and the
channel function estimated by MMSE are input to
BRD_ESRNet for denoising, respectively, and the denoising
efect is shown in Figure 8. Although the channel functions
estimated using MMSE are input to BRD_ESRNet to obtain
a smaller average error, but the MMSE algorithm is much
more complex than the modifed LS algorithm. So, in the
subsequent comparison of the denoising performance of the
networkmodels, the channel function estimated bymodifed
LS is used.

To prove that our method has better denoising efect, we
compare the proposed method with method 1 [16], method
2 [29], ideal MMSE, and MMSE in diferent SNR cases and
use the average error as the comparison criterion. Te
comparison results are shown in Figure 9, where 144 SRSs
are inserted in each resource block.

In Figure 9, the proposed method in this paper has the
best estimation performance, followed by method 2 and
method 1, and fnally by the ideal MMSE and MMSE. When
the SNR is 0 dB∼12 dB, the estimation performance of our
method, method 1 and method 2, exceeds that of the ideal
MMSE because the estimated channel function contains
a large amount of noise, which is benefcial for the network
model to extract the noise features. At an SNR of 0 dB, the
average errors of our method, method 2 and method 1 are

reduced by 0.072 dB, 0.0516 dB, and 0.0286 dB, respectively,
compared with the ideal MMSE. Compared with MMSE at
SNR 0 dB, the average errors of our method, method 2 and
method 1 are reduced by 0.1572 dB, 0.1368 dB, and
0.1138 dB, respectively. When the SNR is 12 dB ∼ 25 dB, it is
still our method that has the best estimation performance.
As the noise decreases and the network model extract fewer
noisy features, the estimation performance of the ideal
MMSE is better than that of methods 2 and 1.

Deep learning network has good estimation perfor-
mance; however, it needs time for training and prediction.
Te complexity is evaluated by the number of foating point
operations (FLOPs) metric. Tat is, the complexity of the
network model is expressed as [30]

O Mh · Mw · Kh · Kw · Cin · Cout( 􏼁, (15)

where Mh and Mw represent the height and width of the
output feature map, respectively, Kh and Kw represent the
height and width of the kernel, respectively, and Cin and Cout
are the number of input channels and output channels,
respectively. In this paper, the output feature map is
a channel matrix, so Mh � 72, Mw � 14. Te complexity of
the diferent networks can be expressed as follows:
BRD_ESRNet is denoted as (72 · 14 · 1217730). In [16],
Soltani et al. proposed the network model as ChannelNet,
which has a complexity denoted as O(72 · 14 · 673986). In
[29], Nithya et al. proposed the network model as FFDNet,
which has a complexity denoted as (72 · 14 · 677878). Te
estimated channel function by the modifed LS method is
input into BRD_ESRNet, ChannelNet, and FFDNet, re-
spectively, and then the FLOPs and actual running times of
diferent deep learning network models are counted, as
shown in Table 1.
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Figure 5: BRD_ESRNet network structure.
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When the input is a channel function estimated by LS,
the time overheads of BRD_SRNet, FFDNet, and Chan-
nelNet are 149.59milliseconds, 69.33milliseconds, and
26.88milliseconds, respectively.

Finally, this paper simulates the efect of diferent
numbers of SRSs on the channel estimation. Te average
error between the estimated channel function and the real
channel function for diferent numbers of SRSs with an SNR
of 8 dB is shown in Figure 10. Te average error curves

estimated by the ideal MMSE, our method, method 1 and
method 2 do not strictly decrease with the increase in the
number of SRSs, but fuctuate up and down in a certain
range.Te reason is that the noise does not decrease with the
increase of the SRS signal, so it is not possible to achieve
a strict decrease in the average error as the number of SRS
increases. Compared with other estimation methods, the
average error curves of our method for diferent numbers of
SRSs fuctuate less and are close to a straight line.
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5. Conclusion

In this paper, we propose a novel channel estimationmethod
based on the combination of remapping SRS, modifed LS,
and deep learning. We propose the BRD_ESRNet model. At

the user side, we frst remap the SRS into the four-box
structure, and then at the receiver, the modifed LS esti-
mation method based on the four-box structure is applied to
estimate the channel coefcient, then it is place at the top-left
resource unit of the four-box structure. Following the time
and frequency interpolation, the whole estimated time-
frequency channel matrix is obtained; it can be repre-
sented as two 2D images and is put into the BRD_ESRNet
network, which performs denoising and resolution en-
hancement processes on the channel matrix in turn. It is
experimentally demonstrated that our proposed method is
very competitive in performance with other advanced
channel estimation algorithms; for example, at an SNR of
0 dB, the average error of our proposed method estimation is
reduced compared to MMSE estimation by 0.1572 dB. But,
compared to ChannelNet and FFDNet, the BRD_ESRNet
model has higher complexity and higher time consumption.
In the future, we plan to fnd some lighter network models
that can debase the complexity and reduce the time con-
sumption meanwhile guaranteeing the accuracy of channel
estimation.
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